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Abstract: The paper discusses issues that surround decisions in risk and reliability, with a major
emphasis on quantitative methods. We start with a brief history of quantitative methods in risk and
reliability from the 17th century onwards. Then, we look at the principal concepts and methods in
decision theory. Finally, we give several examples of their application to a wide variety of risk and
reliability problems: software testing, preventive maintenance, portfolio selection, adversarial testing,
and the defend-attack problem. These illustrate how the general framework of game and decision
theory plays a relevant part in risk and reliability.

Keywords: utility; sensitivity analysis; decision trees; influence diagrams; adversarial risk analysis;
optimal replacement; software testing; preventive maintenance; portfolio selection

1. Introduction

Decision (and game) theory is becoming more relevant to addressing reliability and
risk issues under uncertainty. A recent contribution was made by Ríos Insua et al. [1]. For
many applications, quantifying risk and reliability measures is a means to an end; to be
useful, those values must be used to derive optimal policies to minimise risk, to decide on
maintenance strategies, or to make some other decision. The methods of decision theory
provide coherent mathematical approaches to doing this. When decisions are made in an
environment where there are competing players, game theory is the relevant mathematical
approach; examples include adversarial commercial situations or minimising risks from
criminal or terrorist threats.

In this paper, we address these topics with illustrative examples taken mainly (but
not exclusively) from our work. Some of them are worked out analytically, while others
require numerical computations; however, the reasoning behind each example is explained,
and the reader is referred to the relevant references for a complete discussion. The target
of the paper is twofold. On one hand, it is addressed to people who have no or limited
knowledge about methods and models in decision theory applied to reliability and risk
problems. On the other hand, this paper illustrate recent approaches, such as adversarial
risk analysis, or possible uses of older but less known methods such as Bayesian robustness;
therefore, this paper could also interest readers with more in-depth knowledge. There
are so many methods, models, and application fields that could be used to achieve the
above goals but they are limited to a few in this paper. The choice has fallen on a few
topics in reliability (although also related to risk) and a particular risk, from finance. In
reliability, we identified three relevant areas (software testing, maintenance, and acceptance
sampling) while portfolio selection has been discussed in the context of financial risk. We
were compelled to leave out many other works, for example, on natural disasters (flooding
and earthquakes), or other papers of ours such as Ebert et al. [2] on queues at immigration
control in airports and Trucco et al. [3] on human and organisational factors affecting safety
in maritime transport. The examples chosen not only are representative of some areas in

Stats 2021, 4, 228–250. https://doi.org/10.3390/stats4020017 https://www.mdpi.com/journal/stats

https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0001-5696-1271
https://orcid.org/0000-0002-7655-6254
https://doi.org/10.3390/stats4020017
https://doi.org/10.3390/stats4020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/stats4020017
https://www.mdpi.com/journal/stats
https://www.mdpi.com/2571-905X/4/2/17?type=check_update&version=2


Stats 2021, 4 229

the field but also allow us to introduce approaches that could be of interest for readers such
as influence diagrams, decision trees, Bayesian robustness, and adversarial risk analysis.

In Section 2, we give a historical account of how the development of risk and reliability
methods is connected to the progress in probability theory and utility theory for normative
decision making. In Section 3.1, we introduce the basic concept of utility-based decision-
making. Decision problems are best framed with the help of graphical representations, so
we consider decision trees and influence diagrams in Section 3.2. Examples of applications
of decision trees for replacement in maintenance optimisation follow in Section 3.3. In
Section 4, we include other application examples where a single decision maker deals with
software testing, preventive maintenance, and portfolio selection. In Section 5, we examine
problems in risk and reliability analysis that involve two or more actors with competing
interests in the adversarial risk analysis framework. Section 6 concludes the paper.

2. A Brief History of Quantitative Risk and Reliability

The section is not intended to provide a complete history of how risk and reliability
became the object of quantitative study and then of interest in decision theory. Rather
it mentions some works that have had an impact on this process. It shows how the
current research in decision analysis, as applied to risk and reliability, is the result of
centuries of work, which have grown independently until they have found common
ground. More extensive illustrations can be found in papers about history of statistics such
as Singpurwalla and Wilson [4].

The history of quantitative risk methods is tied closely to the history of probability
theory, both of which have roots in insurance. Christiaan Huygens (1629–1695) was one
of the earliest scientists to think mathematically about risk, motivated by problems in
annuities widely due, at that time, to states and towns borrowing money. Huygens wrote
up the solution, due to Fermat and Pascal, to a gambling problem called “The Problem of
Points”, where the question is to determine the fair bet for a game where each player has
an equal chance of winning and the bet is won as soon as either player wins the game a
predetermined number of times. Huygens stated an axiom on the value of a fair game,
which is considered the first approach to the notion of expectation. Huygens [5] is thus
credited with publishing the first book on probability theory.

The idea of a fair price was linked to probability by Jacob Bernoulli (1654–1705)
in a book [6] published posthumously by his nephew Nicholas as the first substantial
treatment of probability. Jacob Bernoulli changed the focus from expected values, which
were tediously calculated by a recursive approach, towards probabilities using his Law
of Large Numbers. Expected value then became a derived concept, and the calculation of
probabilities was direct and faster as it did not require the recursion that Huygens used.
The connection between fair prices and probability is the basis for insurance pricing and
came about during a period of rapid development of the insurance market, driven by the
growth of maritime commerce in the 17th and 18th centuries. Soon after the publication
of Bernoulli’s work, corporations began to engage in insurance. They were first chartered
in England in 1720, and in 1735, the first insurance company in the American colonies
was founded at Charleston, S.C. Therefore, by 1750, the idea of probability used in risk
quantification, such as probability distributions, expected values, and fair price, and
mortality were in use in insurance.

Later in the 18th century, a notable name is that of Thomas Bayes (1702–1761) and his
famous essay on inverse probability [7,8]. Decision theory makes extensive use of Bayes’s
Law as a way to express the uncertainty about factors that affect the consequence of a
decision from expert opinion and data. Another important aspect of decision theory is
the idea of utility to quantify preferences of consequences of adverse events, an important
component in the process of managing risks in a coherent manner. The idea of utility arose
through Daniel Bernoulli in 1738 and utilitarian philosophers such as Bentham (1748–1832).
Around this time, the industrial revolution meant that manufacturing and transport carried
far graver risks than before, and we do see the first attempts at risk management through
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regulation. In the United Kingdom, the Factory Act of 1802 (named the “Health and Morals
of Apprentices Act”) started a sequence of such acts that attempted to improve health and
safety at work.

The foundations of modern utility theory, from which a prescription for normative
decision making comes about that is the basis of decision theory, had to wait until the early
20th century with the work by Ramsey [9]. The mathematical basis of today’s quantitative
risk analysis is indeed normative decision theory. The impetus for a formal approach to
utility came from von Neumann and Morgenstern [10] with their interest in rational choice,
game theory, and the modelling of preferences.

Although Pearson [11] names the exponential distribution for the first time, it was only
in the 1950s that the field of statistical reliability emerged and we began to see some of the
methods that are in common use today. Here, we see Weibull’s (1887–1961) advocacy of the
Weibull distribution [12,13], the statistical analysis of failure data by Davis [14], the proposal
of Epstein and Sobel [15] that the exponential distribution should be used as a basic tool
for reliability analysis, and the approach of Kaplan and Meier [16] for estimating the
survival function under censoring. We begin to see the idea of system reliability emerging
at this time as well. Drenick [17] looked at the failure characteristics of a complex system
with the replacement of failed units; then, Birnbaum et al. [18] investigated the structural
representation of systems of components. Fault trees also appeared in this decade; see the
work by Watson [19]. Much of this work is summarised in the two books of Barlow and
Proschan [20,21].

The last fifty years have been marked by many developments and the quantity of
publications in the literature is rather overwhelming. From a historical perspective, perhaps
the most important trend is the availability of computation to facilitate more complex risk
and reliability analyses. However, the fundamental link between quantitative risk and
reliability methods to probability and decision making has remained.

3. Basic Concepts of Decision Theory and Graphical Methods to Describe
Decision Problems
3.1. Basic Concepts

The final goal of a risk analysis and a reliability study is, in general, a decision
that reduces the social, economic, environmental, etc. negative consequences (losses)
for an individual or a group, or increases their utility. A plethora of work has been
published on decision theory and decision analysis, and we refer to the works of Wald [22],
DeGroot [23], Berger [24], and French and Ríos Insua [25] for a thorough illustration. We
consider decision-making under uncertainty and we present a Bayesian approach through
definitions, properties, and a simple example related to risk. There are many critical aspects
in the stages of a decision process: problem structuring, belief modelling, preference
modelling, optimisation, and sensitivity analysis. Here, we are interested in illustrating
some aspects, mostly related to sensitivity, arising when considering belief and preference
modelling. In a Bayesian framework, beliefs over possible states of nature are modelled
through a (prior) probability distribution, which in the presence of additional information,
is updated via Bayes’s theorem, whereas preferences over consequences are modelled
using utility functions (or, more commonly in the statistical community, loss functions).
The consequences are the result of actions chosen within a feasible set combined with
states of nature, and the goal is to find an optimal action, namely the one maximising the
expected utility. The assessment of beliefs and preferences is a difficult task, especially
when there are several decision makers and/or experts. Sensitivity analysis (often called
Bayesian robustness in this framework) deals with the uncertainty in specifying prior
distributions and utility/loss functions; see the book by Ríos Insua and Ruggeri [26] for a
thorough survey.

More formally, we assume that the decision maker has to choose among a set A of feasible
actions a. Prior beliefs on the state variable θ ∈ Θ are assessed through a prior distribution
with density π, and they are updated, via Bayes’s theorem, into a posterior distribution, with
density π(·|x), where x is the result of an experiment with likelihood lx(θ) over a sample space
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X. A consequence c ∈ C is associated to each pair (a, θ), and preferences over the consequences
c(a, θ) are modelled with a utility function u(c(a, θ)), which we simply denote by u(a, θ). We
associate with each action a its posterior expected utility:

T(u, π, a) =

∫
Θ

u(a, θ)lx(θ)dπ(θ)∫
Θ

lx(θ)dπ(θ)
=
∫

Θ
u(a, θ)dπ(θ|x) .

According to the Maximum Expected Utility Principle, we look for the optimal action
a∗, which maximises T(u, π, a).

However, the assessment of u and π, and the choice of the model lx, are performed
with limited knowledge and some degree of arbitrariness. Such uncertainty in the specifi-
cation has an impact on the optimal action and its expected utility, the model output in
our case. A thorough review of the literature on how to handle such issues is provided
in the book by Ríos Insua and Ruggeri [26]. Here, we present a simple, no data example
adapted from Ruggeri et al. [27], which should make clear the importance of investigating
the consequences of assessing probabilities and utilities imprecisely.

A football team is interested in signing a new player on a one-year contract. Two
players, a and b, are available, and the team expects to have a (utility) gain in signing one
of them, which depends on the possibility of qualifying (θ1) or not (θ2) for the European
Champions League the next year. The probability of qualification is π(θ1) = p1. The team
managers believe that the monetary consequence of signing a and not being qualified is
equivalent to the one obtained with signing b and being qualified. The other two possible
consequences are, in general, different. We could represent the consequences in Table 1:

Table 1. Monetary consequences of signing players.

θ1 θ2

a c1 c2
b c2 c3

In the team, there is uncertainty, maybe due to different opinions among the managers,
about both the probability of being qualified and the monetary consequences. As a result,
ranges are obtained for all of them: 0.4 ≤ p1 ≤ 0.6, 0.5 ≤ u(c1) ≤ 1, 0.25 ≤ u(c2) ≤ 0.75,
and 0 ≤ u(c3) ≤ 0.5, where utilities are in million euros. We consider (Table 2) the following
four utility–probability pairs associated with the bounds on utilities and probabilities:

Table 2. Expected utilities of signing players.

p1 u(c1) u(c2) u(c3) T(u, π, a) T(u, π, b)

0.4 1 0.75 0.5 0.85 0.6
0.4 0.5 0.25 0 0.35 0.1
0.6 1 0.75 0.5 0.9 0.65
0.6 0.5 0.25 0 0.4 0.15

Since in all four cases, T(u, π, a) > T(u, π, b), the team managers might decide to hire
a but such a choice would not necessarily be optimal, e.g., considering p1 = 0.6, u(c1) = 0.5,
u(c2) = 0.75, and u(c3) = 0.5, then it would be T(u, π, a) = 0.6 and T(u, π, b) = 0.65,
raising doubts about the preference of a over b.

Martin et al. [28] addressed the issue of the choice of actions when the priors and the
utilities (losses in their work) are in the classes Γ and U, respectively, as is done here. They
proposed to consider non-dominated actions, i.e., the actions a ∈ A such that there exists
no other action b ∈ A such that T(u, π, b) ≥ T(u, π, a), for all u ∈ U, π ∈ Γ, with strict
inequality for one pair (u, π).
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3.2. Graphical Representation of Decision Problems
3.2.1. Decision Trees

Decision problems can be represented graphically using decision trees, where decision
nodes are typically represented by a rectangle; chance (or random) nodes are represented by
a circle; and outcomes, which are functions of decision actions and uncertainties, lie at the
terminal points of the branches of the tree. Figure 1 shows the decision tree representation
of a single-period decision problem. In the tree, the decision node is denoted by D1 and
the chance node is denoted by R1. The branches of the decision node D1 represent the
different decision actions a whereas the branches of R1 represent possible values of the
random quantity θ, which is commonly referred to as the state of nature.

The decision tree is a chronological representation of the events in a decision problem.
In Figure 1, first, a decision action a is taken at the decision node D1 and then a possible
value of the state of nature θ is observed at the chance node R1 where uncertainty about θ is
described by the probability distribution π(θ). Each combination of the (a, θ) pair implies
an outcome or utility value u(a, θ) at the terminal point of a specific path of the tree.

�

 a     � 

 

D1 R1 u(a,�) 

Figure 1. Example of a single-period decision tree.

The solution to the single-period decision problem in Figure 1 is obtained by folding
back the tree (see Lindley [29]) starting at the terminal nodes. This is done by working
backwards, taking the expectation of u(a, θ) at a random node such as R1,

E[u(a, θ)] =
∫

θ
u(a, θ)dπ(θ),

and by maximising E[u(a, θ)] with respect to action a at a decision node such as D1. The
optimal action a∗ obtained at D1 maximises the expected utility, as discussed in Section 3.1.

Later, we consider an example of a single-period decision tree that arises in the
development of replacement strategies for components/systems in reliability analysis.

3.2.2. Influence Diagrams

An influence diagram (ID) is a graphical representation of a decision problem that
contains the same information encoded by an equivalent decision tree. It is possible
to convert an ID into a decision tree and vice versa. An ID is a directed acyclic graph
containing three types of nodes: chance nodes that are represented by circles, decision
nodes that are represented by squares, and deterministic nodes that are represented by
squares with rounded edges. If an ID contains only chance nodes, then it is called a belief
or Bayes network. A deterministic node is so-called because its value is a function of
those taken by its parent nodes. A special type of deterministic node is a value node,
which contains the value taken by utility as a function of its parent nodes. The advantage
of an ID over decision tree is that the former provides a more compact and high-level
representation of the decision problem because its size does not increase exponentially
as additional decisions or uncertainties are added to an analysis. In fact, it displays the
dependence among variables and the state of information under which decisions are made
but it does not show the possible values associated with each decision or chance variable.
Therefore, it is often the case that a problem is first represented as an ID and, afterwards,
is converted to a decision tree for computation of the solution, which means finding the
expected utility of all possible decisions, to be maximised over the decision space. The
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single-period replacement problem in Section 3.3.1 provides a simple example of the more
compact representation of an ID, as shown in Figure 2, where there are no multiple arcs
from the nodes. The decision node contains the value of τ, the chance node contains N(τ),
the value node contains C(τ, N(τ)), the decision node influences the chance node, and the
value node is influenced by both of them. The problem representation is completed by
information on the conditional distributions of chance nodes given the parent nodes, that
is, the conditional distribution of N(τ) given τ for the specific example.

�

     

 � 

N(�) 

C(�,N(�)) 

Figure 2. Influence diagram (ID) representation of a single-period replacement problem.

The ID representation of the stopping problem tree in Section 3.3.2 is not a simplification
because decision nodes in the multi-stage decision are binary, each stage is represented in the
same way in a repetitive fashion, and the tree always has a terminal leaf after a stop branch.

In Figure 3, we show a simple example with a nonrepetitive structure adapted from
Bedford and Cooke [30], which also shows that an ID enables the derivation of conditional
independence relationships among nodes. The chance nodes in the ID are described as
follows: fault can take values of yes or no, repair can take values of repairman is sent or
repairman is not sent, and both primary alarm and secondary alarm can take values of alarm
signals a fault or no signal. The decision node is self explanatory and the cost node can take
two values if no secondary alarm is installed: one is the cost of sending a repairman after a
false alarm; the second one adds the actual repair cost if a fault has really occurred. With
the secondary alarm, the two previous cost values are increased by the installation cost.
It is assumed that the alarms never fail to signal a fault, but false alarms can occur. Thus,
unnecessary repairs can be reduced by installing a secondary alarm and by calling the
repairman only if both alarms signal a fault. If the decision is not to install the secondary
alarm, the value of its node is always alarm signals a fault. The repair node is in fact
a deterministic node because its state is entirely known given the state of the alarms;
however, it is regarded as a chance node with a degenerate distribution for later use. The
problem description is completed by assigning probabilities to the following events: a fault
occurs, the primary alarm signals a fault given that there is no fault, and the secondary
alarm signals a fault given that there is no fault.

�

  Install secondary alarm 

Cost 

Fault 

Secondary 

alarm 

Primary 

alarm 

Repair 

Figure 3. ID representing the problem of installing a secondary alarm signalling a machine fault.
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From the ID, we can find out conditional independence relationships using the global
Markov property on any belief network determined by assigning a value to decision nodes.
Suppose that the decision is to install a secondary alarm and to consider the repair node.
Take the set of all its ancestors, which includes the two alarm nodes and the fault node
(not the decision node because its value has been assigned) and remove all the remaining
nodes (the cost node). Now moralise this subgraph by joining all unmarried parents using
an undirected arc (the two alarm nodes in this case), and change all the directed arcs to
undirected: the repair node is independent from the fault node given the pair of alarm
nodes because all paths between them always go through the set of alarm nodes. With the
same method, we can discover that the two alarm nodes are independent conditionally
upon the fault node. The two moralised subgraphs are shown in Figure 4a,b.

�

�

�

�

�

�

�

�

�

�

� �

�

(a)                                       (b) 

Fault 

Secondary 

alarm 

Primary 

alarm 

Repair 

Secondary 

alarm 

Fault 

Primary 

alarm 

Figure 4. Moral graphs for finding conditional independence relationships.

The decision tree structure for this problem is more complex. It starts with the decision
node with two outgoing branches, each terminating with the fault node, from which two
more branches come out and terminate with an alarm node. From this node, either four or
two branches come out, depending on which subtree we are in. If we decide to install the
secondary alarm, there are four branches, one for every pair of states for the two alarms.
The terminal nodes are the costs associated with every path in the tree.

To complete this illustration, let π be the probability of a fault and let p be the
probability of a false alarm using any of the two alarms, which are assumed to be devices
of the same type. Let also cS be the cost of sending a repairman, cR be the cost of an actual
repair, and cI be the cost of a secondary alarm installation. Then, the costs of the decision
of installing and not installing a secondary alarm are given by

cI + cS A1 A2 + cRF and cS A1 + cRF

respectively, where A1 , A2, and F belong to {0, 1} and are random variables representing
the state of the two alarms and the presence of a fault. The expected costs are easily derived
using the conditional independence properties derived earlier, and it is found that it is
convenient to install a secondary alarm if

cI < cS p(1− p) (1− π) .

Banks et al. [31] remarked that the graphical structure of an ID has the property that
there is a directed path containing all decision nodes that specifies the order in which
decisions are made by the decision maker. The authors pointed out also a drawback of IDs,
i.e., their impossibility of representing problems in which there is no predetermined order
for the decisions, for example, in medical diagnosis, where the decision about subsequent
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tests depends on the results of previous ones. In those cases, asymmetric decision trees
are better graphical tools, but they might have too many branches as a consequence of
having to consider as many subtrees as all possible test orders. The authors suggested,
as a possible alternative, to consider multiple IDs, one for each possible test order, and to
compare the solutions.

A simple introduction to IDs can be found in Bedford and Cooke [30], whereas a more
advanced introduction is given by Banks et al. [31].

3.3. Single and Multi-Period Decisions
3.3.1. Single-Period Replacement Problem

Systems and components experience ageing or wear as a function of time and/or usage.
For such systems, planned replacement strategies are used to prevent in-service failures
that may be very costly relative to the cost associated with a planned replacement/repair.
Mazzuchi and Soyer [32] proposed a Bayesian decision theoretic approach to develop optimal
replacement strategies using age and block replacement protocols. In what follows, we consider
a single-period block replacement problem under the assumption of minimal repair.

Typically, under the block replacement protocol, a planned replacement is made at
time epochs τ, 2τ, . . ., irrespective of the age of the system and an in-service replacement is
made whenever the system fails (the “good as new” scenario, since the replacement brings
the reliability back to the initial one, assumed “good”). Another block replacement scenario
was considered by Barlow and Hunter [33], where the system is minimally repaired upon
failure but replaced at times τ, 2τ, . . .. This is known as block replacement with minimal
repair where the item can be repaired so that its failure characteristics are restored to the
state just prior to the failure (the “bad as old” scenario).

We let cP denote the cost of a planned replacement; cR be the cost of minimal repair,
such that cP < cR; and N(t) be the number of failures in a time interval of length t. Then,
in a planned replacement cycle of length τ, the cost per unit time is given by

C(τ, N(τ)) =
cP + cRN(τ)

τ
.

The decision problem is to find τ such that the expected value of C(τ, N(τ)) is min-
imised. The decision tree for the problem is shown in Figure 5, where the random R1
represents N(τ), an unknown number of repairs in a replacement cycle of length τ.

�

 �     N(�) 

 

D1 R1 C(�,N(�)) 

Figure 5. Decision tree for a single-period replacement problem.

Following Barlow and Hunter [33], we model N(t) as a non-homogeneous Poisson
process (NHPP) with intensity function λ(t). For a system subject to ageing or wear, a
commonly used model is the power law form for the intensity function, that is,

λ(t) = αβtβ−1

where α > 0, β > 0, and values of β > 1 imply ageing over time. The mean value function
Λ(t) for the NHPP is the cumulative intensity:

E[N(t)] = Λ(t) =
∫ t

0
λ(u)du = αtβ.
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The common approach in the literature is to assume that α and β are given (or esti-
mated based on past data) and to select the optimal replacement interval, τ∗, at the decision
node D1 of the tree by minimising

E[C(τ, N(τ))] =
cP + cR(ατβ)

τ

with respect to τ. For β > 1, it can be shown that the optimal interval is given by

τ∗ =
( cP

cRα(β− 1)

)1/β
.

Recent work in optimal replacement includes semiparametric policies considered by
Merrick and Soyer [34], who considered block replacement for rail sections.

3.3.2. Multi-Period Stopping Problem

Decision trees are typically used in representing multi-period decision problems
where a sequence of decisions are made and uncertainties are updated dynamically. Such
problems arise in risk and reliability analysis in the context of the design of systems, life
testing, optimal stopping, portfolio selection, etc. In this section, we present an example
of an optimal stopping problem in software testing. The solution of sequential decision
problems of this type relies on pre-posterior analysis and can become quite challenging to
solve. These problems also arise in life testing; see, for example, van Dorp et al. [35], and
Erkanli and Soyer [36].

Morali and Soyer [37] considered an optimal stopping problem in software testing and
presented a Bayesian decision theoretic setup. In what follows, we use their notation and
formulation of the multi-period problem. During the development phase, a new software
goes through several stages of testing and, after each stage of testing, modifications are
made to the software to fix the faults (or bugs). This process is known as debugging.

Let Xi, i = 1, 2, . . . denote the life-length of the software during the ith stage of
testing after the (i− 1)th modification made to it. Morali and Soyer [37] assumed that the
failure rate θi during the ith stage of testing is constant and, thus, that Xi is exponentially
distributed with rate θi. The special feature of their model is that the failure rate θi changes
from one testing stage to another as a result of corrections made to the software.

The authors assumed that, at the end of each stage, following modifications made to
the software, a decision must be made whether to terminate the debugging process. Thus,
after completion of i stages of testing, the decision of whether to stop testing is based on
X(i) = (X(0), x1, x2, . . . , xi), where X(0) represents the available information prior to any
testing. Morali and Soyer [37] considered a loss function that reflects the tradeoff between
additional testing versus releasing an unreliable piece of software. More specifically, they
defined the loss associated with stopping and releasing the software after the ith stage of
testing stage as

Li(X(i), θi+1) =
i

∑
j=1

LT(Xj) + LS(θi+1),

where LT(·) represents the loss due to testing for one stage and LS(·) relates the loss
associated with stopping and releasing the software. Note that, in this paper, we use both
utilities and losses, choosing the notion more suitable for the topic at hand.

The stopping problem can be represented as a sequential decision problem as given
by the m-stage decision tree in Figure 6 and can be solved using dynamic programming.
The solution of the tree proceeds in the usual way by taking the expectation at random
nodes and by minimising the expected loss at the decision nodes. At decision node i, the
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additional expected loss associated with the stop and the test decisions are given by the
terms E[LS(θi+1)

∣∣X(i)] and E[LT(Xi+1)
∣∣X(i)] + L∗i+1, respectively, where

L∗i = min
{

E[LS(θi+1)|X(i)], E[LT(Xi+1)|X(i)] + L∗i+1

}
for i = 0, 1, . . ., and the optimal decision at decision node i then is the one associated with L∗i .
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Figure 6. Decision tree for an optimal stopping problem.

Multi-period decision problems also arise in the design of life tests such as accelerated
life tests. Some of the recent work in this area include Zhang and Meeker [38,39], Meeker
et al. [40], and Polson and Soyer [41].

4. Examples of Decision Problems
4.1. One-Stage Software Testing

Figure 1 showed the structure of the simplest decision problem, that of a single-period
problem where a decision is made, a state of nature is revealed, and an outcome follows.
There is no opportunity to learn from data about the state of nature θ, and therefore, one
relies entirely on the prior π(θ).

Such a type of decision problem can be illustrated through its application to software
testing. Here, we mention the paper by McDaid and Wilson [42] and the more recent
book by Kenett et al. [43]. When developing software, bugs are often introduced and they
cause it to fail, producing a result different from the specification. Developers are therefore
interested in testing the software to discover and remove bugs before its release. Of course,
they should be very careful to prevent the introduction of new bugs. There is an issue of
the quality of testing and about the length of the test phase. There are conflicting aspects
about costs: on one side, there could be excessive costs due to a very long test but, on the
other side, early release might imply a less reliable software. There are other aspects such
as the possible obsolescence of the software caused by a very delayed release, the loss of
reputation due to a poor software, and the need to market the software before the release of
similar ones by competitors. Therefore, it is important to determine an optimal release time,
taking into account especially costs for testing and fixing software, with the latter strongly
dependent on the number of bugs left in the software at its release. Such an optimal time
could be easily found through a one-stage test.

In Figure 7, we present the decision tree for one-stage testing. In terms of the notation
of this paper, the set of feasible actions are times a that one could test, A = {a | a ≥ 0},
and the state of nature is the number of bugs discovered during and after testing, denoted
N(a) and N̄(a), respectively; hence, θ = (N(a), N̄(a)). The only deviation from Figure 1 is
that θ is described by a probability model π(θ |ψ) with parameters ψ that are themselves
unknown, and the prior distribution π(ψ) is directly specified on ψ. However, the Partition
Law of probability gives the prior on θ directly by integrating out ψ:

π(θ) =
∫

π(θ |ψ)π(ψ) dψ. (1)
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                        N(a) bugs                  ��(a) bugs 

         discovered in testing     discovered after release 

Figure 7. The decision tree for single-stage testing.

Many models have been proposed for N(a); see, e.g., Singpurwalla and Wilson [44]).
In this work a popular model of Goel and Okumoto [45] is used. The model assumes
that N(a) is a Poisson process with mean function Λ(a) = ψ1(1− e−ψ2a), for parameters
ψ1 and ψ2 that represent the expected total number of bugs to be discovered eventually
in the software (at a = ∞) and the rate of discovery, respectively. Thus, N(a) is Poisson
distributed with an expected value Λ(a). The motivation from this model comes from the
fact that Λ(a) satisfies the differential equation:

d
da

Λ(a) = ψ2(ψ1 −Λ(a)),

so that the rate of bug discovery is proportional to ψ1 −Λ(a), the expected number of bugs
remaining to be discovered at time a.

Our knowledge about N(a) is quantified by the values of ψ1 and ψ2. Expert opinion
can be used to quantify this knowledge in the form of a probability distribution for ψ1
and ψ2. In this approach, gamma distributions are used as they have a relatively simple
form and can be defined to have an arbitrary positive mean and variance. The gamma
distribution is defined by two parameters, a scale α and a shape β, and its density function
has the form f (x) = αβ xβ−1e−αx/Γ(β), where Γ(·) is the gamma function. The important
thing to note here is that the mean and standard deviation are β/α and

√
β/α, so that α and

β can be uniquely determined if one has an opinion on the mean and standard deviation.
McDaid and Wilson [42] described an elicitation process for these parameters that uses
these relationships. Here, we assume that such an elicitation process has led to specifying a
scale α1 and a shape β1 for ψ1 and a scale α2 and a shape β2 for ψ2.

Given ψ1 and ψ2, N(a) and N̄(a) are Poisson distributed. McDaid and Wilson [42]
derived the unconditional prior π(θ) = π(N(a), N̄(a)) and showed that the expected
values are as follows:

E[N(a)] =
β1

α1

[
1−

(
α2

α2 + a

)β2
]

(2)

E[N̄(a)] =
β1

α1

(
α2

α2 + a

)β2

. (3)

With regard to utility function u(a, θ), the simple form for the utility of testing until
time a and then releasing is as follows:

u(a, θ = (N(a), N̄(a))) = A− CN(a)− DN̄(a)− Fa, (4)

where A is the profit from releasing the software without any testing, C is the cost of fixing
a bug discovered in testing, D is the cost of fixing a bug post-release, and F is the cost per
unit time of testing, that includes both the testing costs as well as lost sales and market
opportunity. In practice, D should be considerably larger than C.
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Now, all the components of the decision problem have been specified. Solving the
simple tree in Figure 7 involves taking the expectation with respect to the unknown states
of nature N(a) and N̄(a) (making use of their expected values as in Equations (2) and (3))
and then maximising the resulting expected utility with respect to a to find the optimal
testing time. Plugging Equations (2) and (3) into Equation (4) gives the expected utility of
testing for a time a,

T(u, π, a) = A− C
β1

α1

[
1−

(
α2

α2 + a

)β2
]
− D

β1

α1

(
α2

α2 + a

)β2

− Fa,

and the value of a that maximises this function, and therefore, the optimal time to test, is
as follows:

a∗ = α2

[(
β1β2(D− C)

α1α2F

)1/(β2+1)

− 1

]
. (5)

This is not valid if D < C, a case that we do not anticipate in practice and would imply
that the optimal strategy is not to test and just repair all bugs post-release.

Figure 8 presents the expected utility and optimal testing time when the prior mean
on ψ1 is 100 (so that about 100 bugs are expected in the code), whereas the prior mean
on ψ2 is 0.01. For such a purpose, we take α1 = 0.01, β1 = 1, α2 = 100 and β2 = 1. As a
consequence, the two standard deviations coincide with the prior means, i.e., 100 and 0.01,
respectively. The utility parameters are chosen as the following values: A = 2000, C = 1,
D = 20, and F = 0.5. The left plot shows T(u, π, a) as a function of a and identifies the
optimal release time a∗ = 516.4 for an expected utility of 1333.6. The right plot shows how
a∗ changes as a function of D, the cost of fixing a bug post-release; this shows how the
testing time should increase as the relative cost of fixing bugs after testing rises.
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Figure 8. Expected utility as a function of time (left) and optimal testing time as a function of
post-release bug cost (right).

In this solution, the software is released regardless of the results of the testing. As a
consequence, there is no opportunity to learn about its reliability from those results. In
McDaid and Wilson [42], moving beyond this simplest case is also considered involving
more than one stage of testing and in which learning about θ takes place.

A recent review of decision models for software testing including adversarial issues
can be found in Ruggeri and Soyer [46].

4.2. Preventive Maintenance of Water Pumps

Christen et al. [47] analysed the operation data of a Worthington water pump, op-
erating 24 h a day at the PEMEX Salamanca refinery in Guanajuato, Mexico. Data were
recorded about operation hours before either maintenance or failure, whichever came first.
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The authors considered a random sign censoring model to describe the maintenance and
failure processes and, based on a maximum expected utility approach, they proposed
a maintenance policy that improved upon the existing one. Here, we take a different
approach, further elaborating on the ideas about sensitivity issues in decision analysis
introduced in Section 3.1.

There are n = 34 observations, and they are presented in Table 3, split into 28 failure
and 6 maintenance times.

Table 3. Pump data: failure and maintenance times.

Type

Failure 14 30 48 7 3 2 7 6 11 7 8 24 21 5 1
7 3 92 13 10 4 10 49 89 3 28 23 22

Maintenance 48 12 8 3 3 3

We consider independent and identically distributed exponential failure times with
parameter θ, and we denote the observed times by Xi, i = 1, . . . , 34. The likelihood function
is given by

lx(θ) = θ28e−θ ∑34
i=1 Xi , (6)

based on the density θe−θx at a failure time and the survival probability e−θx at a mainte-
nance time.

We assume that interventions are made at fixed times, even when failures occur, and
we consider two possible actions: a = {intervention after 10 h} and b = {intervention after
20 h}. We consider the following loss functions:

L(a, θ) = C + 2
∫ 10

0
x(10− x)θe−θxdx = C +

20
θ

+
20e−10θ

θ
− 4

θ2 +
4e−10θ

θ2 ,

L(b, θ) =
∫ 20

0
x(20− x)θe−θxdx =

20
θ

+
20e−20θ

θ
− 2

θ2 +
2e−20θ

θ2 .

The integral component of the loss function is related to the cost incurred when the
pump fails at time x and does not operate until an intervention occurs. We compare the
two actions over a 20 h period so that we add the factor 2 in the first loss since failures can
occur over two 10 h periods. The term C accounts for the cost of the extra intervention. A
cost should multiply the integral part, but it is simpler to remove it and to consider the
losses apart from a multiplicative constant.

If we consider a gamma distribution prior on θ, then we get a gamma distribution
posterior π, which we denote G(α, β). It is possible to prove that, under such a distribution,
the posterior expected losses are

T(L, π, a) = C +
20β

α− 1
+

20
α− 1

βα

(β + 10)α−1 −
4β2

(α− 1)(α− 2)
+

4
(α− 1)(α− 2)

βα

(β + 10)α−2 ,

T(L, π, b) =
20β

α− 1
+

20
α− 1

βα

(β + 20)α−1 −
2β2

(α− 1)(α− 2)
+

2
(α− 1)(α− 2)

βα

(β + 20)α−2 .

Therefore, it holds that

T(L, π, a)− T(L, π, b) = C +
20βα

α− 1
×
{

1
(β + 10)α−1 −

1
(β + 20)α−1

}
−

− 2β2

(α− 1)(α− 2)
+

2βα

(α− 1)(α− 2)
×
{

2
(β + 10)α−2 −

1
(β + 20)α−2

}
.
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We now suppose that there is uncertainty about both beliefs and preferences, namely
on the prior distribution of θ and the value of C. In the former case, there could be different
opinions on the expected failure time of the pump, given by 1/θ; in the latter case, there
might be variability in the cost of the extra repair. The classes we entertain are very
simplistic but useful for illustrative purpose. More sophisticated classes are presented in
Ríos Insua and Ruggeri [26]. We consider the classes:

L = {L(·, θ) : L(a, θ) and L(b, θ) as above and 20 ≤ C ≤ 30},

Γ = {G(α, β) : 1 ≤ α ≤ 2, 1 ≤ β ≤ 2}.

Given the likelihood (6), then the posterior distribution belongs to the class

Γ∗ = {G(α, β) : 29 ≤ α ≤ 30, 625 ≤ β ≤ 626}.

If we take α = 30, β = 625, then the choice of C = 20 or C = 30 leads to opposite con-
clusions. In the former case, T(L, π, a)− T(L, π, b) = −7.52 implies that the intervention
after 10 h is the optimal action whereas the intervention after 20 h is the optimal decision
in the latter case since we get T(L, π, a)− T(L, π, b) = 2.48. This is a typical situation in
which the decision maker needs extra effort to specify beliefs and preferences or to honestly
report that there is no clear-cut decision.

Bayesian analysis of repairable systems is considered in Pievatolo and Ruggeri [48],
and minimal repair models for train systems are discussed in Pievatolo and Ruggeri [49].
Maintenance strategies for machine tools are presented in Merrick et al. [50], and main-
tenance practices for railroads are discussed in Merrick et al. [51]. Recent developments
in maintenance optimisation can be found in Damien et al. [52] and Belyi et al. [53].
Degradation-based maintenance policies are considered in Zhang et al. [54].

4.3. Portfolio Selection

Markowitz [55] considered the single-period portfolio selection problem where an
investor has to allocate a sum of money among K securities. A Bayesian decision theoretic
setup to the problem was introduced by Winkler and Barry in [56], and the multi-period
problem was discussed. In this section, we present a setup considered by Soyer and
Tanyeri [57], who follow the formulation of Winkler and Barry [56].

We let Wt denote the wealth of the investor at the end of time period t and W0 denote
the initial wealth of the investor. We define rk

t to be the return from security k during time
period t and assume that there are no transaction costs. If Wk

t is the amount invested in
security k at the beginning of time period t + 1, then the wealth of the investor at the end
of time period (t + 1) can be written as

Wt+1 =
K

∑
k=1

(1 + rk
t+1)W

k
t = Wt +

K

∑
k=1

rk
t+1Wk

t .

Following Winkler and Barry [56], we assume that the investor’s objective is to max-
imise u(WT), the utility of wealth at the end of a finite time period T (with dependence on
θ omitted). In the multi-period problem with a finite horizon T, the investor maximises
the utility u(WT) by sequentially choosing the decision variables Wk

t , t = 0, . . . , T− 1 and
k = 1, . . . , K at different points in time based on the available information. That is, the
optimal allocation is revised as the random quantities rk

t , t = 1, . . . , T are observed over
time. The decision tree for the multi-period portfolio selection problem is shown in Figure 9,
where the decision nodes at time periods t = 0, . . . , T− 1 are denoted by D0, D1, . . . , DT−1
and the random (observation) nodes are denoted by O1, O2, . . . , OT .
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Figure 9. Decision tree for the multi-period portfolio selection problem.

Given the initial wealth W0 at D0, the investor determines WK
0 = (W1

0 , . . ., WK
0 ), the

amounts invested in K securities. The random node O1 denotes, for time period t = 1, the
observed returns from K securities, r1 = (r1

1, r2
1, . . . , rK

1 )
′. Given r1, the investor determines

WK
1 = (W1

1 , . . ., WK
1 )
′ at decision node D1, and this process is repeated at subsequent nodes.

The solution of the problem involves dynamic programming formulation and backward
induction by taking the expectation at random nodes and by maximising the expected
utility at the decision nodes, as in Winkler and Barry [56].

As pointed out by Soyer and Tanyeri [57], at decision node (T− 1), given the observed re-
turns from the first (T− 1) periods, the decision variables WK

T−1 = (W1
T−1, W2

T−1, . . . , WK
T−1)

′

are chosen by maximising ET−1[u(WT)], where ET−1 denotes the expectation conditional on
the returns from the first T− 1 periods. We denote the expected utility corresponding to the
optimal allocation WK∗

T−1 = (W1∗
T−1, W2∗

T−1, . . . , WK∗
T−1) by u∗T−1(WT) at time (T − 1). Then,

at decision node T− 2, the optimal allocation is obtained by maximising ET−2[u∗T−1(WT)],
where u∗T−1(WT) = ET−1

[
u
(
WT−1 + ∑K

k=1 rk
TWk∗

T−1
)]

. Continuing in this manner at time
0, calculation of the optimal allocation for the first investment period involves implicit
computation of expectations and maximisations at each time period. This can become quite
cumbersome if the underlying parameters of the return distributions are unknown and a
Bayesian approach is used for inference, as discussed in Winkler and Barry [56].

For the case of the single-period problem, that is, T = 1, one can obtain the solution
analytically in some simple cases or use Monte Carlo-based methods. For example, if we
consider a quadratic utility function for W1 as

u(W1) = W1 −
B
2

W2
1 ,

where B > 0, we can obtain an analytical solution for the optimal allocation at t = 0 and if
we assume that, at time period 1, the K dimensional return vector r1 is normally distributed
with mean vector µ and covariance matrix Σ, denoted as (r1|µ, Σ) ∼ N(µ, Σ) where µ and
Σ are known, we can write

u(W1) = u(W0 +
K

∑
k=1

rk
1Wk

0 ) = u(W0 + r′1WK
0 )

and, using the quadratic utility function, obtain

u(W1) = (W0 + r′1WK
0 )− B

2
(W0 + r′1WK

0 )2.

Then, it can be easily shown that the optimal allocation for investment period 1 is
given by

WK∗
0 =

2(1− BW0)

B
R−1µ,

where R = µµ′ + Σ.
If we consider a two-period problem with a quadratic utility function for W2, that is,

u(W2) = W2 −
B
2

W2
2 , then the dynamic programming solution can be obtained analytically

under the assumption of independence of the return vectors. More specifically, if (rt|µ, Σ) ∼
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N(µ, Σ) with µ and Σ known and rts independent, then we can show that the optimal
allocations for investment periods 1 and 2 are given by

WK∗
0 =

2(1− BW0)

B
R−1µ

and

WK∗
1 =

2(1− BW1)

B
R−1µ.

Furthermore, it can be shown by induction that, for the T period problem, the optimal
allocations are given by

WK∗
t =

2(1− BWt)

B
R−1µ.

for t = 0, 1, . . . , (T − 1).
When the parameters of the return vectors are not known, the solution of the dynamic

program becomes quite cumbersome even when rt is independent. Winkler and Barry [56]
considered the case of unknown mean vector µ for the two-period problem with quadratic
utility function and noted that the solution can be obtained using numerical methods. More
recently, Soyer and Tanyeri [57] considered two-period portfolio selection problems with
stochastic volatility and illustrated Bayesian solutions using Monte Carlo-based methods.

5. Adversarial Issues in Reliability Analysis
5.1. Basic Concepts of Adversarial Decision Problems

The decision problems presented in the previous sections involved a single decision
maker and were solved using decision analysis methods. There are problems in risk and
reliability analysis that may involve two or more actors with competing interests. These
problems with adversarial components can be set up as games that can be solved using
game theory methods; see, for example, Luce and Raiffa [58]. Examples of adversarial
situations in reliability analysis can be found in areas such as acceptance sampling (see
Lindley and Singpurwalla [59]), life testing (see Lindley and Singpurwalla [60]), reliability
demonstration (see Rufo et al. [61]), and warranty analysis (see Singpurwalla and Wil-
son [62]). A recent review of adversarial issues in reliability and survival analysis can be
found in Singpurwalla et al. [63].

Lindley and Singpurwalla [59] considered an adversarial situation with two actors: a
manufacturer M and a consumer C. The manufacturer M tries to sell a batch of items to
C, who may either accept (A) or reject (R) the batch provided by M based on his utility
function uC. The decision by C depends on the “evidence” provided by M to C based on
a sample from an inspection or a life test that M may perform. The decision M faces is
whether to offer a sample to C and, if so, the size of the sample based on his utility function
uM. It is assumed that both M and C are expected utility maximisers.

Lindley and Singpurwalla [59] presented their setup in the context of acceptance
sampling where M tries to convince C about the quality of his product implied by the
unknown quantity θ. We can think of θ as the percent of defective items in the batch in
the quality control setting or as the failure rate (or mean time to failure) in the life testing
context considered by Lindley and Singpurwalla [60]. The outcome of the inspection/test
is denoted by D.

Figure 10 shows the game tree associated with the problem. The decision node M in
the game tree represents the manufacturer’s decision about n, the sample size, that is offered
to the consumer. The decision n = 0 implies that offering a sample to C is not beneficial to
M, and in this case, the game is concluded. The random node D denotes the data, that is,
the outcome of the inspection/test. In their development, the authors assume that both
M and C agree about the probability model generating the data. Let p(D|θ) denote the
common probability model for the data-generating process. The decision node C represents
the consumer’s decision to accept (A) or reject (R) the batch. Note that this decision is
based on the observed sample data D, which is used by C for revising uncertainty about θ.
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C updates his prior πC(θ) to posterior distribution using πC(θ|D) ∝ p(D|θ)πC(θ). Lindley
and Singpurwalla [59] specified the utility function of C as uC = uC(A, θ) or uC = uC(R, θ).
The utility function of M is specified as uM = uM(A, n, θ) or uM = uM(R, n, θ), implying
that M’s utility is a function of C’s decision as well as n and θ.

     M D uM,uC C � 

Figure 10. Game tree for the adversarial life testing problem.

Lindley and Singpurwalla [59] developed a solution for the game tree assuming that
M knows C’s decision criterion and the prior πC(θ). Thus, for a given (n, D), M is able to
infer if ∫

uC(A, θ)πC(θ|D)dθ > (<)
∫

uC(R, θ)πC(θ|D)dθ

at decision node C. The authors denote the sets of Ds implying the acceptance and rejection
regions for C using A(n) andR(n). Once the sets A(n) andR(n) are known, M chooses
the optimal value of n at decision node M by maximising∫

D∈A(n)

∫
uM(A, n, θ)p(D|θ)πM(θ)dθdD +

∫
D∈R(n)

∫
uM(R, n, θ)p(D|θ)πM(θ)dθdD,

where πM(θ) denotes M’s prior for θ. The authors developed the optimal strategy for M for
Bernoulli, Poisson, and Gaussian sampling using numerical methods. An implementation
of the proposed approach to the case of exponentially distributed life times is considered
in Lindley and Singpurwalla [60]. More recently, Rufo et al. [61] extended the Lindley–
Singpurwalla approach for life testing by introducing a Bayesian negotiation model.

The proposed framework by Lindley and Singpurwalla [59,60] for adversarial testing
problems is based on the assumption that the manufacturer knows both the decision
criterion for C as well as C’s prior for θ. In many cases, it may not be possible to obtain such
information. The Bayesian approach to games involves a decision maker’s assessment of
probabilities of the opponent’s actions. In their discussion of the Bayesian game theoretic
approach, Kadane and Larkey [64] stated that

“...a decision maker has a subjective probability opinion with respect to
all of the unknown contingencies affecting his payoffs. In particular in a
simultaneous-move two-person game, the player whom we are advising is
assumed to have an opinion about the major contingency faced, namely what
the opposing player is likely to do”.

Furthermore, the authors point out that “infinite regress” is not a problem for the
Bayesian decision maker since

“... all aspects of his opinion except his opinion about his opponent’s be-
haviour are irrelevant, and can be ignored in the analysis by integrating them
out of the joint opinion”.

These and other criticisms of classical game theory have motivated the search for
alternative solutions for decision problems with multiple actors. One such alternative is the
adversarial risk analysis (ARA) approach recently proposed by Ríos Insua et al. [65]. ARA
builds on the Kadane–Larkey approach by developing a model of the opponent’s strategies.
This is done by incorporating uncertainty via subjective probabilities of the decision maker.
As noted by Banks et al. [31], p. 1, the ARA model provides a probability distribution over
the possible actions of the decision maker’s opponent and, using this, the optimal action
is chosen by maximising the expected utility of the decision maker. We present the ARA
formulation of Lindley–Singpurwalla’s adversarial life-testing problem in the next section.
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5.2. Life Testing with Adversarial Modeling

Following Lindley and Singpurwalla [59,60], we consider the game tree of Figure 10
and analyse the manufacturer M’s decision process. The manufacturer/consumer game of
Figure 10 is a sequential game similar to the “defend-attack” models discussed in Rios and
Ríos Insua [66]. As before, we have the priors πM(θ) and πC(θ) and the utility functions
uM = uM(C, n, θ) and uC = uC(C, θ) for M and C, respectively. C = (A,R) denotes the
consumer’s decision actions at decision node C.

The first step in the ARA solution is converting the game tree in Figure 10 to the
decision tree of the manufacturer M shown in Figure 11. This is achieved by converting the
decision node C to a random node for the manufacturer. Given the manufacturer’s decision
n at node M and the outcome observed at random node D, the manufacturer needs to
assess the probability of a consumer’s actions. These are the manufacturer’s subjective
probabilities and we denote this discrete probability distribution by πM(C|n, D). The main
issue is how to assess πM(C|n, D). This can be done directly as suggested in Kadane and
Larkey [64] or by using the ARA approach, which takes into account the manufacturer’s
perception of the consumer’s decision problem.

     M D uM � C

Figure 11. Decision tree for the manufacturer.

The decision tree in Figure 12 represents the consumer’s decision problem as seen by
the manufacturer. It is important to note that the consumer’s decision tree is obtained by
converting the manufacturer’s decision node M to a random node. As before, the man-
ufacturer analyses the consumer’s decision problem by assuming that he is an expected
utility maximiser. The analysis of the tree is used to estimate πM(C|n, D). To achieve
this, the manufacturer needs to specify FM(πC, uC), his probability distribution of the con-
sumer’s prior πC = πC(θ), and utilities uC. Once FM(πC, uC) is specified, we can estimate
πM(C|n, D) via Monte Carlo simulation. More specifically, we can simulate realisations of
(πC, uC) from FM(πC, uC), and for each realisation, we can solve the tree for given values
of (n, D) and obtain πM(C|n, D). In the final step, we use the manufacturer’s decision tree
in Figure 11, where the probabilities are given by πM(C|n, D) at the random node C. The
optimal strategy for the manufacturer is computed by maximising expected utility.

     D uC C � M

Figure 12. Manufacturer’s perception of the consumer’s decision tree.

Implementation of the ARA approach may become complicated depending on the
distributional assumptions and the form of the utility functions. In the Bernoulli sampling
example of Lindley and Singpurwalla [59], the authors assumed a beta prior with parame-
ters (αC, βC) for the unknown proportion defective θ. The utility function of the consumer
is specified as uC(A, θ) = a1 + a2θ and uC(R, θ) = a3, where a1 > a3 > (a1 + a2), a2 < 0.
In the ARA setup, we can assume that the form of the probability distribution and
the utility function are known but the respective coefficients are unknown. In other
words, the manufacturer may know that the consumer’s prior distribution is a beta den-
sity with unknown parameters (αC, βC). Similarly, in the utility function uC, the coef-
ficients a1, a2, and a3 are unknown. Thus, the manufacturer specifies his distribution
FM(πC, UC) = FM(αC, βC, a1, a2, a3), which is used in the solution of the consumer’s deci-
sion tree shown in Figure 12. The same approach can be used in specifying FM(πC, UC)
for Poisson and Gaussian sampling cases as well as the adversarial life-testing example
discussed in Lindley and Singpurwalla [60]. The approach above is thoroug y illustrated
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in Gonzalez-Ortega et al. [67] and we refer the interested reader to it. Other implementa-
tion issues in ARA and its applications in risk analysis can be found in Banks et al. [31],
Gonzalez-Ortega et al. [68], and Naveiro et al. [69].

5.3. Defend-Attack Problems in an Adversarial Setting

As pointed out in Section 5.2, the model employed for the specific life-testing problem
belongs to the category of ARA defend-attack models. Ríos Insua et al. [70] provided a
general description of the approach through the use of IDs. In this setting, there are two
decision makers: the defender and the attacker. The attacker, after observing decision
d ∈ D taken by the defender, selects an attack a ∈ A. After both parties have made their
choice, there is a random outcome S ∈ S of the attack, with the conditional distribution
depending on the choices. The actions and the outcome will produce utilities uD(d, s) and
uA(a, s) for the defender and the attacker, respectively. This problem can be represented
through a Multi-Agent Influence Diagram (MAID), in which some nodes are owned by
the defender, some are owned by the attacker, and some are shared. The MAID, displayed
in Figure 13 with one chance node, can be viewed as the superposition of two IDs, in
which chance nodes are usually shared and assigned different (conditional) probability
distributions by the two decision makers.

�

d a 

S 

UD(d,s) UA(a,s) 

Figure 13. Multi-Agent Influence Diagram (MAID) for the adversarial risk analysis (ARA) defend-
attack model.

The defender must choose an action to maximise her expected utility without knowing
the attacker’s action. Therefore she expresses her uncertainty by placing a probability
distribution on the setA, pD(a|d). The attacker’s utility itself is no concern for the defender;
therefore, from her point of view, the ID of the defend-attack model becomes as represented
in Figure 14.

�

d 

S 

UD(d,s) 

a 

Figure 14. Defender’s ID for the ARA defend-attack model.
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The defender is now able to solve her ID: she computes her expected utility conditional
on the attacker’s action first and then marginalises it with respect to pD(a|d). Letting
pD(s|d, a) denote the defender’s conditional distribution of the outcome, we obtain

ψD(d|a) =
∫

uD(d, s)pD(s|d, a) ds

ψD(d) =
∫

ψD(d|a)pD(a|d) da

and the best decision d∗ is the one that maximises ψD(d).
In order to assess pD(a|d), the defender has to make a guess on the attacker’s utility

and conditional distribution of the outcome, assuming he also is a utility maximiser, so
that pD(a|d) is a probability distribution of the best action chosen by him. The defender’s
guess can be expressed as a probability distribution on the pair {uA(a, s), pA(s|d, a)}, so
that the random optimal action of the attacker is A∗(d), maximising

ΨA(a|d) =
∫

UA(a, s)PA(s|d, a)ds .

where the capitalised UA and PA emphasise that they are regarded as random quantities
(and consequently also ΨA). The defender’s distribution over (UA, PA) can be considerably
simplified using a parametric form. The cumulative distribution function of the defender
over A is now found as pD(A ≤ a|d) = Pr(A∗(d) ≤ a); it is often approximated via Monte
Carlo simulations of (UA, PA), as shown in Algorithm 1.

Algorithm 1 Approximation of pD(a|d).
for d ∈ D do

for k = 1 to K do

sample (Uk
A, Pk

A)

for a ∈ A do

compute Ψk
A(a, d)

end for

find Ak,∗(d) = maxa Ψk
A(a, d)

end for

compute the empirical distribution function of {Ak,∗(d)}K
k=1

end for

A worked-out case study in this framework is presented in Ríos Insua et al. [70]
concerning a facility operator who wants to defend from a group of organised fare evaders
(fare colluders).

6. Conclusions

In the paper, we presented many aspects of the use of decision theory methods in risk
and reliability. Although advanced notions are introduced in the paper, we tried to present
ideas and applications in a way useful for the learned readers and not only for researchers
specialised on the topics so that they will be able to frame their problem in a rigorous and
coherent way and to find pointers to specific analytic and computational techniques for their
solution. The range of application areas that we included reflect our research interests, but
the general principles of our work remain valid in other areas. Our experience also affected
the approach (i.e., Bayesian) that we followed in the examples. Reliability has been one of
the first applied areas in which Bayesian methods have been valued as very important due
to the possible use of experts’ opinions about very reliable systems. The first comprehensive
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Bayesian book in reliability was by Martz and Waller [71] and was quite mathematical,
and applications were scarce because of limitations in statistical and computing power in
the 1980s. The most recent book by Hamada et al. [72] provides a different perspective,
mostly due to the development of powerful computational methods, such as Markov Chain
Monte Carlo, and increased interest in stochastic processes; it addresses many issues in
reliability, including some that would fit very well with the scope of the current paper. In
particular, Chapter 9 presents methods for planning the optimal collection of reliability data
using genetic algorithms as computational tools. Chapter 10 discusses assurance testing to
ensure that a reliability-related quantity of interest meets the given requirements; different
risk criteria are considered to determine the plans. Accelerated life tests, mentioned in
Chapter 7, offer opportunities to use decision analysis methods in an optimal way.

Two relevant books addressing both risk and reliability from a Bayesian viewpoint are
the already cited one by Singpurwalla and Wilson [44] and one further by Singpurwalla [73].
The first book is about software testing, which was considered in Section 4. The second
book is a must-read since it provides a rigourous and extensive illustration of decision
theory applied to reliability, survival analysis, econometrics, and finance.

As mentioned earlier, risk is a notion related not only to reliability and finance but
also to many other applied fields. A few examples are Varis and Kuikka [74] about
environmental and natural resources management, Veneziano et al. [75] on seismic design
of building, and Palomo et al. [76] on project management under disruptive events. For
a discussion of approaches different from ours, we recommend Bedford and Cooke [30],
Ben-Haim [77], Borgonovo et al. [78], and de Almeida et al. [79]. These sources are also
valuable for the references therein.
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