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Abstract: Priority vectors in the Analytic Hierarchy Process (AHP) are commonly estimated as
constant values calculated by the pairwise comparison ratios elicited from an expert. For multiple
experts, or panel data, or other data with varied characteristics of measurements, the priority vectors
can be built as functions of the auxiliary predictors. For example, in multi-person decision making, the
priorities can be obtained in regression modeling by the demographic and socio-economic properties.
Then the priorities can be predicted for individual respondents, profiled by each predictor, forecasted
in time, studied by the predictor importance, and estimated by the characteristic of significance,
fit and quality well-known in regression modeling. Numerical results show that the suggested
approaches reveal useful features of priority behavior, that can noticeably extend the AHP abilities
and applications for numerous multiple-criteria decision making problems. The considered methods
are useful for segmentation of the respondents and finding optimum managerial solutions specific
for each segment. It can help to decision makers to focus on the respondents’ individual features and
to increase customer satisfaction, their retention and loyalty to the promoted brands or products.

Keywords: AHP priority as functions; exponential and multinomial models; auxiliary predictors

1. Introduction

Analytic Hierarchy Process (AHP) is one of the main methods for solving various
multiple-criteria decision making problems. It had been originated by Thomas Saaty [1–5]
and developed in works of many authors [6–13]. The preferences in the AHP can be
calculated by different techniques using the pairwise comparison matrices to find the
vectors of priorities presented as constant values.

However, for multiple experts, or panel data, or other problems with multiple ma-
trices of paired comparisons elicited in different conditions with varied characteristics of
measurements, the priority vectors can be built not as constants but as functions of some
additional auxiliary predictors. For example, in multi-person decision making applied in
marketing, advertising, and other applied social research, performed by means of the AHP
or any other tool of statistical modeling, the information on the respondents’ demographics
and other characteristics of the economics environment is always gathered. There are
research problems with AHP pairwise priorities elicited, for example, from the side of
managers or the side of customers at different store locations, where many dozens of
respondents were questioned.

Pair comparison techniques operate with multiple values, for example, of the AHP
pairwise ratios, which are used for evaluation of the final priorities and the corresponding
ranks of the preferences. A simple asking respondents to rank order the multiple items
is not so easy task because it requires to hold in mind all the items simultaneously. In
contrast, the pair comparisons approach, when a respondent should compare only two
of the presented items, yield more reliable relations between these items’ preferences in
the whole set of them. The pairwise ratios are elicited from a respondent for whom we
can know the demographic variables, and to use them to a better fit and better prediction
of the priorities. The preferences evaluated without auxiliary variables correspond to
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regressions without the predictors—those produce simply the constant mean value of the
elicited preferences.

The current work explores new approaches for constructing the priority vectors with
elements presented by the functions found via regression modeling. The varying priorities
can be predicted for individual respondents, profiled by each predictor, forecasted in time,
studied by the predictor importance, and estimated by the characteristic of significance
and quality known in the regression modeling. Numerical results show that the suggested
approaches reveal useful features of priority behavior that can noticeably extend the AHP
abilities and applications for numerous multiple-criteria decision making problems.

In the proposed approach, the priorities of the compared items can be found not only
on the aggregated level, but for each individual respondent based on her/his tastes, views,
perceptions, attitudes, predispositions, and any other characteristics and preferences. It
can help to decision makers and managers to focus on the respondents’ individual needs
and to elaborate special approaches to increase customer satisfaction, their retention and
loyalty to the suggested brands or products. The considered methods are also useful for
segmentation of the respondents and finding optimum managerial solutions specific for
each segment. In regression analysis, a possibility of finding personalized key drivers for
individual respondents was studied in [14].

The paper is organized as follows: Section 2 describes AHP priority estimations as
constant parameters, and Section 3 extends the priorities to be expressed as functions by
the predictors. Section 4 discusses numerical examples, and Section 5 summarizes.

2. AHP Priority Estimated via Minimization of Deviations

Priority estimation in the classical AHP is performed by the matrix of pairwise judge-
ments elicited from an expert. Each element ajk of this matrix shows a quotient of preference
of the j-th item over k-th item in their comparison among all n items. The elements of this
matrix are reciprocally symmetrical,

ajk = 1/akj. (1)

A theoretical Saaty matrix of pair comparisons defines each jk-th element as a ratio of
the unknown priorities wj and wk:

W = w ∗ (1/w)’ (2)

where the theoretical priorities presented by the vector-column w consists of the elements
w1, w2, . . . , wn, the vector-row (1/w)’ contains the reciprocal values 1/w1, 1/w2, . . . , 1/wn,
and the matrix (2) is defined by their outer product (the prime denotes transposition). In
a hypothetical case of the perfectly elicited paired ratios coinciding with the theoretical
quotients of priorities we could equalize the values from the matrices (1) and (2):

ajk = wj/wk. (3)

However, in practical observations, there is no such perfect data, and the relations (3)
should be described in some models with deviations from the exact equalities. For example,
assuming a multiplicative error term, the relation (3) can be represented as follows:

ajk =
αj

αk

(
1 + δjk

)
, (4)

where alpha αj denotes the estimates for the elements of the theoretical priority vector w,
and delta δjk denotes the relative errors.

The relations (4) can be represented in a linear form by multiplying by the denominator αk,

ajkαk = αj

(
1 + δjk

)
. (5)
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Summing by k yields the Equations:

∑n
k=1 ajkαk = αj

(
n + ∑n

k=1 δjk

)
. (6)

Equalizing the sums of errors at the right-hand side (6) for all j and denoting them as

λ = n + ∑n
k=1 δjk, (7)

we can rewrite the Equation (6) in the matrix form as follows:

Aα = λα. (8)

The expression (8) is the AHP eigenproblem for the matrix A with elements (1), and its
eigenvector α for the maximum eigenvalue lambda (7) defines the vector of priorities. The
problem (8) is usually obtained by analogue with the relation Ww = nw for the theoretical
matrix and vector (2), but the derivation (4)–(8) shows explicitly that the classical AHP
corresponds to equalizing the total relative deviations in the rows of the matrix A, and the
mean level of these totals is close to the number of compared alternatives n (7).

Linearizing the relations (4) can be done by logarithmic transformation as well:

ln ajk = ln αj − ln αk + ln
(

1 + δjk

)
. (9)

Then the Least Squares (LS) minimization for the relative deviations can be applied:

LS = ∑n
j,k=1

(
ln
(

1 + δjk

))2
= ∑n

j,k=1

(
ln ajk − ln αj + ln αk

)2
. (10)

For small relative deviations
∣∣∣δjk

∣∣∣� 1 , the decomposition ln
(

1 + δjk

)
= δjk shows

that the expression at the left-hand side (10) has a meaning of the relative errors squared.
Minimizing this objective by the logarithm of estimated priorities ln αj produces the loga-
rithmic least squares, also known as multiplicative solution with priorities presented by
the geometric means in the rows of matrix A (1).

Instead of the relative errors in (4), it is possible to take a model with absolute errors:

ajk =
αj

αk
+ ε jk, (11)

where ε jk are the deviations between the elicited values in (1) and their approximation via
the priority estimates alpha αj. The LS for the absolute errors corresponds to the objective

LS = ∑n
j,k=1 ε2

jk = ∑n
j,k=1

(
ajk −

αj

αk

)2
. (12)

The priorities can be found in the nonlinear LS estimation for this criterion. A lin-
earization similar to the transformation (4) to Equation (5) can be applied to the model (11)
with absolute errors, leading to the linear least square estimation for the priority vector. An
obtained priority vector is usually standardized in AHP by the total of its elements:

pj =
αj

∑n
k=1 αk

, (13)

so that the sum of the normalized components equals one. More details on all these and
other solutions can be found in [6,11,13,15,16].
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3. AHP Priority Vectors Modeled by Predictors

The more complicated problems of group decision making include multiple experts
whose opinions can vary because of their demographic, socio-economics, and many other
functional characteristics impacting their pairwise ratios’ evaluations. Some other problems
can contain panel data where observations are elicited in different moments in time, or
for varying prices, so the preferences among the alternative can depend on the changing
conditions. Such more complicated situations require the above considered models to be
extended to incorporating auxiliary variables explaining variability of the priorities across
the respondents and their specific features. Let us describe several possible ways to expand
the common AHP techniques to more sophisticated methods which permit to account for
auxiliary variables in the preference modeling.

The theoretical priorities wj in (2) can be described as the exponent functions:

wi
j = exp

(
wj0 + wj1xi

1 + wj2xi
2 + · · ·+ wjMxi

M

)
, (14)

where xi
1,xi

2, · · · xi
M are the auxiliary predictors (with the subscript m = 1, 2, . . . , M—

number of the variables; and the superscript i = 1, 2, . . . , N—number of the respondents);
the notations Wj0, Wj1, Wj2, . . . , WjM stand for the parameters of the j-th theoretical priority
expressed via the intercept and the coefficients for linear combination of predictors. The
exponents guarantee a positive total priority Wi

j of j-th alternative for i-th respondent at
the left-hand side (14) for any set of the predictors’ values.

Consider the model (4) with the odds built by the exponents (14), but in place of all
theoretical parameters w we use their estimates denoted by the corresponding parameters
alpha. The constant parameters of preference αj and αk we extend by substitution with the
exponential functions:

ai
jk =

αi
j

αi
k

(
1 + δi

jk

)
=

exp
(
αj0 + αj1xi

1 + αj2xi
2 + · · ·+ αjMxi

M
)

exp
(
αk0 + αk1xi

1 + αk2xi
2 + · · ·+ αkMxi

M
)(1 + δi

jk

)
. (15)

The pairwise ratios ai
jk and deviations δi

jk correspond to the comparison of j-th and
k-th alternatives by the i-th respondent, and all other notations are the same as in the
expression (14), subject to substitution of theoretical parameters w by their estimates as
alpha parameters. In absence of the auxiliary x-variables, the model (15) reduces to the
model (4) with the notations aj = exp(aj0), averaged across the respondents.

Applying to (15) the logarithmic transformation (9) and LS criterion (10) yields:

LS = ∑N
i=1 ∑n

j,k=1

(
ln
(

1 + δi
jk

))2

= ∑N
i=1 ∑n

j,k=1

(
ln ai

jk −
(
αj0 − αk0

)
−
(
αj1 − αk1

)
xi

1 − · · · −
(
αjM − αkM

)
xi

M

)2
.

(16)

Instead of the odds ratio model (15)–(16) with the relative errors, we can consider the
model (11), (12) with the absolute errors as well.

Another approach based not on the pairwise ratios but directly on the preference
shares in total (13) can be built using the multinomial-logit model expressed via the
exponents (14):

pi
j =

wi
j

∑i
k=1 wi

k

=
exp

(
wj0 + wj1xi

1 + wj2xi
2 + · · ·+ wjMxi

M
)

∑n
k=1 exp

(
wk0 + wk1xi

1 + wk2xi
2 + · · ·+ wkMxi

M
) . (17)

For an i-th respondent in (17), the shares of wj in their total can be evaluated by the
pairwise comparison matrix (2) as follows:

wj

∑i
k=1 wk

=
1

∑n
k=1 wk/wj

=
1

∑n
k=1 wkj

=
1

∑n
k=1 1/Wjk

= Hj/n. (18)
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That is the reciprocal of totals in each j-th column of the theoretical matrix W, which
is proportional to the harmonic means Hj of the elements in each j-th row of the matrix
(2). For the elicited pairwise ratios in matrix (1), such values correspond to the inverted
totals in each column of the matrix Ai, or the inverted totals of the reciprocals in its each
row, 1/ ∑n

k=1 1/Ai
jk , where the superscript i identifies the matrix of the pairwise ratios for

the i-th respondent. Using these values in (17) and rewriting it as the model with relative
errors expressed via the estimate alpha in place of the theoretical preferences w, yields the
following expression:

1

∑n
k=1 1/Ai

jk
=

exp
(
αj0 + αj1xi

1 + αj2xi
2 + · · ·+ αjMxi

M
)

∑n
k=1 exp

(
αk0 + αk1xi

1 + αk2xi
2 + · · ·+ αkMxi

M
)(1 + δi

jk

)
. (19)

Then similarly to (16), it is easy to build the LS criterion for minimization of the relative
deviations in (19).

For uniqueness of solution in finding parameters of the multinomial-logit model (19),
one set of the coefficients is commonly put to zero, for instance, the first share’s parameters
equal zero. The same approach can be used in the modeling (14)–(16) with ratios of the
exponent odds.

Let us make several additional remarks useful for numerical modeling. Instead of the
relative errors, the models with absolute errors similar to (11), (12) can be tried for the odds
(14)–(16) or the shares (17)–(19) models too. In place of the considered LS criterion, the
maximum likelihood criterion is often used for parameter estimation in the multinomial-
logit modeling. Sometimes the general multinomial models are simplified to the so-called
conditional logits which use the same parameters for all shares and differ only by the
predictors’ values. All these models are widely applied in the choice modeling [17–19]. For
all pairwise ratios elicited from a respondent, the demographic or other auxiliary values
are the same, so the described methods correspond to the multi-person decision making as
employed in [12]. The non-linear estimations needed for several considered approaches
can be performed with the modern statistical packages, for example, [20–23]. It is useful
to mention that the predictions by the ordinary least squares regressions produce results
not depending on the degree of multicollinearity. However, for analysis of the individual
parameters of the model, the regressions can be constructed not only by LS criterion as in
(16), but by special techniques helpful for evaluation of the predictors’ importance and
parameters of models not prone to the effects of multicollinearity. Detail description of
these methods can be found, for example, in [24,25].

In the described models, we find parameters of the priority presentation via the
predictors, then we can predict values of the priorities themselves. A simpler way to
reach this goal is also possible with multiple respondents to find individual priorities
of the alternatives for each respondent, then to model them by the demographics and
other auxiliary predictors. Suppose, the priorities for each respondent are found by a
method considered in (1)–(13), and they are stacked with the individual demographic
characteristics. Then we can build a set of multiple regressions of each j-th alternative in its
dependence on the predictors and make predictions by i-th respondents:

αi
j = αj0 + αj1xi

1 + αj2xi
2 + · · ·+ αjMxi

M. (20)

To be sure that the predicted values of the priorities are always positive, it is preferable
to apply exponential functions like those used in (14)–(19):

αi
j = exp

(
αj0 + αj1xi

1 + αj2xi
2 + · · ·+ αjMxi

M

)
. (21)

By the logarithm transformation, the relations (21) can be reduced to the linear regres-
sions which are more convenient in practical modeling.
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4. Numerical Comparisons for Priority Estimations

Data from a marketing research project is taken on 17 respondents who evaluated eight
flavors of a snack. The flavors are denoted and called as follows: A—Gratin, B—Sweet, C—
Cream, D—Gold, E—Rosemary, F—Butter, G—Chives, H—Cheese. The last six columns
in Table 1 contain demographic data of the respondents: Gender (1—male, 2—female),
Age groups (1—under age 18; 2—18:20 years old; 3—21:24; 4—25:29; 5—30:34; 6—35:39;
7—40:44; 8—45:49; 9—50:54; 10—55:59; 11—60:64; and 12—65 or older), HH—how many
people are in the household (1—one person, 2—two people, 3—three, 4—four, 5—five or
more), Education (1—grade school or less; 2—some high school; 3—high school graduate;
4—some college; 5—two-year college or technical school; 6—four-year college; 7—some
postgraduate work; 8—postgraduate degree), Employment (1—work full-time; 2—work
part-time; 3—self-employed; 4—student; 5—homemaker; 6—Retired), Income group, in
thousand $ (1—less than 25; 2—25:39; 3—40:49; 4—50:74; 5—75:99; 6—100:124; 7—125:149;
8—150 or more).

Table 1. Initial data on AHP pairwise ratios and demographics.

ID a12 a13 a23 Gender Age Household Education Employment Income

1 2 0.5 0.25 2 8 4 3 5 2
2 4 1 0.25 2 4 2 4 5 2
3 2 0.5 0.333333 2 5 3 6 1 4
4 0.5 1 1 2 4 2 7 1 2
5 1 1 1 1 6 1 3 3 2
6 2 1 1 2 10 2 3 5 3
7 0.5 0.125 0.25 1 10 2 5 6 2
8 4 1 0.333333 2 8 3 6 5 5
9 6 1 0.2 2 9 2 3 5 5
10 0.2 0.333333 2 1 5 1 4 1 1
11 3 0.5 0.2 1 12 2 6 6 3
12 2 1 0.25 2 10 2 4 6 2
13 3 1 0.25 1 10 3 4 3 8
14 1 1 0.5 1 6 5 8 1 3
15 8 1 0.142857 1 8 1 6 1 4
16 4 1 0.333333 1 5 3 3 1 6
17 0.5 0.5 1 1 7 2 3 1 1

For three flavors (1—A, 2—E, and 3—H) of the main interest, the AHP elicited pairwise
comparison ratios and the demographic characteristics of the respondents are presented in
Table 1.

The three pairwise quotients in the first columns of Table 1 correspond to the ele-
ments a12, a13, and a23 in the AHP matrices. For instance, the 1st and 15th respondents’
matrices are:

A1 =

 1 2 1/2
1/2 1 1/4

2 4 1

, A15 =

 1 8 1
1/8 1 1/7

1 7 1

, (22)

where we take into account that there are 1s on the diagonal, and due to (1) the lower
triangle elements are reciprocal to the upper triangle elements.

The initial data from Table 1 are represented in the extended-by-row matrix which
is more convenient for the regressions, as it is often used in the discrete choice modeling.
For this aim, each row of Table 1 is presented in three rows, by the number of the outcome
variables of pair ratios, and a new dependent variable can be denoted as yv which takes all
the values ajk. For n compared alternatives, there are n(n − 1)/2 resulting paired quotients,
so with N respondents the total number of observations becomes:

V = N· n(n − 1)/2. (23)
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In our example with 3 items and 17 respondents, the total number (23) of the observed
values is 51, with so many values yv (where v = 1, 2, . . . , V). Therefore, not the number of
respondents, but the number of the responses defines the total number of observations.

Table 2 presents such an extended matrix for regression modeling—let us describe
it in more detail. After the columns of ID for 17 respondents and 51 of the observations
number v, there are two columns of binary indicators A and H, where A indicates by 1 that
this item is in the numerator of the paired ratio, and by 0 that A is absent in the paired
ratio; similarly, in H—zero means that it is not in the current pair comparison, and −1 if
this item takes place in the denominator of the paired ratio. The column for the E item is
excluded as redundant—the total of the three columns A, E, and H equals zero identically,
so one of them is not needed for modeling. As it was mentioned after the formula (19), one
set of the parameters can be put to zero for the uniqueness of solution for the regression,
and it corresponds to exclusion of the redundant data. Instead of the column for E item,
we could exclude the item A, or the item H—the results of the regression modeling would
be with other parameters but produce the same predictions.

Besides the binary variables A and H for the modeling (14)–(16), we also take the
demographic auxiliary predictors in two sets—one related to the item A and another one to
the item H, as in the numerator and denominator in the ratios (15). The predictors related to
the item A are taken with positive or zero values exactly in correspondence with the values
in the column A indicating if this item is presented in the current paired ratio numerator or
not. Similarly, the predictors related to the item H are taken with negative or zero values in
correspondence with the values in the column H indicating if this item is presented in the
current paired ratio denominator or not. In Table 2, the set of the demographic variables
which goes with the item A is denoted by the share number 1 (for example, gender.1, age.1,
. . . , income.1), and the set which goes with the item H is denoted by the share number 3.
The set for the share related to the second item E is excluded as redundant by the same
reason of getting a unique solution, as discussed above.

For n alternatives, a combined model has n − 1 sets of parameters, and with M
auxiliary predictors there are M + 1 parameters for each set, so total (n − 1)·(M + 1)
parameters (plus a general intercept which is usually insignificant and can be omitted). For
building a regression, the total number of observations (23) should be bigger than the total
number of parameters, so approximately such an inequality should hold:

N· n/2 > M + 1. (24)

In the example with n = 3, N = 17, and M = 6, this inequality is as 25 > 7, that is
acceptable for a regression modeling where it is advised to have at least three time more
observations than parameters.

Using logarithms of the ratio values as functions by all predictors in the design in
Table 2, we build the linearized model with all shares’ parameters obtained simultaneously
in one regression. The results of this modeling are presented in Table 3. In the first
numerical column, there are estimates for the parameters of the priorities A and H, and
the complementary parameters on the demographics related to these first and third shares.
The next are columns of the standard errors, t-statistics, and p-values of the coefficients.
We see that mostly the Income predictors are significant in the model for both shares.
Below the parameters, there are characteristics of the model quality: coefficient of multiple
determination R2 = 0.6877, with the related F-statistics on 14 and 36 degrees of freedom,
and its p-value—those are good and tell us that the whole model is acceptable.
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Table 2. AHP and demographic data arranged for regression modeling.

ID obs. v Ratio
yv

A H Gender.1 Age.1 Household.1 Education.1 Employment.1 Income.1 Gender.3 Age.3 Household.3 Education.3 Employment.3 Income.3

1 1 2 1 0 2 8 4 3 5 2 0 0 0 0 0 0
1 2 0.5 1 −1 2 8 4 3 5 2 −2 −8 −4 −3 −5 −2
1 3 0.25 0 −1 0 0 0 0 0 0 −2 −8 −4 −3 −5 −2
2 4 4 1 0 2 4 2 4 5 2 0 0 0 0 0 0
2 5 1 1 −1 2 4 2 4 5 2 −2 −4 −2 −4 −5 −2
2 6 0.25 0 −1 0 0 0 0 0 0 −2 −4 −2 −4 −5 −2
3 7 2 1 0 2 5 3 6 1 4 0 0 0 0 0 0
3 8 0.5 1 −1 2 5 3 6 1 4 −2 −5 −3 −6 −1 −4
3 9 0.333333 0 −1 0 0 0 0 0 0 −2 −5 −3 −6 −1 −4
4 10 0.5 1 0 2 4 2 7 1 2 0 0 0 0 0 0
4 11 1 1 −1 2 4 2 7 1 2 −2 −4 −2 −7 −1 −2
4 12 1 0 −1 0 0 0 0 0 0 −2 −4 −2 −7 −1 −2
5 13 1 1 0 1 6 1 3 3 2 0 0 0 0 0 0
5 14 1 1 −1 1 6 1 3 3 2 −1 −6 −1 −3 −3 −2
5 15 1 0 −1 0 0 0 0 0 0 −1 −6 −1 −3 −3 −2
6 16 2 1 0 2 10 2 3 5 3 0 0 0 0 0 0
6 17 1 1 −1 2 10 2 3 5 3 −2 −10 −2 −3 −5 −3
6 18 1 0 −1 0 0 0 0 0 0 −2 −10 −2 −3 −5 −3
7 19 0.5 1 0 1 10 2 5 6 2 0 0 0 0 0 0
7 20 0.125 1 −1 1 10 2 5 6 2 −1 −10 −2 −5 −6 −2
7 21 0.25 0 −1 0 0 0 0 0 0 −1 −10 −2 −5 −6 −2
8 22 4 1 0 2 8 3 6 5 5 0 0 0 0 0 0
8 23 1 1 −1 2 8 3 6 5 5 −2 −8 −3 −6 −5 −5
8 24 0.333333 0 −1 0 0 0 0 0 0 −2 −8 −3 −6 −5 −5
9 25 6 1 0 2 9 2 3 5 5 0 0 0 0 0 0
9 26 1 1 −1 2 9 2 3 5 5 −2 −9 −2 −3 −5 −5
9 27 0.2 0 −1 0 0 0 0 0 0 −2 −9 −2 −3 −5 −5
10 28 0.2 1 0 1 5 1 4 1 1 0 0 0 0 0 0
10 29 0.333333 1 −1 1 5 1 4 1 1 −1 −5 −1 −4 −1 −1
10 30 2 0 −1 0 0 0 0 0 0 −1 −5 −1 −4 −1 −1
11 31 3 1 0 1 12 2 6 6 3 0 0 0 0 0 0
11 32 0.5 1 −1 1 12 2 6 6 3 −1 −12 −2 −6 −6 −3
11 33 0.2 0 −1 0 0 0 0 0 0 −1 −12 −2 −6 −6 −3
12 34 2 1 0 2 10 2 4 6 2 0 0 0 0 0 0
12 35 1 1 −1 2 10 2 4 6 2 −2 −10 −2 −4 −6 −2
12 36 0.25 0 −1 0 0 0 0 0 0 −2 −10 −2 −4 −6 −2
13 37 3 1 0 1 10 3 4 3 8 0 0 0 0 0 0
13 38 1 1 −1 1 10 3 4 3 8 −1 −10 −3 −4 −3 −8
13 39 0.25 0 −1 0 0 0 0 0 0 −1 −10 −3 −4 −3 −8
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Table 2. Cont.

ID obs. v Ratio
yv

A H Gender.1 Age.1 Household.1 Education.1 Employment.1 Income.1 Gender.3 Age.3 Household.3 Education.3 Employment.3 Income.3

14 40 1 1 0 1 6 5 8 1 3 0 0 0 0 0 0
14 41 1 1 −1 1 6 5 8 1 3 −1 −6 −5 −8 −1 −3
14 42 0.5 0 −1 0 0 0 0 0 0 −1 −6 −5 −8 −1 −3
15 43 8 1 0 1 8 1 6 1 4 0 0 0 0 0 0
15 44 1 1 −1 1 8 1 6 1 4 −1 −8 −1 −6 −1 −4
15 45 0.142857 0 −1 0 0 0 0 0 0 −1 −8 −1 −6 −1 −4
16 46 4 1 0 1 5 3 3 1 6 0 0 0 0 0 0
16 47 1 1 −1 1 5 3 3 1 6 −1 −5 −3 −3 −1 −6
16 48 0.333333 0 −1 0 0 0 0 0 0 −1 −5 −3 −3 −1 −6
17 49 0.5 1 0 1 7 2 3 1 1 0 0 0 0 0 0
17 50 0.5 1 −1 1 7 2 3 1 1 −1 −7 −2 −3 −1 −1
17 51 1 0 −1 0 0 0 0 0 0 −1 −7 −2 −3 −1 −1
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Table 3. Model of regression for AHP priority with demographic predictors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) −0.0077 0.2751 −0.0279 0.9779
A −1.5889 0.8470 −1.8758 0.0688
H −0.7187 0.8470 −0.8485 0.4018
gender.1 0.4214 0.3313 1.2721 0.2115
age.1 −0.0189 0.0923 −0.2045 0.8391
Household.1 −0.0838 0.1429 −0.5864 0.5613
Education.1 0.0525 0.0906 0.5797 0.5657
Employment.1 0.1299 0.1134 1.1457 0.2595
Income.1 0.3690 0.0809 4.5635 0.0001
gender.3 −0.0629 0.3313 −0.1898 0.8505
age.3 −0.0002 0.0923 −0.0026 0.9979
Household.3 −0.0056 0.1429 −0.0390 0.9691
Education.3 0.0876 0.0906 0.9665 0.3402
Employment.3 0.1934 0.1134 1.7057 0.0967
Income.3 0.2117 0.0809 2.6182 0.0128
R2 0.6877
F-statistics 5.6620
p-value 0.00001

Taking the parameters from Table 3 into two groups, the models (21) for the two shares
can be explicitly written as follows:

αA = exp(−1.5889 + 0.4214Gender − 0.0189Age − 0.0838Household
+ 0.0525Education + 0.1299Employment
+ 0.3690Income),

(25a)

αH = exp(−0.7187 − 0.0629Gender − 0.0002Age − 0.0056Household
+ 0.0876Education + 0.1934Employment
+ 0.2117Income).

(25b)

The models (25) for priorities can be used for prediction of the preference in the
multinomial shares (18), with one set of parameters put to zero, so the shares of all three
items correspond to the normalization as in the relation (13):

pA =
αA

1 + αA + αH
, pE =

1
1 + αA + αH

, pH =
αH

1 + αA + αH
. (26)

With any combination of the predictors’ values, we can easily find the priorities (25)
and estimate the shares of preferences (26). A useful way of investigating how the priorities
depend on a specific predictor is as follows: holding the values of all other predictors on
their mean level and changing the values of the predictor of interest, we can profile all the
shares (26) by this predictor. An example of such profiling of priorities by the income is
presented in Figure 1.

Figure 1 shows that with growing income the preference or the flavor A increases,
of the flavor E decreases, and of the flavor H stays about at the same level. The flavor A,
the least preferable for a small income, becomes the most preferred for the higher income
groups, overcoming even the item H at the income of approximately 80 K.

If to build the regression models (14)–(16) without the auxiliary predictors only by
their intercepts, in other words taking only the indicator predictors from columns A and H
in Table 2, the predicted constant priorities get the values:

pA = 0.3348, pE = 0.1937, pH = 0.4715 (27)

The graphs in Figure 1 can be considered relatively the corresponded to each item
constant mean level (27). These values coincide with geometric means by the elements in
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each row of all AHP matrices of (22) kind, which is the known way of priority estimation
in multi-person decision making.
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Figure 1. AHP three flavors priorities profiled by income.

For all n = 8 flavors in this dataset, there are 28 pair ratios, and with N = 17 respondents
the relation (23) yields 476 observation rows in a matrix like in Table 2, but with 7 sets
of the M = 6 auxiliary demographic predictors (because one set is taken as the basic
with its parameters put to zero). The total number of parameters for estimation becomes
(n − 1)·(M + 1) + 1 = 50. The inequality (24) is approximately 68 > 7, so the number of
observations is near ten times more than the number of parameters in the regression and
it can be built without problems. Then similarly to the Equations (25a)–(27) the priority
results can be obtained by all eight flavors.

A simple estimation of priorities mentioned in relation to the models (21) can be also
applied for each flavor, yielding parameters presented in Table 4. The row below the
predictors shows the coefficient of multiple determination R2 serving as a characteristic
of the fit in a model. The obtained models are reasonably good, and a lower value of R2

for the flavor H means that this priority keeps a stable value across the varying predictors.
The last row in Table 4 presents the shares of the mean preferences and these values define
the vector of priorities by all seventeen respondents averaged. We see that in general the
flavor H is of the higher preference, the next are the flavors C and A, then go F, G, and B,
and the least preferred are D and E.

A more detail investigation on the priorities of the flavors depending on the specific
of the respondents can be found in profiling by the demographic features. Changing one
predictor due to its values from Table 1, while keeping all the others at their mean levels
produces the dependence of the priorities by the particular predictor. Figure 2 demonstrates
behavior of the preferences by the income predictor. We see a drastic increase from the
worst to the best positions for the B and D flavors, some improvement in A position, drop
in levels of four other flavors, and a concave behavior of the H flavor with the maximum
reached near the level of income about 50–74 K. Although there is no data in Table 1 for the
customers with income of 125–149 K, the prediction for those can be made by the estimated
priority shares as well. In general, the behavior of the three flavors A, E, and H shown
in Figure 2 repeats their profiling in separate consideration presented in Figure 1, so the
results of both approaches support each other.
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Table 4. Parameters of the exponential models for priority by demographics.

Predictors Model A Model B Model C Model D Model E Model F Model G Model H

(Intercept) 0.915 1.724 1.232 1.305 2.461 1.263 −0.214 1.919
gender 0.463 −0.563 0.184 0.190 0.082 −0.257 −0.035 −0.063

age −0.003 −0.070 0.027 −0.070 0.018 0.003 0.098 −0.003
Household 0.014 −0.150 0.096 −0.390 0.075 0.177 0.132 0.046
Education −0.109 0.007 0.026 −0.028 −0.154 0.109 0.213 −0.064

Employment −0.055 0.045 −0.027 0.094 −0.198 0.062 0.045 0.033
Income 0.162 0.287 −0.126 0.262 −0.204 −0.201 −0.193 0.013

R2 0.402 0.463 0.379 0.799 0.612 0.491 0.534 0.152
Mean share 0.137 0.113 0.141 0.105 0.082 0.129 0.123 0.172
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5. Summary

The paper describes the Analytic Hierarchy Process (AHP)—one of the most popular
method for solving various problems of multiple-criteria decision making. AHP vectors
of priority are calculated using pairwise comparison matrices to find preferences among
different alternatives, and the elements of these vectors are commonly presented by the
constant values. Estimations of the elicited data quality, particularly, the commonly ob-
served non-transitivity between the pairwise ratios, is usually added to any AHP analysis,
including such characteristics as the so-called consistency index and consistency ratio,
compatibility measures, and precision criteria [13]. In a case of poor quality, a new data
eliciting could be needed, and the robust estimations of AHP priorities can be applied as
well [26].

For multiple respondents with their matrices of paired comparisons elicited in dif-
ferent conditions with varied characteristics of measurements, the priority vectors can
be built not as constants but as functions of additional auxiliary predictors, for example,
the respondents’ demographic and socio-economic properties. This work explores new
possibilities of building the priority vectors as functions found via regression modeling.
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The varying priorities can be predicted for individual respondents, profiled by each
predictor, forecasted in time, studied by the predictor importance, and estimated by the
characteristics of significance and quality known in the regression modeling. Numerical
results show that the proposed approach reveals useful features of priorities behavior which
extends AHP abilities to numerous multiple-criteria decision making problems. These new
investigations on the priorities of choice among many alternatives can help to managers to
introduce specific advertising and to develop focused programs for promotion of products
to the individual customers of various demographics, socio-economical, cultural, and other
possible characteristics measured by the auxiliary predictors.

The considered methods are useful for segmentation of the respondents with similar
features and finding optimum managerial solutions specific for each segment, helping
to increase customer satisfaction, their retention, and loyalty to the promoted brands or
products. The obtained results are encouraging—they show that a specific set of conditions
and prescriptions can be found for each respondent, or customer, that can be very valuable
for managerial decisions, for example, in marketing and advertising research, and other
areas of applied psycho-sociological statistical analysis.
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