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Abstract: Functional data analysis techniques, such as penalized splines, have become common tools
used in a variety of applied research settings. Penalized spline estimators are frequently used in
applied research to estimate unknown functions from noisy data. The success of these estimators
depends on choosing a tuning parameter that provides the correct balance between fitting and
smoothing the data. Several different smoothing parameter selection methods have been proposed
for choosing a reasonable tuning parameter. The proposed methods generally fall into one of
three categories: cross-validation methods, information theoretic methods, or maximum likelihood
methods. Despite the well-known importance of selecting an ideal smoothing parameter, there is little
agreement in the literature regarding which method(s) should be considered when analyzing real
data. In this paper, we address this issue by exploring the practical performance of six popular tuning
methods under a variety of simulated and real data situations. Our results reveal that maximum
likelihood methods outperform the popular cross-validation methods in most situations—especially
in the presence of correlated errors. Furthermore, our results reveal that the maximum likelihood
methods perform well even when the errors are non-Gaussian and/or heteroscedastic. For real data
applications, we recommend comparing results using cross-validation and maximum likelihood
tuning methods, given that these methods tend to perform similarly (differently) when the model is
correctly (incorrectly) specified.

Keywords: functional data analysis; nonparametric regression; regularization; smoothing

1. Introduction

Functional data analysis (FDA) considers the analysis of data that are (noisy) real-
izations of a functional process [1–3]. Such data can be found in many fields [4,5] and
are becoming more common in the biomedical and social sciences, e.g., in the form of
ecological momentary assessments [6,7] collected using smart phone apps. Most FDA
techniques can be interpreted as functional extensions of standard methods used in applied
statistics. For example, the nonparametric regression model considered in this paper can
be interpreted as a functional extension of the simple model Y = µ + ε, which is assumed
for a one sample location test. A fundamental aspect of many FDA applications is choosing
a method to smooth the (noisy) functional data, and splines are one of the most popular
smoothing methods used in applications of FDA [2,4]. Note that spline smoothers assume
a nonparametric regression model of the form Yi = η(Xi) + εi, where η(·) is the unknown
mean function.

Nonparametric regression models are frequently used in applied research to estimate
unknown functional relationships between variables (e.g., see [8–14]). Unlike parametric
regression models, which assume that the functional relationship between variables has
a known form that depends on unknown parameters, nonparametric regression mod-
els do not assume that the form of the relationship between variables is known [15,16].
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Instead of assuming a particular functional form for the relationship, nonparametric re-
gression models attempt to learn the form of the functional relationship from a sample of
noisy data. As a result, nonparametric regression models are a type of statistical learning
(e.g., see [17]), given that the collected data enable the researcher to discover functional
forms that describe relations between variables. The overarching goal of nonparamet-
ric regression is to estimate a function that fits the data well while still maintaining a
parsimonious (i.e., smooth) estimate of the functional relationship.

Penalized splines are a popular approach for estimating unknown functional rela-
tionships from noisy data. Note that penalized splines are a form of generalized ridge
regression [18], where a quadratic smoothness penalty is added to the ordinary least
squares loss function. The influence of the smoothness penalty is controlled by a nonnega-
tive smoothing (or tuning) parameter λ ≥ 0, which controls the trade-off between fitting
the data well and obtaining a smooth estimate. This paper focuses on the Gaussian-type
response, so the fit to the data is measured by the ordinary least squares loss function. More
generally, penalized splines can be viewed as a form of penalized likelihood estimation [19],
where the goal is to find the function that minimizes

− 1
n

Log-Likelihood + λPenalty, (1)

where the first term quantifies the fidelity to the data (with n denoting the sample size) and
the second term quantifies the (lack of) parsimony of the estimate.

As the smoothing parameter λ → 0, the log-likelihood term dominates the loss
functional, which causes the estimator to converge to the maximum likelihood estimator.
In contrast, as λ → ∞, the penalty term dominates the loss functional, which causes the
estimator to converge to a “perfectly smooth” estimator (later defined). When working
with finite samples of noisy data, it is desirable to select a λ ∈ (0, ∞) that provides an ideal
balance between fitting and smoothing the data. If the signal to noise level is relatively
large, it may be possible to manually select a reasonable value of λ via visual inspection.
However, for reliable and valid smoothing parameter selection across multiple noise levels,
some automated method for selecting λ should be preferred. A variety of different methods
have been proposed for automatically selecting an ideal value of λ for a given sample of
data. However, there is no general consensus as to which method should be preferred for
general situations.

In this paper, we compare six popular tuning methods that can be categorized into
three distinct groups: (i) cross-validation based methods, which include ordinary cross-
validation (OCV) and generalized cross-validation (GCV); (ii) information theoretic meth-
ods, which include an information criterion (AIC) and the Bayesian information criterion
(BIC); and (iii) maximum likelihood methods, which include standard (ML) and restricted
maximum likelihood estimation (REML). The cross-validation tuning methods are often
the default choice for smoothing parameter selection, e.g., the popular smooth.spline
function in R [20] offers both the GCV (default) and OCV tuning options. Despite the
popularity of the OCV and GCV, it is known that these tuning criteria can breakdown when
the model error terms are correlated [21,22]. In such situations, these CV criteria tend to
under-smooth the data (i.e., chooses a λ that is too small) because the structure in the error
terms is perceived to be part of the mean structure.

When a researcher has a priori knowledge that the errors are correlated, it is possible
to incorporate that knowledge into the estimation problem (e.g., see [23–25]). However,
in most real data applications, the researcher lacks prior knowledge about the nature of
the error correlation structure, so it is not possible to incorporate such information into
the estimation process. One (naive) option would be to fit a penalized spline and then to
inspect the model residuals in an attempt to learn about the error correlation structure.
However, it has been shown that estimating the correlation structure from residuals is
difficult, given that the residuals often look uncorrelated even when the error terms are
correlated [22]. This is due to the (previously mentioned) issue that the error correlation is



Stats 2021, 4 703

often absorbed into the estimate of the mean function when using popular tuning methods
such as the OCV and GCV. Consequently, when the error terms may be correlated, some
robust alternative tuning approach is needed.

Past research has shown that the cross-validation and maximum likelihood tuning
methods have several common features [26]; however, certain tuning criteria may be more
robust than the OCV and GCV in the presence of misspecified error structures. Specifically,
Krivobokova and Kauermann [27] showed that the REML tuning criterion should be
expected to outperform the OCV, GCV, and AIC (with respect to mean function recovery)
when the errors are autocorrelated, and Lee [28] found that the AIC is more robust than
the cross-validation criteria when the errors have non-constant variance. However, these
findings focused on the situation when the errors follow a Gaussian distribution. To the best
of our knowledge, no study has thoroughly compared the various tuning criteria under
a wide variety of different combinations of error variance, error correlation, and error
distribution. In this study, we explore how the distributional properties of the error terms
affect not only the mean function recovery (which has been the focus in past studies) but
also the standard errors used for inference about the unknown function (which has been
largely ignored in past works).

The remainder of this paper is organized as follows. Section 2 provides some back-
ground about estimation and inference for smoothing splines. Section 3 presents the six
smoothing parameter selection methods: OCV, GCV, AIC, BIC, ML, and REML. Section 4
conducts a thorough simulation study comparing the performance of the tuning methods
under a variety of different data generating conditions. Section 5 demonstrates that the
different tuning methods can produce noteworthy differences when analyzing real data.
Finally, Section 6 discusses the important conclusions drawn from the current work as well
as future research directions related to robust estimation and inference for penalized splines.

2. Theoretical Background
2.1. Smoothing Spline Definition

Let {(xi, yi)}n
i=1 denote a set of n observations, where yi ∈ R is the real-valued

response variable for the ith observation and xi ∈ [a, b] is the predictor variable for the ith

observation. Note that the predictor is assumed to be bounded, and we can assume that
a = 0 and b = 1 without loss of generality. Consider a nonparametric regression model of
the form

yi = η(xi) + εi, (2)

where η(·) is the unknown smooth function relating xi to yi, and εi is the error term for
the ith observation. In standard applications of nonparametric regression, the errors are
assumed to be independent and identically distributed realizations of a continuous random

variable with mean zero, i.e., εi
iid∼ (0, σ2). Note that this implies that the unknown function

η(·) determines the conditional mean of Y given X. If the errors are correlated and/or
heteroscedastic, then η(·) still determines the conditional mean of Y given X, as long as the
error terms satisfy E(εi) = 0.

Given a smoothing parameter λ ≥ 0, the mth order polynomial smoothing spline
estimator ηλ is the minimizer of a penalized least squares functional, i.e.,

ηλ = min
η∈H

1
n

n

∑
i=1

(yi − η(xi))
2 + λJm(η) (3)

where Jm(η) =
∫ 1

0 |η
(m)(z)|2dz is the penalty functional, with η(m)(·) denoting the mth

derivative of η(·), and H = {η : Jm(η) < ∞} denotes the space of functions with square
integrable mth derivatives. The function spaceH can be decomposed into two orthogonal
subspaces such as H = H0 ⊕H1, where H0 = {η : Jm(η) = 0} is the null space and
H1 = {η : 0 < Jm(η) < ∞} is the contrast space. The implies that η = η0 + η1, where
η0 ∈ H0 and η1 ∈ H1. The null space is spanned by the m basis functions φj(x) = xj for
j = 0, . . . , m− 1. As the smoothing parameter λ → ∞, the estimator ηλ is suppressed to
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its null space representation η0. For example, setting m = 2 produces a cubic smoothing
spline, where the estimator ηλ approaches a linear function as λ→ ∞.

2.2. Representation and Computation

The Kimeldorf–Wahba representer theorem [29] reveals that the minimizer of the
penalized least squares functional in Equation (3) can be written as

ηλ(x) =
m−1

∑
j=0

β jφj(x) +
r

∑
k=1

γkκ(x, x∗k ) (4)

where {φj}m−1
j=0 are known functions that span the null space, κ(·, ·) is the reproducing

kernel of the contrast space, and {x∗k}
r
k=1 are the selected knots. Note that the representer

theorem uses all observed design points as knots (i.e., r = n and x∗i = xi); however, it is
possible to obtain good approximations using r � n selected design points as knots [30].
For practical computation, note that the reproducing kernel function has the form

κ(x, y) = ψm(x)ψm(y) + (−1)m−1ψ2m(|x− y|), (5)

where ψm are Bernoulli polynomials [16,31]. Using the Kimeldorf–Wahba representation in
Equation (4), the function estimation reduces to the estimation of the unknown coefficient
vectors β = (β0, . . . , βm−1)

> and γ = (γ1, . . . , γr)>.
The Kimeldorf–Wahba representer theorem implies that the penalized least squares

functional in Equation (3) can be written as

1
n
‖y− Xβ− Zγ‖2 + λγ>Qγ, (6)

where y = (y1, . . . , yn)> is the response vector, X = [φj(xi)] is the null space basis function
matrix, Z = [κ(xi, x∗k )] is the contrast space basis function matrix, and Q = [κ(x∗j , x∗k )] is
the penalty matrix. Given λ, the optimal coefficient estimates have the form[

β̂λ
γ̂λ

]
=

[
X>X X>Z
Z>X Z>Z + nλQ

]†[
X>

Z>

]
y, (7)

where A† denotes the Moore–Penrose pseudoinverse of A [32,33]. Note that the coefficient
estimates in Equation (7) are unique if the selected knots satisfy 0 ≤ x∗1 < · · · x∗r < 1,
in which case the matrix Z is a full column rank (assuming that r < n).

In nonparametric regression, we are not typically interested in the values of the
coefficients. Instead, we are interested in the fitted values, which have the form

ŷλ = Xβ̂λ + Zγ̂λ = Sλy, (8)

where

Sλ =
[
X Z

][X>X X>Z
Z>X Z>Z + nλQ

]†[
X>

Z>

]
(9)

is the “smoothing matrix”, which is the nonparametric regression analogue of the “hat
matrix” in linear models. Note that the fitted values and smoothing matrix are subscripted
with λ, given that the coefficient estimates (and, consequently, ŷλ and Sλ) change as
a function of the smoothing parameter. The trace of the smoothing matrix is denoted
by νλ = tr(Sλ), which is often referred to as the effective degrees of freedom of the
function estimate.

2.3. Bayesian Inference

It is well-known that the smoothing spline estimator ηλ can be interpreted as a
Bayesian estimate of a Gaussian process [34,35]. To arrive at the Bayesian interpreta-
tion, first define η0(x) = φ>β, where φ> = (φ0(x), . . . , φm−1(x)) is the null space basis
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functions evaluated at x, and define η1(x) = κ>γ, where κ> = (κ(x, x∗1), . . . κ(x, x∗r )) is
the contrast space reproducing the kernel function evaluated at x and the selected knots.
Next, assume the prior distributions β ∼ N(0, τ2I), and γ ∼ N(0, θ2Q†), where θ2 = σ2

nλ ,
and assume that β and γ are independent of one another and are independent of the εi
terms. Defining α = (β>, γ>)> as the combined coefficient vector, the prior assumptions
imply that α ∼ N(0, Σα), where Σα = bdiag(τ2I, θ2Q†) is a block diagonal covariance

matrix. Assuming that εi
iid∼ N(0, σ2), the prior distributions imply that the (unconditional)

distribution of the response vector is y ∼ N(0, Σy), where Σy = τ2XX> + θ2ZQ†Z> + σ2I.
This also implies that the covariance between y and α has the form Σyα =

[
τ2X, θ2ZQ†].

Given these assumptions, the posterior distribution of α given y is multivariate normal
(α|y) ∼ N(µα|y, Σα|y) with mean vector and covariance matrix

µα|y = Σ>yαΣ−1
y y

Σα|y = Σα − Σ>yαΣ−1
y Σyα,

(10)

which is a well-known property of the multivariate Gaussian distribution (e.g., see [36]).
Defining θ2 = σ2

nλ , it can be shown that, as τ2 → ∞, we have the relations

µ̂α|y = lim
τ2→∞

µα|y = (M>M + nλQ∗)†M>y

Σ̂α|y = lim
τ2→∞

Σα|y = σ2(M>M + nλQ∗)†
(11)

where M = [X, Z] is the model matrix and Q∗ = bdiag(0, Q) is a block diagonal penalty
matrix where the zeros correspond to the X portion of M. Note that µ̂α|y is the coefficient
estimates from Equation (7) and that Σ̂α|y is the inner portion of the smoothing matrix from
Equation (9). Thus, the smoothing spline estimator can be interpreted as a posterior mean
estimator under the specified prior distribution assumptions.

The Bayesian interpretation of a smoothing spline can be useful for assessing the
uncertainty of the predictions from a fit smoothing spline. First, note that the model
predictions can be written as η̂λ(x) = φ> β̂λ + κ>γ̂λ = ξ>α̂λ where ξ> = [φ>, κ>]
and α̂λ = µ̂α|y. Using the results in Equation (11), the posterior distribution of η(x)
given y is univariate normal (η(x)|y) ∼ N(µη(x)|y, σ2

η(x)|y), where the posterior mean is

µη(x)|y = η̂λ(x) = ξ>µ̂α|y and the posterior variance is σ2
η(x)|y = ξ>Σ̂α|yξ. This implies that

the 100(1− α)% Bayesian “confidence interval” for η(x) has the form

η̂λ(x)± Z1−α/2ση(x)|y, (12)

where Z1−α/2 denotes the standard normal critical value that cuts off α/2 in the upper
tail. When the model assumptions are reasonable, the Bayesian confidence intervals tend
to have “across the function” coverage properties, such that the 100(1− α)% confidence
interval is expected to contain about 100(1− α)% of the true η(x) values [34,35].

3. Tuning Methods
3.1. Cross-Validation Methods

Ordinary cross-validation (OCV), which is also referred to as leave-one-out cross-
validation, is a special case of k-fold cross-validation where k (the number of folds) is equal
to n (the sample size). This means that each observation has a turn being the “test set” or
“test observation” since only one observation is held at a time. The use of OCV for model
selection and model assessment was independently discovered by Allen [37] and Stone [38]
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in the context of regression. Wahba and Wold [39] later suggested the use of OCV when
fitting smoothing spline models. The OCV method seeks to find the λ that minimizes

OCV(λ) =
1
n

n

∑
i=1

(
yi − η

[i]
λ (xi)

)2
, (13)

where η
[i]
λ (xi) is the function that minimizes the penalized least squares functional, leaving

out the ith data pair (xi, yi). More specifically,

η
[i]
λ = min

η∈H

1
n

n

∑
j=1,j 6=i

(yj − η(xj))
2 + λJm(η) (14)

is the minimizer of the leave-one-out version of the penalized least squares functional.
The form of the OCV given in Equation (13) suggests that evaluating the OCV criterion

for a given λ requires fitting the model n different times (once for each xi). Fortunately,
the leave-one-out function evaluation can be written in terms of the solution fit to the full
sample of data, such as

η
[i]
λ (xi) =

ηλ(xi)− sii(λ)yi

1− sii(λ)
, (15)

where sii(λ) is the ith diagonal element of Sλ [16]. This implies that the OCV criterion can

be evaluated for a given λ via a single fitting of the model. Plugging the form of η
[i]
λ (xi)

into the OCV criterion in Equation (13) produces

OCV(λ) =
1
n

n

∑
i=1

(
yi − ηλ(xi)

1− sii(λ)

)2

, (16)

which is the computational form of the OCV criterion.
The computational form of the OCV in Equation (16) reveals that the OCV can be in-

terpreted as a weighted least squares criterion, where the weights are defined (1− sii(λ))
−2.

The leverage scores satisfy sii(λ) ∈ (0, 1) so each observation can have a notably different
amount of influence on the OCV criterion. To equalize the influence of the observations
on the smoothing parameter selection, the generalized cross-validation (GCV) criterion
of Craven and Wahba [40] replaces the leverage scores with their average value. More
specifically, the GCV method seeks to find the λ that minimizes

GCV(λ) =
1
n ∑n

i=1(yi − ηλ(xi))
2

(1− νλ/n)2 , (17)

where νλ = tr(Sλ) is the effective degrees of freedom of the estimator ηλ. The GCV criterion
is typically preferred over the OCV criterion, especially when there are replicate xi scores in

the sample. Furthermore, assuming that εi
iid∼ (0, σ2), the GCV is known to have desirable

asymptotic properties (e.g., see [41]).

3.2. Information Theory Methods

The information theoretic approaches for selecting λ require more assumptions than
are required by the cross-validation based methods. More specifically, the information

theory methods assume that εi
iid∼ N(0, σ2), which makes it possible to explicitly define the

likelihood of the generated data (under the assumption that η(x) is an unknown constant
given x). The assumption of iid Gaussian error terms implies that the distribution of the
response vector is y ∼ N(η, σ2I), where the mean vector is η = Xβ + Zγ. Given a sample
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of n independent observations and assuming that εi
iid∼ N(0, σ2), the log-likelihood function

has the form

l(λ, σ2) = −1
2

[
1
σ2

n

∑
i=1

(yi − ηλ(xi))
2 + n log(σ2) + n log(2π)

]
(18)

which depends on λ and the error variance σ2. The maximum likelihood estimate of
the error variance has the form σ̂2

λ = 1
n ∑n

i=1(yi − ηλ(xi))
2, and plugging this into the

log-likelihood function has the form

l̃(λ) = l
(

λ, σ̂2
λ

)
= −1

2

[
n + nlog(σ̂2

λ) + nlog(2π)
]
, (19)

which only depends on λ through σ̂2
λ.

An information criterion (AIC) was proposed by Akaike [42] to compare a set of
candidate models, with the goal being to select the model that loses the least amount
of information about the (unknown) true data generating process. The AIC method for
selecting λ involves selecting the λ that minimizes

AIC(λ) = −2l̃(λ) + 2νλ, (20)

where νλ = tr(Sλ) is the effective degrees of freedom of the function estimate. Note that
it is possible to use other degrees of freedom estimates for ηλ; however, we prefer the νλ

estimate given that this estimate is used for the GCV criterion. The Bayesian information
criterion (BIC) proposed by Schwarz [43] has the form

BIC(λ) = −2l̃(λ) + log(n)νλ, (21)

which is similar to the AIC but uses a different weight on the penalty. Assuming that n ≥ 8,
the BIC penalty weight of log(n) is larger than the AIC penalty weight of 2, which implies
that the BIC will tends to select larger values of λ (i.e., smoother models).

3.3. Maximum Likelihood Methods

The maximum likelihood approaches for selecting λ exploit the computational re-
lationship between penalized splines and linear mixed effects models [24,44,45]. This
approach uses similar arguments to the Bayesian confidence intervals with the exception
that the null space coefficients are treated as fixed effects. More specifically, assume that

γ ∼ N(0, σ2

nλ Q†) and εi
iid∼ N(0, σ2), and assume that γ is independent of εi ∀i. This implies

that the response vector is y ∼ N(Xβ, σ2Σλ), where the null space representation contains
the “fixed effects” and the contrast space representation contains the “random effects”, with
covariance matrix proportional to Σλ = 1

nλ ZQ†Z> + I. Given a sample of n independent
observations, the log-likelihood function has the form

L(λ, σ2) = −1
2

[
σ−2r>Σ−1

λ r + log(|Σλ|) + n log(σ2) + n log(2π)
]
, (22)

where r = y − Xβ. The maximum likelihood estimate for σ2 has the form σ̂2
λ(ML) =

1
n r>Σ−1

λ r, and plugging this into the log-likelihood function produces

ML(λ) = L
(

λ, σ̂2
λ(ML)

)
= −1

2

[
n + log(|Σλ|) + n log(r>Σ−1

λ r) + n log(2π/n)
]
, (23)

which is the (profile) maximum likelihood criterion for selecting λ.
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Restricted maximum likelihood (REML) estimation takes into account the reduction
in degrees of freedom due to estimating the m null space coefficients [46]. The REML
log-likelihood function has the form

R(λ, σ2) = L(λ, σ2)− 1
2

[
log(|X>Σ−1

λ X|)−m log(2πσ2)
]
, (24)

and the REML estimate for σ2 has the form σ̂2
λ(REML) =

1
n−m r>Σ−1

λ r. Plugging this error
variance estimate into the log-likelihood function produces the (profile) REML criterion for
selecting λ, which has the form

REML(λ) = −1
2

[
ñ + log(|Σλ|) + ñ log(r>Σ−1

λ r) + ñ log(2π/ñ) + log(|X>Σ−1
λ X|)

]
, (25)

where ñ = n−m is the degrees of freedom of σ̂2
λ(REML). Note that the REML criterion is

generally preferred over the ML criterion for variance component estimation, particularly
when the sample size is small to moderate.

4. Simulation Study
4.1. Simulation Design

To investigate the performance of the tuning parameter selection methods discussed
in the previous section, we designed a simulation study that compares the methods under
a variety of different data generating conditions. More specifically, we designed a fully
crossed simulation study that compares the performance of the tuning methods under all
combinations of five different design factors: the function smoothness (three levels: later
defined), the error standard deviation (three levels: constant, increasing, and parabolic),
the error correlation (three levels: ρ ∈ {0, 1/3, 2/3}), the error distribution (three levels:
normal, t5, and uniform), and the sample size (four levels: n ∈ {50, 100, 200, 400}). For each
combination of data generating conditions, the predictor scores were defined as xi =

i−1
n−1

for i = 1, . . . , n.
The three levels of the function smoothness are depicted in Figure 1 (left) and are

from the simulation studies of Wahba [34]. The three levels of the error standard deviation
are depicted in Figure 1 (right) and are defined as σ(x) = 1 (constant), σ(x) = x + 1/2
(increasing), and σ(x) = 4(x− 1/2)2 + 1/2 (parabolic). To generate correlated errors, we
use an autoregressive process of order one, i.e., AR(1) process, so that Cor(xi, xj) = ρ|i−j|

for all i, j. The generation of correlated multivariate normal (or t) data is straightforward
given that the AR(1) correlation structure can be incorporated into the covariance matrix.
To generate correlated uniform data, we use the method proposed by Falk [47], which
produces uniformly distributed data with desired correlations.
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Figure 1. Simulation design functions. (Left): the three mean functions from Grace Wahba [34]. (Right): the three standard
deviation functions: constant (CON), increasing (INC), and parabolic (PAR).
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4.2. Simulation Analyses

For each of the 324 levels of the simulation design (3 η × 3 σ × 3 ρ × 3 Fε × 4 n), we
generated data according to the model in Equation (2). Within each cell of the simulation
design, we generated R = 1000 independent replications of the data. For each sample of
generated data, we fit the model using the six smoothing parameter selection methods
discussed in the previous section. The models were fit in R [20] via the ss() function in
the npreg package [48] using r = 20 knots placed evenly across the range of the xi scores.
To evaluate the performance of the different tuning methods, we calculated the root mean
squared error (RMSE) of the estimator, i.e.,

RMSE =

√
1
n

n

∑
i=1

(η(xi)− η̂λ(xi))
2 (26)

so smaller values of RMSE indicate better recovery of the true mean function. We also
calculated the coverage of the 95% Bayesian confidence interval for each tuning method

Coverage =
1
n

n

∑
i=1

I{a(η̂λ(xi)) ≤ η(xi) ≤ b(η̂λ(xi))} (27)

where I{·} denotes an indicator function, a(η̂λ(xi)) = η̂λ(xi)− 1.96σ̂λ
√sii(λ) is the lower

bound for the 95% Bayesian CI, and b(η̂λ(xi)) = η̂λ(xi) + 1.96σ̂λ
√sii(λ) is the upper bound

for the 95% Bayesian CI. Note that, when evaluated at the n design points, the estimated
posterior variance has the form σ̂2

η(xi)|y
= σ̂2

λsii(λ).

4.3. Simulation Results

Figure 2 displays the RMSE for each tuning method in each combination of data
generating function η, autocorrelation ρ, and sample size n when the errors are Gaussian
and homoscedastic. The results reveal that, for all combinations of η and ρ, all of the
methods tend to result in better function recovery (i.e., smaller RMSE) as n increases, which
was expected. The interesting finding is that the maximum likelihood-based methods
(REML and ML) tend to produce RMSE values that are similar to or smaller than the
RMSE values produced by the cross-validation-based methods (OCV and GCV) and the
information theory-based methods (AIC and BIC). The only exception is that the cross-
validation methods tend to outperform the maximum likelihood methods when all three
of the following conditions are true: (i) the sample size is small, (ii) the mean function is
rather jagged, and (iii) the errors are independent. When ρ > 0, the maximum likelihood
methods produce substantially smaller RMSE values compared with the other methods.
This effect exists for all combinations of η and n, but the RMSE difference diminishes as the
function roughness and/or the sample size increases.

Figure 3 displays the coverage of the 95% Bayesian confidence intervals for each
tuning method in each combination of data generating function η, autocorrelation ρ,
and sample size n when the errors are Gaussian and homoscedastic. The results reveal
that the performance of the Bayesian confidence intervals depends on the combination of
the function smoothness, the error autocorrelation, the sample size, and the chosen tuning
method. When there is no autocorrelation present, all of the tuning methods except the
BIC tend to produce better coverage rates (i.e., closer to the nominal level) as the sample
size n increases, regardless of the function smoothness. Furthermore, when there is no
autocorrelation present, the maximum likelihood methods and the BIC result in noteworthy
under-coverage when the function is jagged and the sample size is small. When there
exists moderate autocorrelation in the errors (i.e., ρ = 1/3), all of the tuning methods
result in noteworthy under-coverage, with the maximum likelihood methods performing
better for smooth functions and the cross-validation methods performing better for more
jagged functions. When the autocorrelation is larger (i.e., ρ = 2/3), all of the methods have
similarly poor performance.
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Figure 2. Simulation RMSE results. Boxplots of the RMSE across the 1000 simulation replications for homoscedas-
tic Gaussian errors. The rows show the results for the mean functions, and the columns show the results for the
autocorrelation parameters.
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Figure 3. Simulation coverage results. Boxplots of the coverage rate for the 95% Bayesian confidence intervals across the
1000 simulation replications for homoscedastic Gaussian errors. The rows show the results for the mean functions, and
the columns show the results for the autocorrelation parameters.

Our discussion of the results focused on a subset of the simulation conditions, which
are sufficient for understanding the primary findings of the simulation study. Specifically,
we focused on the results when the errors are Gaussian with constant variance, whereas
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the results for non-Gaussian and heteroscedastic errors are presented in Appendix A
(Gaussian), Appendix B (t5), and Appendix C (uniform). Interestingly, we found that the
RMSE and coverage results were quite similar for the non-Gaussian and heteroscedastic
cases. In other words, the primary conclusions that were made about the results in
Figures 2 and 3 also apply to the results for non-Gaussian distributions with non-constant
variance. When the errors followed a multivariate t5 distribution, the RMSE values tended
to be a bit larger for all methods, which is not surprising. However, the primary conclusions
regarding the effect of autocorrelation remained the same. It is rather interesting to note
that the REML criterion tends to perform relatively well—especially in the presence of
autocorrelation in the errors—even when the errors do not follow a Gaussian distribution.
Consequently, the REML criterion seems to be a reasonable default tuning criterion as long
as the sample size is not too small.

5. Real Data Examples
5.1. Global Warming Example

Our first example uses global land–ocean temperature data, which are freely available
from NASA’s Goddard Institute for Space Studies [49,50]. The dataset contains the global
land–ocean temperature index from the years 1880 to 2020. Note that the global land–
ocean temperature index is the change in global surface temperatures (in degree Celsius)
relative to the 1951–1980 average temperatures. Positive values indicate that the average
temperature for a given year was above the average temperature for the years 1951–1980,
and negative values indicate that the average temperature for a given year was below the
average temperature for the years 1951–1980. In our example, we compare the results of
the trend estimate using the GCV and REML criteria for selecting the tuning parameter of
the smoothing spline. We use the .nknots.smspl function in R [20] to select the number of
knots, which results in the selection of 76 knots. For both tuning methods, we use the same
76 knot values to fit the cubic smoothing spline.

The results are plotted in Figure 4, which reveals that the GCV and REML tuning
methods produce drastically different pictures of the temperature change across time.
Although both methods show that the global land–ocean temperature index has increased
over time (particularly since the 1970s), the GCV and REML solutions tell notably different
stories about the nature of the increase. The GCV solution has an estimated degrees of
freedom of ν̂λ = 47.52 and suggests that the temperature index is rather volatile from
year to year. In contrast, the REML solution has an estimated degrees of freedom of
ν̂λ = 11.43 and suggests that the temperature index changes in a rather smooth fashion
from year to year. Based on the simulation results, it seems likely that the GCV criterion
is under-smoothing the data, which may have some noteworthy autocorrelation in the
error structure. Consequently, we contend that the REML solution should be preferred for
interpreting the nature of the yearly changes in the global land–ocean temperature index.
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Figure 4. Global warming results. Smoothing spline solution for temperature data using GCV tuning (left) and REML
tuning (right). Created using the ss() function in the npreg R package [48].
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5.2. Motorcycle Accident Example

Our second example uses acceleration data from a simulated motorcycle accident.
This dataset was first considered by Silverman [51] and has since been popularized via
its inclusion in the popular MASS R package (see mcycle, [52]). The dataset contains
the head acceleration (in g) as a function of time (in milliseconds) for n = 133 points
of simulated data. The data are meant to simulate the acceleration curve of the head
after a motorcycle accident and were simulated for the purpose of evaluating motorcycle
helmets. Due to the simulation procedure, the resulting data are noisy realizations of the
true acceleration curve, so the data need to be smoothed in order to estimate the expected
head acceleration as a function of time. As in the previous example, (i) we compare the
results of the curve estimate using the GCV and REML criteria for selecting the tuning
parameter of the smoothing spline and (ii) we use the .nknots.smspl function in R to
select the number of knots, which resulted in the selection of 61 knots. For both tuning
methods, we use the same 61 knot values to fit the cubic smoothing spline.

The results are plotted in Figure 5, which reveals that the GCV and REML tuning
methods produce rather similar estimates in this case. The GCV criterion ν̂λ = 12.21
selected a slightly smaller degree of freedom estimate compared with the REML solution
ν̂λ = 13.86. However, from a practical perspective, the two tuning methods result in
smoothing spline estimates that produce the same interpretation of the acceleration curve.
The estimated acceleration curve reveals that the head experiences negative acceleration
(15–30 ms) followed by a rebound effect of positive acceleration (30–40 ms) before loosely
stabilizing around zero (40+ ms). Finally, it is worth noting that the data in this exam-
ple violate the homogeneity of variance assumption, which is required for the Bayesian
confidence intervals. Therefore, although the GCV and REML tuning criteria may pro-
vide satisfactory estimates of the acceleration curve, the Bayesian confidence intervals
do not provide satisfactory estimates of uncertainty—in this case, they suggest too much
uncertainty in the estimate from 0 to 15 ms.
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Figure 5. Motorcycle accident results. Smoothing spline solution for motorcycle data using GCV tuning (left) and REML
tuning (right). Created using the ss() function in the npreg R package [48].

6. Discussion
6.1. Overview

Due to their unique combination of flexibility and interpretability, smoothing
splines are frequently used to understand functional relationships in applied research.
Unlike standard parametric regression methods (which make strict assumptions) and
standard machine learning methods (which produce black-box predictions), smoothing
splines are able (i) to learn functional forms and (ii) to produce insightful visualizations.
To provide a valid estimate of unknown functional relationships, the smoothing spline
estimator requires selecting a smoothing parameter that provides the “correct” balance
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between fitting and smoothing the data. Specifically, the success of a smoothing spline
depends on choosing the tuning parameter λ that satisfies a Goldilocks phenomenon: if
λ is too small, the estimator has too much variance, and if λ is too large, the estimator
has too much bias. Despite the well-known importance of selecting the “correct” λ, there
is little agreement in the literature regarding which method should be used. Tuning
methods can produce different results [26,27] so the choice of tuning method matters.

To address this issue, we explored the relative performance of six popular methods
used to select the smoothing parameter λ. Unlike previous studies on this topic, (i) we
compared a diverse collection of tuning methods, which included cross-validation, in-
formation theoretic, and maximum likelihood methods; (ii) we designed an extensive
simulation study that evaluated each method’s performance under a variety of data gen-
erating conditions; and (iii) we assessed the performance of the methods with respect to
both function estimation and statistical inference. Furthermore, we used both simulated
and real data examples to demonstrate the substantial differences that different smooth-
ing methods can have on the solution. As we elaborate in the following paragraphs,
the primary take-home message from our work is that any real data application should
compare the results using both the GCV and REML smoothing parameter selection
criteria—which is rarely performed in practice.

6.2. Summary of Results

Our simulation results replicate several important findings and provide novel
insights about the performance of different tuning methods for smoothing splines.
The finding that common tuning methods (i.e., OCV, GCV, and AIC) can breakdown
in the presence of autocorrelated errors replicates several past studies on the topic
[21,22]. Furthermore, our finding that the REML and ML tuning criteria are rela-
tively robust in the presence of autocorrelated errors supports the theoretical results of
Krivobokova and Kauermann [27]. In addition to replicating these known results, our
simulation produced several important and novel findings: (i) the performance of the
Bayesian confidence intervals deteriorates as the degree of autocorrelation increases;
(ii) the cross-validation tuning methods only show an advantage over REML/ML when
n is small, η is rough, and ρ = 0; and (iii) the superior performance of the REML/ML
tuning methods persists even when the errors are non-Gaussian and/or heteroscedastic.

Our real data results demonstrate the important role that the smoothing parameter
selection method plays in understanding functional relationships from a fit smoothing
spline. Using the GCV versus the REML criterion, a researcher would arrive at a remark-
ably different interpretation of the global warming trends. Since these are real data,
we cannot be sure whether the GCV or REML solution is closer to the truth. However,
in this case, it seems likely that the GCV criterion has capitalized on autocorrelation
in the error terms, which manifests itself as a part of the mean structure. In contrast,
the REML solution seems to provide a rather parsimonious and intuitive estimate of the
global warming trends, which agrees with visual intuition about the nature of the trends
across time. Of course, the specifics of the global warming example do not generalize
to other datasets, e.g., the two tuning methods performed similarly for the motorcycle
data. However, this example illustrates how (i) the GCV criterion can under-smooth
data and (ii) the REML criterion can overcome this under-smoothing issue.

6.3. Limitations and Future Directions

This paper only considers the nonparametric regression model in Equation (2),
where the unknown function η(·) describes the conditional mean of Y given X. Ac-
cordingly, this paper only compares tuning methods that are applicable to the pe-
nalized least squares problem in Equation (3). Although quite general, the model
in Equation (2) can be extended in a variety of different ways. For example, in a general-
ized nonparametric regression model, the function η(·) describes the conditional mean
of an exponential family response variable as a function of a predictor [16]. As another
example, in nonparametric quantile regression, the function η(·) describes the condi-
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tional quantile of a response variable as a function of a predictor [53]. Furthermore,
penalized splines can be incorporated into other types of nonparametric estimators,
e.g., M-estimators [54]. These extensions require different estimation and tuning meth-
ods, so the results in this paper cannot be generalized to such extensions. Thus, future
work is needed to determine which tuning methods should be preferred when penalized
splines are used for various FDA extensions of the simple nonparametric regression
model in Equation (2).

6.4. Conclusions

When using smoothing splines for real data analysis, it seems that many re-
searchers do not give much thought to the smoothing parameter selection method.
This is likely because many software implementations of smoothing splines do not
emphasize the importance of the tuning method. Furthermore, most softwares only
implement one or two tuning methods, so researchers rarely have the option to explore
a multitude of tuning methods. For example, the smooth.spline() function in R [20]
only offers the OCV and GCV tuning methods, and most users seem to (purposefully
or unwittingly) use the default GCV tuning method. It is important to note that the
GCV method is also the default in the mgcv R package [55], the bigsplines R pack-
age [56], and the npreg R package [48]; however, these packages offer more tuning
options. For a flexible alternative to R’s smooth.spline() function, we recommend
the ss() function from the npreg package, given that it has nearly identical syntax
to the smooth.spline() function and makes it possible to easily compare the results
using multiple tuning criteria.
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Appendix A. Supplementary Results for Gaussian Errors

Appendix A.1. RMSE Results
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Figure A1. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for Gaussian errors with
increasing standard deviation.
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Figure A2. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for Gaussian errors with
parabolic standard deviation.
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Appendix A.2. Coverage Results
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Figure A3. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for Gaussian errors with increasing standard deviation.
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Figure A4. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for Gaussian errors with parabolic standard deviation.
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Appendix B. Supplementary Results for Multivariate t5 Errors

Appendix B.1. RMSE Results
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Figure A5. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for multivariate t5 errors
with constant standard deviation.
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Figure A6. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for multivariate t5 errors
with increasing standard deviation.
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Figure A7. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for multivariate t5 errors
with parabolic standard deviation.

Appendix B.2. Coverage Results
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Figure A8. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for multivariate t5 errors with constant standard deviation.
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Figure A9. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for multivariate t5 errors with increasing standard deviation.
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Figure A10. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for multivariate t5 errors with parabolic standard deviation.
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Appendix C. Supplementary Results for Uniform Errors

Appendix C.1. RMSE Results
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Figure A11. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for uniform errors with
constant standard deviation.
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Figure A12. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for uniform errors with
increasing standard deviation.



Stats 2021, 4 721

n

R
M

S
E

ηA  &  ρ = 0/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηA  &  ρ = 1/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηA  &  ρ = 2/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηB  &  ρ = 0/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηB  &  ρ = 1/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηB  &  ρ = 2/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηC  &  ρ = 0/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηC  &  ρ = 1/3

50 100 200 400

0.
0

0.
5

1.
0

1.
5

n

R
M

S
E

ηC  &  ρ = 2/3

50 100 200 400
0.

0
0.

5
1.

0
1.

5

Methods

GCV
OCV
REML
ML
AIC
BIC

Figure A13. Boxplots of the root mean squared error (RMSE) across the 1000 simulation replications for uniform errors with
parabolic standard deviation.
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Figure A14. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for uniform errors with constant standard deviation.
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Figure A15. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for uniform errors with increasing standard deviation.
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Figure A16. Boxplots of the coverage rate for the 95% Bayesian confidence interval across the 1000 simulation replications
for uniform errors with parabolic standard deviation.
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