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Abstract: In the present paper, resampling for finite populations under an iid sampling design
is reviewed. Our attention is mainly focused on pseudo-population-based resampling due to its
properties. A principled appraisal of the main theoretical foundations and results is given and
discussed, together with important computational aspects. Finally, a discussion on open problems
and research perspectives is provided.
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1. Introduction
1.1. Generalities

Resampling methods have a long and honorable history, going back at least to the
seminal paper by [1]. Survey data are an ideal context to use resampling methods to
approximate the sampling distribution of statistics, due to both (i) a generally large sample
size and (ii) data of typically good quality.

The present paper does not aim at providing a complete review of resampling methods
in sampling statistics; the interested reader is referred, for instance, to [2]. We mainly focus
on a special class of resampling methods—namely those based on pseudo-populations.
There are several reasons to support this restriction. First of all, they may be viewed, in
many respects, as the “natural” extension of classical Efron’s bootstrap to sampling finite
populations, in both descriptive and analytic inference (i.e., inference on finite population
and superpopulation parameters, respectively).

In the second place, in our knowledge, they are the only methods with a rigorous
asymptotic justification in terms of weak convergence of empirical processes, allowing
results not only for linear estimators but also for non-linear ones (under suitable
differentiability conditions).

In extreme synthesis, virtually all resampling methodologies used in sampling from
finite populations are based on the idea of accounting for the effect of the sampling design.
As it will be seen in the sequel, the main effect of the sampling design is that data cannot
be generally assumed independent and identically distributed (i.i.d.). A large portion of
the literature on resampling from finite populations focuses on estimating the variance of
estimators. The main approaches are essentially the ad hoc approach and plug in approach.

The basic idea of the ad hoc approach consists in maintaining Efron’s bootstrap as a
resampling procedure but in properly rescaling data in order to account for the dependence
among units. This approach is used, among others, in [3,4], where the re-sampled data
produced by the “usual” i.i.d. bootstrap are properly rescaled, as well as in [5,6]; cfr. also
the review in [7]. In [8] a “rescaled bootstrap process” based on asymptotic arguments
is proposed. Among the ad hoc approaches, we also classify [9] (based on a rescaling of
weights) and the “direct bootstrap” by [10].
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Almost all ad hoc resampling techniques are based on the same justification: in the
case of linear statistics, the first two moments of the resampled statistic should match (at
least approximately) the corresponding estimators; cfr., among the others, [10]. Cfr. also [9],
where an analysis in terms of the first three moments is performed for Poisson sampling.

Plug-in approaches, which are considered in the present paper, are based on the idea
of “expanding” the sample to a “pseudo-population” that plays the role of a “surrogate”
(actually a prediction) of the original population. Then, bootstrap samples are drawn from
such a pseudo-population according to some appropriate resampling design; cfr. [11–15] as
well as [2].

Before entering the subject of resampling, it seems appropriate to give a formal setting
for both descriptive and analytic inference.

1.2. Superpopulation Model and Sampling Design: Basic Aspects

Consider a finite population UN of N units. If Y denotes the character of interest, let
yi be the value Y for unit i (= 1, . . . , N). Each yi value is assumed to be a realization of
a random variable (r.v.) Yi; the N-variate r.v. Y N = (Y1, . . . , YN) is the superpopulation.
In addition, for every population unit J further r.v.s, playing the role of auxiliary variables,
{(Ti1, . . . , Ti J), i = 1, . . . , N} are defined, where Tij is the value of the jth auxiliary variable
(j = 1, . . . , J) for unit i (= 1, . . . , N). The symbol T N,J will be used, when necessary, to
denote the N × J matrix of elements Tijs. Auxiliary variables play a preeminent role in
constructing the sampling design, and, for this reason, they will be called design variables.

For the sake of simplicity, in the sequel, the (J + 1)-dimensional random vectors
(Yi, Ti1, . . . , Ti J)s are assumed to be independent and identically distributed (i.i.d.). They
can be thought as the first N elements of a sequence ((Yi, Ti1, . . . , Ti J); i ≥ 1), existing
on a probability space (Ω, A, PN

ξ ), where, due to the i.i.d. assumption, PN
ξ is the product

measure of identical copies of a single Pξ . The symbols Eξ , Vξ , Cξ denote the corresponding
operators of expectation, variance and covariance, respectively.

To define a general sampling design, including both “with replacement” and “without
replacement” cases, for each unit i ∈ UN , we consider a discrete random variable (r.v.)
Di taking values 0, 1, . . . , Ki and representing the multiplicity of unit i within the sample,
namely the number of times unit i appears in the selected sample. The sample membership
indicator of unit i is defined as Ii = min(1, Di). A sampling design is without replacement if
Si = {0, 1} for each unit i, namely if Di = Ii for each i = 1, . . . , N.

A sampling design is essentially the “probabilistic rule” according to which a sample
is selected from a finite population, given the values y1, . . . , yN (and given the values of the
design variables, as well). Generally speaking, specifying the sampling design is equivalent
to specify the joint distribution of the random vector r.v. DN = (D1, . . . , DN). Such a joint
distribution will be denoted in the sequel by PP. It may either depend or not depend on y1,
. . . , yN . A sampling design that does not depend on yis is non-informative.

In the sequel, a short formal description of sampling designs, based on probability and
measure theory, is provided. On first reading, this part can be omitted without affecting
the understanding of the main points of the present paper.

Let Si be the set {0, 1, . . . , Ki}. In general, the r.v. DN is defined on the probability
space (∏N

i=1 Si, P(∏N
i=1 Si), PP,N), where P(∏N

i=1 Si) is the power set of ∏N
i=1 Si, and PP,N

possesses the following two properties.

(a) PP,N(·, Y N , T N,J) is a probability measure on (∏N
i=1 Si, P(∏N

i=1 Si)) for every
(Y N , T N,J) in RN ×RNJ .

(b) PP,N(B, Y N , T N,J) is a Borel-measurable function of (Y N , T N,J) for every B ∈
P(∏N

i=1 Si).

The main restriction that we will consider on the sampling design is that it is non-
informative, namely

PP,N(·, Y N , T N,J) = PP,N(·, T N,J)
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Intuitively speaking, the above relationship means that the probability measure PP,N
does not depend on the values of the study variable, Yis, but only on the design variables.
Moreover, PP,N(·, T N,J) can be interpreted as the probability measure corresponding to the
sampling design conditionally on the design variates.

On the basis of the above elements, a probability space (Ω′, A′, P′) is defined, where
Ω′ = Ω× (∏N

i=1 Si), A′ = A⊗P(∏N
i=1 Si), and

P′(A× B) =
∫

A
PP,N(B, T N,J)dPξ .

To simplify the notation, in the sequel, we denote by PP(·) the probability distribution
of the r.v.s DN , given the values of the design variables (PP(DN ∈ B) = PP,N(B) for
every B ∈ P({0, 1}N) and by EP, Vp, the corresponding operators of expectation, variance
covariance, respectively. In particular, the expectations πi = EP[Ii] and πij = EP[Ii Ij]
are the first and second order inclusion probabilities, respectively. The suffix P denotes
the sampling design used to select population units. The (effective) sample size is
ns = D1 + · · ·+ DN (νs = I1 + · · ·+ IN).

1.3. Descriptive and Analytic Inference

For the sake of simplicity, let us assume that Y1, . . . , YN are i.i.d. r.v., with common d.f.
Fξ . A superpopulation parameter is a functional (not necessarily real-valued)

θξ = θ(Fξ). (1)

The simplest example of superpopulation parameter is the expected value

µ =
∫ +∞

−∞
y dFξ(y);

however, many other parameters could be of interest.
The finite population distribution function (f.p.d.f., for short) is defined as

FN(y) =
1
N

N

∑
i=1

I(−∞, y](yi)

A finite population parameter is a functional

θN = θ(FN). (2)

The simplest example is of course the finite population mean:

YN =
1
N

N

∑
i=1

Yi =
∫ +∞

−∞
y dFN(y).

We note in passim that a finite population parameter θN is a r.v., with probability
distribution depending on that of the superpopulation.

Finite population and superpopulation parameters are essentially different in nature,
because finite population parameters are observable (it is sufficient to take a census), while
superpopulation parameters are not.

The term descriptive inference refers to statistical inference on finite population
parameters. On the other hand, the term analytic inference refers to statistical inference on
superpopulation parameters.
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2. From Efron’s iid Bootstrap to Pseudo-Population Based Resampling
2.1. Efron’s Bootstrap: A Few Basic Aspects

Suppose a sample s of n units is drawn from the population UN , according to simple
random sampling with replacement (srswr) of size n. In practice, n independent draws are
performed, and at each draw, the N population units have the same probability of being
selected. As a consequence, the n units within sample s are not necessarily distinct, and
the r.v. DN has a multinomial distribution with the parameters n and 1/N, . . . , 1/N. If
Ys = (Yi; i ∈ s) is the n-variate r.v. corresponding the our n sampling observations, then
the following two results hold.

- Conditionally on Y N = yN , the r.v.s in Ys are i.i.d. with common d.f. FN(y), the finite
population d.f.

- Unconditionally, the r.v.s in Ys are i.i.d. with common d.f. Fξ(y) = Pξ((−∞, y]).

In this case, the sampling design does not play any role because the sampling
distribution of observations in Ys reproduces, both conditionally and unconditionally,
the population distribution function.

As a “natural” estimate of the population d.f., it is customary to take the empirical
distribution function (e.d.f.):

Fn(y) =
1
n ∑

i∈s
I(−∞, y](Yi) =

1
n

N

∑
i=1

Di I(−∞, y](Yi). (3)

The e.d.f. (3) is an unbiased estimator of both FN and Fξ .
If the interest is in estimating parameters of the form (1) or (2), then intuition suggests

to resort to the statistical functional:

θn = θ(Fn). (4)

The idea behind Efron’s bootstrap is simple but powerful: replicate the sampling
process from the population at a sample level, i.e., by replacing the population d.f. with a
reasonable estimate.

Then, the simplest way to replicate the sampling process at a sampling level simply
consists in taking the sample s (where each unit i is counted according to its multiplicity)
and in performing n independent, equally probable draws. In practice, a bootstrap sample
s∗ is drawn from s again by srswr of size n. Let D∗i represent the multiplicity of unit i
in the bootstrap sample s∗, and let D∗N be the N-variate r.v. with components D∗i . Then,
conditionally on DN , the r.v. D∗N has a multinomial distribution with parameters n and
Di/n, i = 1, . . . , N.

As a consequence, if

F∗n (y) =
1
n ∑

i∈s∗
I(−∞, y](Y

∗
i ) =

1
n

N

∑
i=1

D∗i I(−∞, y](Yi) (5)

is the bootstrapped e.d.f., then the following two results hold:

E∗[F∗n (y)|DN , Y N ] = Fn(y)

V∗[F∗n (y)|DN , Y N ] =
1
n

Fn(y)(1− Fn(y)).

The main justification of bootstrapping is the asymptotic nature. Consider the
empirical processes WN = (

√
N(FN(y)− Fξ(y)); y ∈ R), Wn = (

√
n(Fn(y)− FN(y)); y ∈

R), and the corresponding bootstrapped process W∗n = (
√

N(F∗n (y)− Fn(y)); y ∈ R). As N
increases, the sequence of stochastic processes WN converges weakly to a Brownian bridge
W of the scale of Fξ , namely a Gaussian process with mean function 0 and covariance
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kernel min(Fξ(y1), Fξ(y2))−Fξ(y1)Fξ(y2). From [16,17], it is easy to see that the following
results hold.

E1. Conditionally on Y N , Wn converges weakly to a Brownian bridge W on the scale of Fξ

as N, n increase. The same result also holds unconditionally.
E2. WN weakly converges to a Brownian bridge W on the scale of Fξ as N increases.
E3. Wn and WN are asymptotically independent.
E4. If n/N → f , with 0 ≤ f ≤ 1, then

√
n(Fn − Fξ) converges weakly to (1 +

√
f )W, as

n, N increase.
E5. Conditionally on DN , Y N , W∗n converges weakly to a Brownian bridge on the scale of

Fξ as N, n increase.

The essence of the above results is that the (conditional) distribution of W∗n
asymptotically coincides with the distribution of Wn. As a consequence, if we set
θ∗n = θ(F∗n ), under the assumption of Hadamard-differentiability of θ (cfr. [18]), the
probability distribution of

√
n(θn − θN) and that of

√
n(θ(F∗n)− θ(Fn) converge to the

same limit. This is the rationale that explains why the distribution of the estimator θn is
approximated by that of θ∗n.

3. Failure of Efron’s Bootstrap in the Non-i.i.d. Case

Efron’s bootstrap is strictly related to the i.i.d. nature of the random variables (r.v.s)
Dis and does not work when the sampling design is without replacement. Consider, for
instance, simple random sampling without replacement (srs, for short) design. Suppose
that n/N → f , again with 0 ≤ f ≤ 1. A “natural” estimator of the population d.f. is still
the e.d.f.:

Fn(y) =
1
n ∑

i∈s
I(−∞, y](Yi) =

1
n

N

∑
i=1

Ii I(−∞, y](Yi), (6)

which is, again, an unbiased (and consistent) estimator of both FN anf Fξ . Results E1–E4 of
Section 2.1 must now be re-formulated in order to take into account the non-independence
of r.v.s Iis. More precisely, the following results hold true.

S1. Conditionally on Y N , Wn converges weakly to
√

1− f W, where W is a Brownian
bridge on the scale of Fξ as N, n increase. The same result also holds unconditionally.

S2. WN weakly converges to a Brownian bridge W on the scale of Fξ as N increases.
S3. Wn and WN are asymptotically independent.
S4.

√
n(Fn − Fξ) converges weakly to W, a Brownian bridge on the scale of Fξ , as n, N

increase.
S5. Conditionally on DN and Y N , W∗n converges weakly to a Brownian bridge on the scale

of Fξ as N, n increase.

Unless f = 0 the asymptotic distribution of W∗n does not coincide with that of
Wn. Hence, the probability distribution of θn is generally not well approximated by the
distribution of W∗n , neither for finite n, nor asymptotically.

Things go even worse for more general sampling designs without replacement, for
a simple reason: the e.d.f. is generally an inconsistent estimator of the population d.f. To
be concrete, from now on, we focus on sampling designs that are without replacements,
of fixed size (i.e., with I1 + · · · + IN = n) and with first order inclusion probabilities
proportional to xi = f (ti1, . . . , ti J), f (·) being an appropriate function of the design
variables. This covers the important case of πps sampling designs. In the sequel, the
vector of components x1, . . . , xN will be denoted by XN .
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In the first place, an elementary computation actually shows that

EP[Fn(y)|Y N , XN ] =
1
N

n

∑
i=1

EP[Ii|XN ]I(−∞, y](Yi)

=
1
N

N

∑
i=1

1
πi

I(−∞, y](Yi)

6= FN(y).

As both n, N increase, the Law of Large Numbers yields

EP[Fn(y)|Y N , XN ] → Eξ

[
1
πi

I(−∞, y](Yi)

]
6= Fξ(y).

Hence, results E1–E4 do not hold any more, whilst result E5 still holds.
The reason why the original Efron’s i.i.d. bootstrap (sometimes called naive) does not

work for general sampling designs is relatively simple. It does not take into account the
sampling design according to which the actual sample is drawn. However, we have to
stress that this failure is simply due to the i.i.d. nature of the resampling process. The idea
on which Efron’s bootstrap rests, namely replicating, at a “sample level” the sampling
process from the population is actually correct. What is incorrect is its implementation
through simple i.i.d. bootstrap.

As already said in the Introduction, there are several proposals to adapt Efron’s
bootstrap to sampling finite populations. In the sequel, we concentrate only on pseudo-
population-based bootstrap, essentially for two reasons

1. This is the closest to Efron’s original idea of replicating, at a sample level, the sampling
process from the population.

2. This is the only resampling procedure justified by asymptotic arguments similar to
those of [17] for Efron’s bootstrap.

4. Accounting for the Sampling Design in Resampling: The Pseudo-Population Approach

Among several techniques that aim at accounting for the sampling design in
resampling from finite populations, we consider here the approach based on pseudo-
populations. The idea of pseudo-population goes back, at least, to [11] in the case of median
estimation essentially under srs when the population size is a multiple of the sample size.

Rather similar ideas are in [12] for srs, again under the condition that the ratio
between population size and sample size is a ninteger, and in [13], for stratified random
sampling. A major step forward is the paper by [14], where the construction of a pseudo-
population is studied under a general πps sampling design, with general first order
inclusion probabilities. In [19], a different approach to the construction of a pseudo-
population, very interesting in many respects, is considered.

The pseudo-population approach to resampling can be considered as a two-phase
procedure. In the first phase, a pseudo-population (roughly speaking, a prediction of
the population) is constructed. In the second phase, a (bootstrap) sample is drawn from
the pseudo-population. Broadly speaking, this approach parallels the plug-in principle
by Efron.

The pseudo-population is plugged in the sampling process and is used as a “surrogate”
of the actual finite population. In the second phase, a sample is drawn from the pseudo-
population, according to a sampling design that mimics the original one. In this view,
the pseudo-population mimics the real population, and the (re)sampling process from the
pseudo-population mimics the (original) sampling process from the real population.
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4.1. Pseudo-Populations: Definition

As already said, we confine ourselves to πps sampling designs, with πi ∝ xi =
f (ti1, . . . , ti J). A pseudo-population is defined as

{(N∗i Ii, yi, xi); i = 1, . . . , N} (7)

where N∗i s are integer-valued r.v.s, with (joint) probability distribution Ppred. In practice,
Equation (7) means that N∗i Ii population units are predicted to have y-value equal to yi
and x-variable xi, for each sample unit i.

From now on, the familiar bootstrap symbols y∗k , x∗k will be used to denote the y-
value and x-value of unit k of the pseudo-population, respectively. Of course N∗i units
of the pseudo-population satisfy the relationships y∗k = yi, x∗k = xi, i ∈ s. The d.f. of the
pseudo-population is equal to

F∗N∗(y) =
1

N∗
N∗

∑
k=1

I(y∗k≤y) =
N

∑
i=1

N∗i
N∗

Ii I(yi≤y), y ∈ R (8)

where

N∗ =
N

∑
i=1

N∗i Ii. (9)

is the size of the pseudo-population.
An intuitive choice for N∗i s would be π−1

i , as remarked, for instance, in [14]. However,
such a choice is unfeasible when π−1

i is not an integer. Approaches to the construction of
N∗i are in [14] and in [19]. General theoretical results, showing that the only correct choice
for N∗i is to take values that asymptotically behave as π−1

i is in [20]. In that paper, it was
essentially shown that expectation (w.r.t. Ppred) of N∗i must be asymptotically equivalent
to π−1

i :

E[N∗i |IN , Y N , XN ] = π−1
i IiK1N(IN , Y N , XN)→ 1 (10)

as N, n increase, the symbol→ in (10) denoting convergence in probability w.r.t. IN and
for almost all yis, xis. Furthermore, in the above mentioned paper additional assumptions
on second moments of N∗i are made.

A first important example of a pseudo-population satisfying (10) is the Holmberg
pseudo-population (cfr. [14]), where:

N∗i = bπ−1
i c+ εi

where bxc is the floor function and, conditionally on Y N , XN , IN , εi are independent
Bernoulli r.v.s taking value 1 with probability ri = π−1

i −bπ
−1
i c and value 0 with probability

1− ri.
A second, important example is the multinomial pseudo-population (cfr. [21]), where,

again conditionally on Iis, the joint distribution of N∗i Ii is multinomial and corresponds
to N i.i.d. trials, each of them consisting in drawing with replacement a unit from the
sample, unit i having probability π−1

i Ii

/
∑ π−1

i Ii of being selected. Other examples of
pseudo-populations, based on various forms of calibration, are in [20].

4.2. Resampling from Pseudo-Populations

Resampling based on pseudo-populations actually parallels Efron’s bootstrap for i.i.d.
observations. The basic ideas are relatively simple, once the problem is approached in
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terms of an appropriate estimator of the f.p.d.f. To estimate FN , a simple (but powerful)
idea consists in using its Hájek estimator

F̂H(y) =
N

∑
i=1

1
πi

Ii I(−∞, y](yi)

/
N

∑
i=1

1
πi

Ii. (11)

As an estimator of a finite population parameter θN = θ(FN), it is then natural to take
the statistical functional

θ̂H = θ(F̂H). (12)

A resampling design is a sampling design selecting pseudo-units from the pseudo
population. In the sequel, although it is not strictly necessary, we will assume that the
resampling design possesses the same characteristics as the “original” sampling design
selecting (real) units from the (real) population. In particular, its first order inclusion
probabilities, π∗k are taken proportional to x∗k s.

Let I∗k be the bootstrap sample membership indicator for the pseudo-unit k of the
pseudo-population. The resampled version of FH(y) is then equal to

F̂∗H(y) =
N∗

∑
k=1

1
π∗k

I∗i I(−∞, y](y
∗
k )

/
N∗

∑
k=1

1
π∗k

I∗k . (13)

On the basis of (13), one may also define the resampled version of θ̂H , namely

θ̂∗H = θ(F̂∗H).

4.3. Resampling Based on Pseudo-Populations: Basics Results for Descriptive Inference

The main theoretical justification for resampling based on pseudo-population is of
asymptotic nature, similar, in many respects, to results in [17] for Efron’s bootstrap.

Asymptotics for the distribution of the finite population empirical process WH =
(WH(y); y ∈ R), where

WH(y) =
√

n(F̂H(y)− FN(y))

are developed in several papers under different conditions; cfr. [20,22–24]. Here, we confine
ourselves to the simplest one, establishing that, under appropriate regularity conditions, as
both N and n tend to infinity, the following two results hold.

1. Under appropriate regularity conditions, the conditional distribution of WH , given
Y N and XN , converges weakly, as both n and N tend to infinity, to a Gaussian process
WD with null mean function and covariance kernel C(y1, y2). This result, furthermore,
holds for a set of sequences of yis and xis having Pξ-probability 1.

2. If the functional θ(·) is Hadamard-differentiable at Fξ with Hadamard derivative
θ′Fξ

(·), then, again conditionally on Y N and XN ,
√

n(θ̂H − θ(FN)) tends in distribution

to θ′Fξ
(WD), which is a Normal variate with zero expectation and variance σ2

θ > 0.

The rationale behind resampling based on pseudo-population is simple as well as
intuitive. The pseudo-population is essentially a “surrogate” of the finite population under
consideration, and as both N and n increase, their distributions tend to coincide. Hence, at
least for a large sample size, the resampling distribution of an estimator should become
closer to its actual distribution. This intuition is made rigorous in [20]. Define the resampled
empirical process

W∗H =
√

n(F̂∗H − F∗N∗).

The following results hold (parallel to results 1 and 2 above).
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1∗. Under appropriate regularity conditions, the conditional distribution of W∗H , given Y N ,
XN , IN , converges weakly, as both n and N tend to infinity, to a Gaussian process WD
with a null mean function and covariance kernel C(y1, y2). This result, furthermore,
holds for a set of sequences of yis and tijs having Pξ-probability 1 and in probability
w.r.t. the sampling design.

2∗. If the functional θ(·) is continuously Hadamard-differentiable at Fξ , with Hadamard
derivative θ′Fξ

(·), then, again conditionally on Y N , XN , IN ,
√

n(θ̂H − θ(F∗N∗)) tends in

distribution to θ′Fξ
(WD), that turns out to be a Normal variate with zero expectation

and variance σ2
θ > 0.

We do not go into detail on the regularity conditions ensuring 1∗ and 2∗. However,
it is worth noticing that those results hold true for every pseudo-population satisfying
conditions in Section 4.1. With some lack of precision, but more clearly, results 1∗ and
2∗ hold for every pseudo-population where N∗i s asymptotically behave as π−1

i Iis (cfr.
relationship (10)).

Even if the conditional (resampling) distribution of θ̂∗H is known, its use is not practical
for computational reasons. The customary approach essentially consists in resorting to the
Law of Large Numbers by making use of independent bootstrap replications. Due to the
presence of the finite population, we have now two options.

- Conditional approach. A single pseudo-population is constructed, and M independent
bootstrap samples are drawn. In this way, M independent replications θ̂∗H1, . . . , θ̂∗HM
are generated.

- Unconditional approach. M independent pseudo-populations are constructed, and
from each of them, a single bootstrap sample is drawn. In this case, M independent
replications θ̂∗H1, . . . , θ̂∗HM are generated.

As shown in [20], in the case of descriptive inference, conditional and unconditional
approaches are asymptotically equivalent. In view of its lower computational
burden, a conditional approach seems to be preferable to the unconditional one in
descriptive inference.

4.4. Resampling Based on Pseudo-Populations: Basics Results for Analytic Inference

The study of a resampling procedure for analytic inference is in principle more
complicated than in the case of descriptive inference, essentially because we have to
mimic two processes.

- The generation of yis from the superpopulation model.
- The selection of the sample from the finite population.

In the sequel, as already remarked, we confine ourselves to the simplest case of a
superpopulation model where the r.v.s Yis are i.i.d with common d.f. Fξ . Unlike the case
of descriptive inference, where the particular technique according to which the pseudo-
population is constructed does not play a relevant role in obtaining asymptotic results, in
the present case, the construction of the pseudo-population is relevant. As shown in [25],
the only pseudo-population that works for analytical inference is the multinomial one.

Consider now the empirical process

W̃H =
√

n(F̂H − Fξ)

and its resampled version

W̃∗H =
√

n(F̂∗H − F̂H)

The following results (cfr. [25]), which provide a full justification for (multinomial)
pseudo-population resampling for analytic inference, hold true.
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1. Under appropriate regularity conditions, the (unconditional) distribution of W̃H
converges weakly, as both n and N tend to infinity to a Gaussian process WA with a
null mean function and covariance kernel C̃(y1, y2).

1∗. Under appropriate regularity conditions, and conditionally on Y N , XN , IN , the
distribution of W̃∗H converges weakly, as both n and N tend to infinity to the same
Gaussian process WA with a null mean function and covariance kernel C̃(y1, y2).

2. The limiting process WA can be written as WA = WD +
√

f WR, where WD is the
limiting Gaussian process obtained for descriptive inference, WR is an independent
Gaussian process (essentially, a Brownian bridge on the scale of Fξ), and f is the
limiting value of the sampling fraction.

3. If the functional θ(·) is Hadamard-differentiable at Fξ , with Hadamard derivative
θ′Fξ

(·), then
√

n(θ̂H − θ(Fξ)) tends in distribution to θ′Fξ
(WA), that turns out to be a

Normal variate with zero expectation and variance σ̃2
θ > 0.

3∗. If the functional θ(·) is continuously Hadamard-differentiable at Fξ , with Hadamard
derivative θ′Fξ

(·), then, conditionally on Y N , XN , and IN ,
√

n(θ̂∗H − θ̂H) tends in

distribution to the same Normal variate with zero expectation and variance σ̃2
θ .

Results 1–3∗ show that, in analytic inference, there is an extra source of variability,
i.e., WR, related to the superpopulation model but not depending on the sampling design,
which only affects the term WD. The smaller the limiting sampling fraction f , the more
negligible the term WR. As f tends to zero, results for analytic inference tend to coincide
with the results for descriptive inference.

The above results only hold for multinomial pseudo-populations (with unconditional
approach). The reason is relatively simple: only the multinomial pseudo population (with
unconditional approach) can recover the term WR and, hence, the extra variability due to
superpopulation. The problem is negligible when the limiting sampling fraction f is very
small, but may become relevant for not overly small values of f .

Exactly as in Section 4.3, the use of the exact conditional (resampling) distribution of
θ̂∗H is computationally too difficult. Again, the response consists in generating independent
bootstrap replications. However, in this case, only the unconditional approach works. Hence,
the wide range of options for descriptive inference, in the case of analytic inference
essentially reduces to a single option, namely the multinomial pseudo-population and
unconditional approach.

5. Computational Issues

Use of the pseudo-population approach, despite its many theoretical merits, is
held back by its computational complexity. Real populations could contain millions
of people, and thus the construction of a pseudo-population could be computationally
cumbersome. For this reason, it is of primary interest to develop shortcuts that, while
possessing the fundamental theoretical properties described in the above sections, are
computationally simple to implement because they avoid the physical construction of the
pseudo-population.

The above points are thoroughly discussed in [26], where the problem of resampling
for finite populations is addressed as a problem of sampling with replacement directly
from the sample data, the original sample, henceforth, with different drawing probabilities.

An attempt to avoid complications related to integer-valued N∗i s is in [27], where
non-integer N∗i s are allowed via the Horvitz–Thompson-based bootstrap (HTB) method.
However, unless the sampling fraction n/N tends to 0 as N and n increase, HTB does not
generally possess the good asymptotic properties outlined in the previous sections.

An interesting computational shortcut is in [28], where the pseudo-population (again
with possibly non-integer N∗i s) is only implicitly used, and a computational scheme based
on drawings with replacements from the original sample is proposed. Unfortunately,
although the main idea behind that paper is interesting, the proposed bootstrap method
fails to possess good asymptotic properties.
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Computational shortcuts, based on ideas similar to those in [28], but based on correct
approximations of first order inclusion probabilities, were developed in [29] for descriptive,
design-based inference. In particular, in that paper, methodologies based on drawings
with replacements from the original sample were proposed, and their merits, from both a
theoretical and a computational point of view, were studied.

As remarked by a referee, another drawback of the pseudo-population approach is the
apparent necessity to generate and save a large number of bootstrap sample files. However,
it is not necessary to save all the bootstrap sample files. Only the original sample file must
be saved along with two additional variables for each bootstrap replicate: one variable that
contains the number of times each sample unit is used to create the pseudo-population
and another one containing the number of times each sample unit has been selected in the
bootstrap sample. In other words, it can be implemented similar to methods that rescale
the sampling weights.

6. Open Problems and Final Considerations

The pseudo-population approach, despite its merits, requires further development
from both the theoretical and computational perspectives. From a theoretical point of
view, the results obtained thus far only refer to non-informative single-stage designs. The
consideration of multi-stage designs appears as a necessary development as well as the
consideration of non-respondent units.

Again, from a theoretical perspective, a major issue is the development of theoretically
sound resampling methodologies for informative sampling designs. The major drawback
is that, apart from the exception of adaptive designs (cfr. [30]) and the references therein)
first order inclusion probabilities can rarely be computed, as these might depend on
unobserved quantities. This is what happens, for instance, with most of the network
sampling designs that are actually used for hidden populations, where the inclusion
probabilities are unknown and depend on unobserved/unknown network links (cfr. [30,31]
and the references therein).

From a computational point of view, as indicated earlier, the computational shortcuts
developed thus far only work in the case of descriptive inference. The development
of theoretically well-founded computational schemes valid for analytic inference is an
important issue that deserves further attention.
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