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Abstract: The development of a country involves directly investing in the education of its citizens.
Learning analytics/educational data mining (LA/EDM) allows access to big observational struc-
tured/unstructured data captured from educational settings and relies mostly on machine learning
algorithms to extract useful information. Support vector regression (SVR) is a supervised statistical
learning approach that allows modelling and predicts the performance tendency of students to direct
strategic plans for the development of high-quality education. In Brazil, performance can be evalu-
ated at the national level using the average grades of a student on their National High School Exams
(ENEMs) based on their socioeconomic information and school records. In this paper, we focus on
increasing the computational efficiency of SVR applied to ENEM for online requisitions. The results
are based on an analysis of a massive data set composed of more than five million observations, and
they also indicate computational learning time savings of more than 90%, as well as providing a
prediction of performance that is compatible with traditional modeling.

Keywords: machine learning; support vector machine; massive data sets; education

1. Introduction

Education as a human right is a prerequisite for an individual to function fully as
a human being in modern society. For instrumental reasons, the guarantee of education
as a multi-faceted social, economic and cultural human right allows the development
of a society because it facilitates economic self-sufficiency through employment or self-
employment and promotes the full development of the human personality. However, in
a country such as Brazil, with strong social inequality inherited from a history of slavery,
access to education for all as a high-quality public service plays an fundamental role in
reducing this inequality. Moreover, equalizing opportunities within education is an even
greater challenge. It has long been observed that there are racial discrepancies when it
comes to study opportunities. At the end of the 20th century, it had already been observed
that the average difference in years of study between white and black individuals was
2 years [1] and actions regarding equality and high-quality education must be connected:
they cannot be seen as policy trade-offs [2].

Educational data are increasingly being used to support effective policy and practice
and to move education systems towards more evidence-informed approaches to large-scale
improvement. Generally, high-income countries with established assessment programmes
use data for sector-wide reforms or interventions to improve learning outcomes. Low-
income countries that are beginning to use these programmes tend to identify a few separate
issues, such as resource allocation, correlations between students’ socio-economic status
and their performance, and teacher qualifications. Resulting policies include interventions
prompted by demands for policies to address equity issues.

Statistical/machine Learning (ML) based on computer tools and statistical method-
ologies allows for the semi-automatic discovery of knowledge in LA/EDM by finding
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patterns and extract useful information from large data sets [3]. LA/EDM, augmented with
background data by the use of ML, provide, for example, information on how well students
are learning, what factors are associated with achievement, and which groups perform
poorly. This information can be used in a predictive framework to evaluate the capacity of
systems, improved resource allocation, agenda setting, or during the policy cycle. In this
context, the support vector machine or support vector model (SVM) is an ML framework for
classification and regression [4] that enables the performance of comprehensive statistical
learning and, despite the lack of studies in this field of research, it can be used in LA/EDM.
The success of support vector models as machine learning models is based on four main
factors [5]: (i) rooted in the statistical learning theory, SVMs possess superior generalization
capacity; (ii) a globally optimal solution is obtainable by solving a convex optimization
problem, while the problems of local minima impede other contemporary approaches, such
as neural networks; (iii) using the so-called kernel trick, it is convenient to solve non-linear
problems in arbitrarily high-dimensional feature spaces; (iv) only a part of the training sam-
ples are involved in solution representation. Liang et al. [6] used SVM for online courses
to predict whether students would drop out in the next ten days. Mite-Baidal et al. [7]
presented a literature review using sentiment analysis for educational data mining and
indicated that SVM and Naive Bayes are the most used techniques. Pujianto et al. [8] used
SVM for text classification for journal articles about Primary School Teacher Education.
Ranjeeth et al. [9] used a single SVM and other machine learning models for the prediction
of student performance in secondary education. The use of SVR has been less common
for educational purposes. López-Martín et al. [10] used SVR with linear kernel to predict
the productivity of higher-education graduate students. Indeed, support vector models
have been used successfully to solve numerous other complex problems [3], such as flight
control [11], security [12], genomics [13], cancer prediction [14,15], facial recognition [16],
predicting solar and wind energy resources [17], and predicting academic dropouts [18],
among others.

After gathering educational data, the LA/EDM analytical pipeline begins with pre-
processing the data that consumes more than 50% of the pipeline and selecting and trans-
forming variables of interest [19,20]. The volume of data generated annually by all students,
in a populous country such as Brazil, tends to be enormous; the microdata from the average
grades of a student taking their National High School Exams (ENEMs—Exame Nacional
do Ensino Médio), held in 2019, contained approximately 5 million observations [21].

Most of the data in the field of learning analytics (LA) and educational data mining (EDM)
are characterized by being big data, second-hand, observational, and unstructured [22].
Experiments show that when the training data set is very small, training with auxiliary
data can produce significant improvements in accuracy, even when the auxiliary data
are significantly different from the training (and test) data. However, in our case, the
population of students is very dynamic and the cost of improving accuracy can be very
high given the high-dimensional data of the educational data set [23–25].

In this study, we focus on improving the computational performance of the learning
process with an SVM model in order to predict the average grades of ENEM candidates
in Brazil. This process is based on a massive data set that contained the socio-economic
characteristics of the exam candidates. Model improvements are required in order to be able
to reduce the time needed for learning the native model in large databases. Our approach
uses a “Weak SVM” [26] to accelerate the learning procedure in the training regression
model step. The remainder of this paper is organized as follows. The preliminaries and the
descriptions of the data set are formally given in Section 4. The developed methodology
is introduced in Section 2. Section 3 presents a proposed solution to the SVR estimation
problem for large databases. The experimental results and the evaluation are given in
Section 5. Finally, the conclusions are given in Section 6.
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2. Background

With advances in LA/EDM, new meaningful insights can be obtained from large data
sets towards helping to identify novel and useful patterns besides predicting the outcome
of future observations. The combination of artificial intelligence and data science covers
a range of computational approaches and methods towards the extraction of actionable
knowledge from large, complex, multidimensional, and diverse data sources. Recently,
the use of data mining tools and applied machine learning has risen over conventional
statistical approaches for more accurate predictions [3].

2.1. Support Vector Regression

Support vector models are a class of powerful ML methods introduced by Vapnik
and co-workers [27–30] for classification and regression models that often have superior
predictive performance to classical neural networks. Their remarkably elegant optimization
and risk minimization theories provide robust performance with respect to sparse and
noisy data, which makes them the optimal choice in several applications. A support vector
machine (SVM) is primarily a method that performs classification tasks by constructing
hyperplanes in a multidimensional space that separates cases of different class labels. In
many situations where the response variable is continuous, i.e., y ∈ R, it is possible to
use SVM to predict the outcome by using covariates via a regression model, the so-called
support vector regression (SVR) [31]. In this sense, SVMs can handle multiple continuous
and categorical variables. To construct an optimal hyperplane, an SVM employs training
algorithms, which are used to minimize an error function.

The general idea of support vector models for regression in the linear situation is
to build a hyperplane f (x) = w>x + ε = 0, where x is the vector of the explanatory
variables, w is the parameter vector, and ε > 0 is a hyperparameter. This representation is
plotted in Figure 1, which separates observations within a 2ε wide hyper-tube covering
all observations as close as possible to the external limits [32], i.e., margin equations
are minimized.

Figure 1. SVR representation. The black dots are the observations in raw representation. Adapted
from [31].

In practical situations, not all observations are expected to be inside this hyper-tube
where ε is small. In this way, slack variables ξ are added to the linear SVM with smooth
margins, so that the model becomes suitable (see plot in Figure 2).
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Figure 2. SVR with slack variables. The black dots are the observations in raw representation.
Adapted from [31].

When using slack variables, the optimization problem is based on finding an optimal
hyperplane that maximizes the hyper-tube margins and minimizes the slack variable,
where we have ξ+ for values above the upper margin and ξ− for values below the lower
margin, and w is the (not necessarily normalized) normal vector to the hyperplane. In
general, it is given by the following convex optimization problem:

min
1
2
〈w, w〉+ C

n

∑
i=1

(ξ+i + ξ−i ),

where 〈., .〉 denotes the inner product and C is a regularization constant that imposes a
weight on minimizing errors, since there is no limit to the number of incorrect classifications.
If C → ∞, a smooth-margin SVR returns to a hard-margin SVR. After applying the
maximization process via positive Lagrange multipliers α+ and α−, generated, respectively,
by ξ+ and ξ−, our SVR classifier is given by:

f (x) =
n

∑
i=1

(α+i − α−i )〈xi, x〉 − 1
n

n

∑
i=1

n

∑
j=1

(α+i − α−i )〈xi, xj〉 − yj,

which only depends on the support vectors. It is also worth mentioning the influence of
the sample size on the optimization process used to estimate the parameters of the support
vector models. Basically, the larger the size of the data set, the more parameters will be
estimated, being directly linked to the number of α′s (restrictions) of the model.

The traditional problem with SVM is that it can only find a linear boundary, which
is often not possible. The trick is to map the training data or input space (R) to a higher-
dimensional space called the feature space (F ) and then use kernel functions to represent
the inner product of two data vectors projected onto this space. The mapping is realized
via the φ function, which is implicitly given by the kernel function. The appropriate choice
of the φ mapping function or the kernel function implies that the training set mapped in F
can be separated by a linear SVM, as shown in Figure 3. The advantage of this approach is
that we can implicitly map data onto higher-dimensional space and only inner products
are needed to estimate the parameters.
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Figure 3. Kernel trick. Adapted from [33].

A problem that can be found is the fact that the size of F can be very high, bringing
a high computational cost. Replacing the scalar product by means of a kernel function
K(xi, xj) = 〈φ(xi), φ(xj)〉 is thus straightforward and does not affect the solver. The most
used kernel functions are listed in Table 1.

Table 1. Most common kernels.

Kernel Type K(xi, xj) Parameters

Linear σ〈x, xj〉+ d σ, d
Polynomial

(
σ〈xi, xj〉+ d

)q
σ, d, q

Gaussian exp
(
−||xi−xj ||2

2σ2

)
σ

where σ > 0, d ∈ R and q ∈ {2, 3, . . .}.
SVM models are highly dependent on a number of user-defined parameters (hyper-

parameters); such parameters include: the regularization parameters, the tube size of the
ε-insensitive loss function, and the bandwidth of the kernel functions. An inappropriate
choice of the parameters may lead to over-fitting or under-fitting [34], and, for massive
data problems, this is a troublesome situation.

2.2. SVM Applied to Large Databases

In the traditional method of formulating an SVM, the number of underlying support
vectors (SVs) is usually linear with respect to the sample size n, and this implies a high
prediction cost, as the standard training procedures to solve the dual problem of kernel
SVMs such as Sequential Minimum Optimization (SMO) [35] require Ω(n) iterations each
with O(n) cost [36].

Tsang et al. [37] propose the Core Vector Machine (CVM) algorithm, which, different
from the native SVM algorithm, has a time complexity that does not depend on the size
of the training sample. Experiments on large data sets, with real and simulated data,
have shown that CVM is as accurate as traditional SVM, but it is much faster and can
handle larger data sets. This method differs from the native SVM by formulating the
kernel method as a minimum enclosing ball (MEB) problem, as well as proposing a
specified approximation algorithm to estimate its parameters. From another perspective,
Sarmento [38] presented a series of techniques used for the application of SVM in large
databases, all focused on the selection of representative samples and, in sequence, the
application of the traditional SVM algorithm. Among the suggested methods for sample
selection, we can mention the k-nearest neighbors method (KNN) [39], Random Selection
Reduction and Convolutional Neural Networks [40]. Applying the suggested methods,
results are extracted from synthetic and real data, concluding that the use of such techniques
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brings good results that reduce the computational cost necessary for the execution of the
model. Finally, Torres et al. [41] improved a version of the SMO algorithm for training
classification and regression SVMs, based on a Conjugate Descent procedure, decreasing
the number of iterations needed for convergence. These cited methods are based on some
sophisticated concepts to improve the computational performance, modifying some ideas
of the basic theory of SVM. In this paper, we consider a more intuitive concept based on
Weak SVR applied to regression tasks. This method is presented in the next section.

3. Reducing Learning Time Using Weak SVMs

To apply SVM models to large data sets, data reduction (reducing the number of
support vectors) appears to be priority. Wang et al. [26] present another technical option
that reduces the training base for the later use of traditional SVM directed towards classi-
fication. In their work, the so-called Weak SVMs are used, which are models adjusted to
small databases sampled from the initial base, to carry out the selection of observations
and then build a training base smaller than the original base.

A Weak SVR, also known as a ε-Gross Granularity Weak SVR [26], considers X =
x1, . . . , xn as the training data set, and Ẋ as a subset of X, in which the cardinality of Ẋ is
much smaller than X. In other words, Ẋ ⊂ X, and Card(Ẋ) << Card(X). In this sense,
f (x) = wTx subject to |y− f (x)| < ε is the SVR predictor of X as well as f (ẋ) = ẇT ẋ + ε
is the SVR predictor of Ẋ. The SVR of Ẋ is called the ε-Gross Granularity Weak SVR and its
empirical loss function is given by the following equation:

L(Ẇ, Ẋ) ≤ L(W, X) + ε

where L(W, X) is the empirical loss function of f (x) and ε is a constant.
Though the relationship between the size of the training data set and the bound error

ε is weak since the performance of the hypothesis predictor depends on the size of the
training data set, Weak SVRs are defined with training data sets with n0 << n [26,42].

The entire procedure is based on two stages for training data. A random sub-sampling
data cleaning method is applied in the first stage, and two maximum entropy-based
informative pattern extraction methods are presented in the second stage. In this final
constructed base, the traditional SVM model is applied, which has a shorter estimation
time, since most of the observations were previously removed. The results achieved by
this method are comparable to other methods such as PEGASOS [43], LIBLINEAR [44],
and RSVM [45]. In this work, we modify the algorithm proposed by Wang et al. [26]
by transforming the SVM algorithm of classification based on Weak SVR for a regression
problem and using it for predicting a student’s average grade on the ENEM associated with
covariates. In this approach, the variability of the values estimated by “Weak SVR” will
be considered instead of the “Weak SVM” proposed by Wang et al. [26]. In other words,
this approach considers a regression task to predict a continuous variable instead of the
classification task considered in the previous work. Figure 4 shows the flowchart of steps
used by the modified method proposed.

3.1. Initial Sampling

The first step in the approach used is to extract K samples of size n0 << n from the
population, to adjust the K SVR models, which will now be called the “Weak SVRs”. These
initial K models are said to be “weak” because they are fitted from a small sample size
when compared to the original sample size of the initial base.

3.2. Adjustment and Prediction of Weak SVRs

Following the selection of the initial K samples, K SVR models are adjusted; one model
for each sample is initially extracted, and, in the sequence, these models are used to predict
all observations in the initial population. After this adjustment, the values predicted by
each of the K models are stored. In the original method presented by Wang et al. [26],
the removal of observations is performed by eliminating those that obtained the same
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prediction for each of the estimated K models. In the proposed method, to select these
observations to be removed, the standard deviation calculated between the K predictions
for each observation estimated by the “Weak SVR” will be used.

Figure 4. Approach used to reduce the training time of the traditional SVR algorithm.

3.3. Selection of the Final Sample

To select the observations that will be part of the final training sample, the previously
calculated standard deviation will be used. Based on these values, the observations are
ordered, and the observations with the greatest observed variations are selected. An obser-
vation with a low standard deviation indicates that the predictions made by K models were
close to each other, and therefore, this observation is considered to have low uncertainty or
information, which would be similar to the idea originally presented by Wang et al. [26]. In
this case, using quantiles, the observations that presented a standard deviation above the
third quartile are selected for the final sample. Then, with the completion of the selection
process of the set to be used, the traditional SVR method is finally applied to the data.

Algorithm 1 displays the pseudocode of the method to speed up the SVR learning time.

Algorithm 1: Speed Up SVR.
Input: Dataset, Sample size for weaks SVR (n0);
1. Extract K subsamples without replacement and with sample size n0 from the
training sample;
2. For each K subsample fit a Weak SVR;
3. Predict the observations in the training sample with the K Weak SVRs ;
4. Calculate the standard deviation among the K predicted values for each
observation;
5. Select the reduced training sample using the quartile of the standard deviation
distribution;
6. Estimate the final model with reduced sample.

4. ENEM as an Educational Selection Procedure

Historically, measuring “education” and its uses is not straightforward, since several
facets and aggregation levels should be considered. An approach usually employed to
obtain LA/EDM is an application of tests to monitor the quality of candidates, systems,
and student learning outcomes. For example, around 160 AD, in China, an imperial
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examination was employed for the selection of public servants to compose the intellectual
elite of the Chinese government [46]. On the other hand, since 1926, North American
universities have selected their students by carrying out the Scholastic Aptitude Test
(SAT). In Brazil, the selection procedure for candidates, used by several universities, is the
National High School Exam (ENEM—from portuguese Exame Nacional do Ensino Médio).
University admittance exams have existed in Brazil since the last century, but their use was
most prevalent in the early 1970s, when they were unified to cover the national demand for
higher education [21]. At the same time, many preparatory courses were created, bringing
compilations of material books that included questions extracted from previously applied
exams, and the discourse in schools about the preparatory courses for exams also grew [47].

Originally, the ENEM was created in 1998 as an instrument to provide educational
information and government actions based on the evaluation of the results of students
who had completed basic education. In its first edition, it had over 150,000 candidates [48].
Throughout the editions, ENEM became one of the options used by students, alongside the
entrance exams that were carried out independently by educational institutions, to access
several colleges and public universities across the country. Later, ENEM was adopted by
many institutions as the only option for those seeking admission. Today, the ENEM score is
accepted by hundreds of institutions in Brazil and some Portuguese institutions as a form
of selection. The exam continues to be held year after year, with millions of candidates.

Nowadays, the ENEM has 180 items that are completed over two days (two Sundays,
in general) and it is divided into four major areas of knowledge (Natural Sciences and
its technologies, Human Sciences and its technologies, Mathematics and its technologies,
Languages, Codes and its technologies) and a mandatory writing component.

Data

This paper uses the raw data from ENEM 2019 applied for all candidates in Brazil. This
data set was used because it is the most recently available and is composed of 136 variables.
The data are publicly available at website https://www.gov.br/inep/pt-br/acesso-a-
informacao/dados-abertos/microdados/enem of the National Institute of Educational
Studies and Research Anísio Teixeira (INEP) in Brazil on 23 June 2021. For the purposes of
this paper, the considered variables are shown in Table 2.

In order to understand the candidates situation in Brazil and learn more about the
considered features, we carry out an Exploratory Data Analysis (EDA) to describe the
profile of the 5,095,270 students who participated in ENEM 2019. Figure 5 shows the
number of candidates across the 27 Brazilian Federative Units. In this plot, we can observe
a large concentration of candidates in the states with a higher population density (São
Paulo, Rio de Janeiro, Minas Gerais, Bahia, and Ceará States) and a smaller number of
candidates in the states with the lowest population density (Roraima, Amapá, Acre, and
Tocantins States).

Figure 5. Distribution of the candidates by Brazilian Federative Unit.

https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/microdados/enem
https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/microdados/enem
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Table 2. Subset of variables to be used.

Description Variable Scale Labels

Age NU_IDADE Numeric 10, . . . , 90
Gender TP_SEXO Categorical M = Male, F = Female
Ethnic group TP_COR_RACA Categorical Not Declared, White, Brown, Black, Yellow,

Indigenous
Marital Status TP_ESTADO_CIVIL Categorical Not Informed, Single, Married, Divorced,

Widowed
Family income Q006 Categorical Without Income, <998, 998–2994, 2994–4990,

4990+
High School Com-
pletion Status

TP_ST_CONCLUSAO Categorical Complete High School, Completion in 2019,
Incomplete High School

Conclusion year TP_ANO_CONCLUIU Categorical Not Informed, 2016–2018, <2016
High School Type TP_ESCOLA Categorical Public, Private, Not attended
Foreign Language TP_LINGUA Categorical English, Spanish
Father’s Education Q001 Categorical Never studied, Elementary incomplete, High

school incomplete, High school complete, Su-
perior, Don’t know

Mother’s Education Q002 Categorical Never studied, Elementary incomplete, High
school incomplete, High school complete, Su-
perior, Don’t know

Number of people
in student residence

Q005 Numeric 1, . . . , 20

Figure 6 shows a histogram representing the distribution of students’ age. The asym-
metrical shape is expected because many younger people usually register for the ENEM.
The average age of 22 years is commonly observed because participants are typically
students at the end of high school or those who have recently graduated, which can be
confirmed by observing Table 3, which shows the large concentration of students who had
completed high school or had completed it in 2019, the year that this exam was taken.

Table 3. High school completion status.

Complete High School Completion in 2019 Completion after 2019 Incomplete High School

59% 28% 12% 1%

It can be seen that the largest number of candidates are female (3 million versus
2 million males). These values differ slightly comparatively from the Brazilian density
population by gender [49]. On the other hand, around 600,000 students are identified
as so-called trainee students (ENEM trainers are students under the age of 18 who are
in their 1st or 2nd year of high school and wish to take the ENEM exam to test their
knowledge). Figure 7 reveals the differences among candidates from different ethnic
groups, with a concentration of applicants who declared themselves as Brown race (Pardo in
Portuguese; Brown race is an official category used by the Brazilian Institute of Geography
and Statistics-IBGE in the Brazilian census [50]). Figures 8 and 9 show the most common
level of education for fathers and mothers, where it was observed that mothers have a
higher level of education when compared to fathers.



Stats 2021, 4 691

Figure 6. Histogram of the age of the candidates.

Figure 7. Distribution of candidates by ethnic group.

Figure 8. Distribution of candidates according to father’s education.
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Figure 9. Distribution of candidates according to mother’s education.

Figure 10 reveals a greater concentration of members with an income in the range of
R$ 998.00–R$2 994.00, followed by those with an income of up to R$ 998.00. In addition to
the personal information of these candidates, some characteristics related to their school
life were analyzed. Thus, it was possible to observe that among the students who provided
their year of completion of high school, 2018 was the year that registered the highest
number of student candidates (600,000 candidates). In addition, we observed that in
relation to the type of school attended during high school (See Figure 11), the vast majority
of students chose not to provide this information; however, among those who did, it can be
observed that most students had attended public schools.

Figure 10. Distribution of candidates by family income.

Figure 11. Distribution of candidates by type of school attended in high school.

By analyzing the choice of the language tests, we can observe in Table 4 a small
difference between the number of registrants who chose English as a foreign language
and the number of registrants who chose Spanish as a foreign language. Moreover, the
data reveal an average rate of missing the tests of approximately 25%; less than 1% of the
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students were eliminated, typically candidates who violated an exam rule, and the test was
removed in any of the four tests (see Table 5).

Table 4. Distribution of candidates by foreign language.

English Spanish

2.4 million 2.6 million

Table 5. Situation of participants in objective tests and writing.

Humanities Nature Sciences Languages Mathematics Writing

Absent 22.9% 27.1% 22.9% 27.1% 23%
Present 77% 72.8% 77% 72.8% 74.2%

Eliminated 0.1% 0.1% 0.1% 0.1% 2.8%

Observing the variable that shows the number of people who lived with the person
enrolled in the ENEM (See Figure 12), it is noted that the vast majority of students shared a
house with up to five people; this is an expected result given that, as this is an exam carried
out mostly by students, they are expected to live with their families. In addition, there was
also a high concentration of single candidates (86%), which once again is expected because
participants were mostly young people at the end of school age.

Figure 12. Number of people who shared residence with candidates.

5. Applications and Results
5.1. Modeling

This section presents the results obtained by modeling the average grades of students
who took the ENEM 2019 using the variables listed in Table 2 as inputs of an SVR model.
The results presented here correspond to the comparison between the so-called traditional
SVR model, a model applied to all available data, and the model proposed in this paper,
a model that applied pre-processing to extract the most informative observations that
could thus reduce the time estimation needed for the final model and still maintain good
predictive performance results. All analyses were performed using the R [51] language
on a personal computer with processor 2.00 GHz Intel Core i3-6006U, 4 GB RAM of
memory, and a 64 bit Windows 10 Operating System. The R codes are available from the
authors upon request.

In order to use the proposed model, a total of K = 10 “Weak SVR” models were
considered during the process, each constructed with n0 = 1000 observations from the
original training sample selected at random. In the observation selection process for the
final training sample, the distribution of the calculated deviations for each observation can
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be seen in Figure 13. Thus, as previously defined, observations with a standard deviation
greater than the value of the third quartile were selected as the final training sample. For
the case of Figure 13, Q3 = 22.90.

Figure 13. Standard deviation distribution. The vertical line shows the quartile cut-off point used for
selecting observations.

The evaluation of the proposed method considers different population sizes and the
results are shown in Table 6, which considers 70% of observations as the training sample,
as well as the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE), as predictive performance measures in the test sample.
Based on Figure 14, it is possible to observe the difference in time between the proposed
model and the traditional SVR model, which includes all the observations in the estimation
process. In addition, based on Table 6, it is observed that the quality of the adjustment was
maintained, despite the small observed difference. Figure 15 shows the percentage gain in
time performance when using the proposed model. It is possible to observe that the gain
in time has a tendency of growth when also increasing the size of the base used, reaching
a gain of 90% when working with a set with 300,000 observations, the largest set used in
this comparison. Moreover, despite the use of a lower sample size, the obtained results
of the proposed method are consistent with the traditional method for all the cases from
30,000 to 300,000 total observations. Furthermore, there was a reduction in the time needed
for the learning phase, making it possible to observe the quality of the proposed model
compared to the traditional model. In particular, the RMSE mostly presented values close
to 70, which may be justified by the scale of the response variable, which varied between 0
and 900 points.

Figure 14. Adjustment times of traditional and proposed models.
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Table 6. Evaluation of the proposed model for different population sizes.

Sample RMSE MAE MAPE (%)

30 k observations

Traditional Method 21,000 72.83 57.23 57.27
Proposed Method 5250 74.64 58.93 57.58

50 k observations

Traditional Method 35,000 72.18 56.49 11.13
Proposed Method 8732 72.78 56.96 11.18

70 k observations

Traditional Method 49,000 71.94 56.63 11.14
Proposed Method 12,249 72.74 57.43 11.31

100 k observations

Traditional Method 70,000 72.22 56.78 11.18
Proposed Method 17,500 72.68 57.28 11.27

300 k observations

Traditional Method 210,000 72.23 56.75 16.70
Proposed Method 52,055 73.47 57.83 17.13

Figure 15. Percentage of time gain between the traditional and proposed models.

Furthermore, the general quality of the model’s fit was verified through the R2 metric.
As expected, it was 34%, which would indicate that the model is able to explain only 34%
of the data variability. This value is consistent and close to other results found in the recent
literature when performing a similar analysis using the ENEM database [52]. In particular,
the metric R2 is not the best metric to analyze the goodness of fit of a model, especially
for a massive database such as ENEM, which presents great variability for its variable
response. Figure 16 displays the behavior of the model when crossing the real values with
the values predicted. Despite a behavior with high variability, as expected, it is possible
to notice a moderate linear trend. It was also observed how the model behaved for each
of the Brazilian geographic regions, thus taking the cross between the real and predicted
values per region (see Figure 17). As seen for the whole country, there is a great variability
in the predicted values; however, higher concentrations of notes are seen in the southeast
and northeast regions of the country.
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Figure 16. Predicted values vs. real values.

Figure 17. Predicted values vs. real values by Brazilian geographic region.

5.2. Comparative Analysis of the Predicted Grades

This section presents a comparative analysis performed between the worst and best
predicted grades on the database, taking the top 10% and the bottom 10%; such analysis
can be seen in Table 7. There is a significant difference between the behavior of some key
variables used in the modeling, when comparing the worst grades with the best grades.
The variable Ethnic group shows the great racial inequality existing in the country, while,
among the worst average grades observed, there is a high concentration of self-declared
brown students (62%); among the best average grades is seen a large concentration of
students who were white (71%), and it is possible to observe a decline in the number
of black students among those with better grades, a reduction from 20% to only 3%.
Another important variable to be observed is the family income variable, which, in turn,
shows economic inequality. While, among the worst grades, it is possible to observe a
concentration of students with an income of 1 basic salary (R$ 998.00) (53%) and income
between 1 basic salary and 3 basic salary (R$ 2994.00) (26%), for the best grades, there
is an even greater concentration of students with a family income above 5 basic salary
(R$ 4990.00) (72%), with less than 1% among the worst grades. Finally, two other important
variables are the educational levels of the students’ parents. Among the worst grades, it
is observed that the most common level of education is incomplete primary education,
either for the father (49%) or for the mother (49%). On the other hand, for students who
obtained the highest grades, there is a high number of mothers (71%) and fathers (62%)
who completed higher education.
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Table 7. Comparative analysis between the best average grades and the worst average grades.

Variables 10% Worse Grades 10% Better
Grades

Age: Average; SD; [Min, Max] 26.74; 10.29; [13, 86] 19.57; 4.29; [2, 68]
Gender: Male (%)/Female (%) 24/76 49/51
Ethnic group: EG1 (%)/EG2
(%)/EG3 (%)/EG4 (%)/EG5
(%)/EG6 (%)

2/11/20/62/2.5/2.5 3/71/3/20/2.5/0.5

Marital Status: Not Informed
(%)/Single (%)/Married (%)/Di-
vorced (%)/Widowed (%)

5/80/12/2/1 2.5/95/2/0.4/0.1

High School Type: Not attended
(%)/Public (%)/Private (%) 61/38/1 56/3/41

High School Completion Status:
HSS1 (%)/HSS2 (%)/HSS3 (%) 60/39/1 55/44/1

Conclusion year: Not Informed
(%)/2016-2018 (%)/<2016 (%) 45/26/29 44/37/19

Foreign Language: English
(%)/Spanish (%) 16/84 90/10

Father’s Education: FE1 (%)/FE2
(%)/FE3 (%)/FE4 (%)/FE5
(%)/FE6 (%)

23/49/5/4.5/0.5/17 0.5/4/4.5/28/62/1

Mother’s Education: ME1
(%)/ME2 (%)/ME3 (%)/ME4
(%)/ME5 (%)/ME6 (%)

19/49/9/10/1/12 0.1/1/2/25/71/0.9

Number of people in student res-
idence: Average; SD; [Min, Max] 4.5; 1.92; [1, 20] 3.6; 1.06; [1, 11]

Family income: FI1 (%)/FI2
(%)/FI3 (%)/FI4 (%)/FI5 (%) 20/53/26/0.5/0.5 0.5/0.5/7/20/72

Average Grade Predicted: Aver-
age; SD; [Min, Max]

455.07; 13.15;
[347.55, 469.85]

643.14; 24.56;
[606.85, 734.26]

EG1 = Not Declared, EG2 = White, EG3 = Brown, EG4 = Black, EG5 = Yellow, EG6 = Indigenous. HSS1 = Complete
High School, HSS2 = Completionin 2019, HSS3 = Incomplete High School. FE1 and ME1 = Never studied,
FE2 and ME2 = Elementary incomplete, FE3 and ME3 = High school incomplete, FE4 and ME4 = High school
complete, FE5 and ME5 = Superior, FE6 and ME6 = Don’t know. FI1 = Without Income, FI2 = <998, FI3 = 998–2994,
FI4 = 2994–4990, FI5 = 4990+.

6. Final Considerations

Several high-profile publications have demonstrated a lack of transparency, repro-
ducibility, ethics, and effectiveness in the reporting and evaluation of ML/AI-based pre-
dictive models (error rates) [53–55]. This growing body of evidence suggests that while
many best practice recommendations for the design, performance, analysis, reporting,
evaluation of student performance, and implementation of education and public policy
can be borrowed from the traditional economics, public policy, health systems, and edu-
cation statistics literature, they are not sufficient to guide the use of ML/IA in research.
Producing such guidance with transparency and with intuitive methods is an important
undertaking because of the increasing speed of producing predictions, the large battery
of ML/IA algorithms, and the multifaceted nature of assessing student performance and
social impact [56]. Taking no action is unacceptable, and if we wait for a more definitive
solution, we risk breaking ethical and moral norms beyond the work of methodological
development.

In particular, this paper presents some theoretical concepts about the SVR machine
learning method, as well as a proposition to address the problem found when using
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this native regression method in large databases. The results obtained in the modeling
process with the proposed model were traced as well as applied in an educational data
mining problem. The proposed method maintained good performance and presented a
considerable reduction in learning time, reaching a gain of 90% for a database with at
least 300,000 observations. It represents a reduction in the time needed to learn the model
from 8 h to only 26 min. This reduction was achieved only using theoretical modifications,
without any use of parallel procedures.

The educational application provides a general descriptive analysis about the can-
didates who participated in the ENEM 2019 in Brazil, the distribution of the candidates
by federative units, the economic situation of their families, the educational level of their
parents, and also the distribution of high school type.

The learning time reduction and computational effort are quite relevant for online
applications, since the learning step may be repeated in different subsets in dashboard
applications, for example. In this sense, using only these seven input variables, it is possible
to predict precisely the average grade of a student on the National High School Exam
(ENEM—Exame Nacional do Ensino Médio) in Brazil. These efforts would be impractical
when using SVR without a learning time reduction.

Based on the predictive results of the SVR, it is possible to determine the performance
of a given student in a future ENEM test application: this can be key, on the one hand, to
produce more comprehensive and fairer tests that account for the different demographics
of students from different segments of society, i.e., the predictions allow the profiling of
students and the grouping of them for various purposes, which mainly allows a reduction
in inequality. On the other hand, the information assimilated by the algorithm can help us
to understand more accurately the students’ learning processes and their interconnections
in such a way that distortions can be corrected more quickly in teaching procedures.

Based on the experiment, we also found research limitations in our current study
and identified more research methods for our future studies as follows. We observed
that the number of students in the data set is an important factor affecting the predictive
performance. For those subsets identified by region or ethnic group, for example, a larger
number of students has better predictive performance; for example 10% better grades were
found in a larger number of students with 60% ethnic group EG2 (high concentration).
Nonetheless, predictions can be unstable if there is substantial volatility in the underlying
data set or if the data set is small. Thus, in future work, it is necessary to introduce noise to
improve the shortage of sample data. On the other hand, we observed that the method used
in predicting students’ performance is based on a shallow architecture and predictive result
failure to capture the relationships among attributes in a massive data set, and a similar
conclusion was already presented [57,58] and others in similar works. It is also worth
mentioning the fact that the work developed is easily extendable for other contexts and
methods, and there is also the possibility for parallelization adequacy, which guarantees an
even greater computational time gain, or even a combination within other methodologies
applied in large databases [37,41].
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