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Abstract: Current research initiatives, such as the Single European Sky Air Traffic Management
Research Program, call for an air traffic system with improved safety and efficiency records and
environmental compatibility. The resulting multi-criteria system optimization and individual flight
trajectories require, in particular, reliable three-dimensional meteorological information. The Global
(Weather) Forecast System only provides data at a resolution of around 100 km. We postulate a reliable
interpolation at high resolution to compute these trajectories accurately and in due time to comply
with operational requirements. We investigate different interpolation methods for aerodynamic
crucial weather variables such as temperature, wind speed, and wind direction. These methods,
including Ordinary Kriging, the radial basis function method, neural networks, and decision trees,
are compared concerning cross-validation interpolation errors. We show that using the interpolated
data in a flight performance model emphasizes the effect of weather data accuracy on trajectory
optimization. Considering a trajectory from Prague to Tunis, a Monte Carlo simulation is applied
to examine the effect of errors on input (GFS data) and output (i.e., Ordinary Kriging) on the
optimized trajectory.

Keywords: spatial interpolation; Kriging; neural network; gradient boosting machines; Monte
Carlo simulation

1. Introduction

With the implementation of Free Route Airspaces in Europe, wherein aircraft are
requested to fly along four-dimensionally (longitude, latitude, altitude, and time) optimized
trajectories, aircraft trajectory optimization gains more and more importance. One of the
simplest aircraft motion models still induces six nonlinear first-order differential equations
of motion. It follows that acceleration forces should be considered for each discrete time
step. Besides aircraft performance parameters, the atmospheric state (specifically wind
speed, wind direction, and temperature) has a significant impact on the integration of
the equations of motion. Impulsive changes in weather data might lead to unrealistic
fluctuations in acceleration forces between two consecutive time steps.

The aircraft performance model SOPHIA (Sophisticated Aircraft Performance Model)
integrates the equations of motion every second and computes the actual speeds and
covered distances. SOPHIA is largely based on pure physical laws, takes into account
all acceleration forces, and uses the methodology from [1]. Coefficients that cannot be
estimated without aircraft-specific aerodynamic properties (i.e., the drag polar and the
maximum available thrust as a function of altitude and speed) are obtained from the
open-source flight performance model OpenAP [2]. When optimizing the trajectory, target
functions for speed and altitude are calculated by SOPHIA. In each time step, SOPHIA
compares the actual speed and altitude with the target speed and target altitude and
controls the lift coefficient in order to reach the target values in the next time step. Impulsive
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changes in the weather data between two consecutive time steps hamper the controller
from reaching these target values. Furthermore, based on physic laws, atmospheric state
parameters follow smooth functions. The gas-phase atmosphere is a fluid medium. Due
to high kinetic energy and large distances, the molecules have enough time and space to
move freely and quickly, which means that no large gradients can arise.

From the discussion above, it follows that functions describing weather data should
be differentiable. This feature is not given by a linear interpolation, which results in a
function consisting of several significant turning points, where its first-order derivative
is not continuous. The necessity to apply a more sophisticated interpolation method to
weather data follows, providing continuous and smooth functions, which are functions
with continuous derivatives. In this study, we applied Kriging [3] to atmospheric state
variables and validated the effect of smooth weather functions on the aircraft performance
model SOPHIA. The Kernel method, including Kriging and Radial Basis Function (RBF)
methods, can provide continuous and smooth functions, as noted by [4,5]. Further statistical
interpolation methods, such as neural networks and decision trees, are also included for
comparison, even though they might not lead to smooth results.

Meteorological data are provided by the Global Forecast System (GFS) (https://www.
ncei.noaa.gov/products/weather-climate-models/global-forecast (accessed on 31 August
2020)), which combines data from various sources and produces forecasts of meteorological
parameters such as temperature, wind speed, and wind direction [6]. GFS data are produced
by the National Centers for Environmental Prediction (NCEP), a branch of the National
Oceanic and Atmospheric Administration (NOAA). Each hour, NCEP obtains input data
from the Global Data Assimilation System, which updates weather data from aircraft,
weather stations, radars, and satellites and then predicts the weather conditions for a
given point in time and space [7]. Unfortunately, the resulting data from GFS are too
sparse for controlled trajectory optimization, and underlying models are too complex to
be implemented for finer interpolation. Since 2018, the GFS has covered the entire globe
with a base horizontal resolution of 1 degree (100 km) between grid points. Significant
differences in weather data between 100 km are natural. Assuming usual aircraft cruising
speeds of 200 m per second and discrete-time steps of 200 m, the flight performance model
SOPHIA calculates at an approximate resolution of 200 m. Hence, SOPHIA interpolates
approximately 500 times between two neighboured GFS data points. From this, it follows
that a smooth function between two neighboured weather data points will result in a
more realistic weather model. Operational forecasters use this GFS output to predict
the atmospheric state up to 16 days in the future. If actual weather data are considered
in trajectory optimization, simple linear interpolation between temporal-spatial points
delivered by GFS is applied in [8–10]. Ref. [11] applies fourth-degree polynomials to fit
wind data from NOAA. Kriging is often considered a benchmark for interpolation and
has been applied in various human activity fields, for example, modelling surface-level
wind speed [12], soil organic matter content [13], and air pollution [14]. Besides linear
interpolation and Kriging, other regression models such as the decision trees and neural
networks can be extended to perform interpolation tasks. We also considered the RBF
methods. There already exist some comparisons and applications, but typically with a
different objective. For example, ref. [15] compares the accuracy of Kriging and feedforward
neural networks in predicting total dissolved gas in a dam’s reservoir. Ref. [16] uses neural
networks to predict surface daily minimum temperature. Decision tree methods as random
forest are applied by [17,18] to predict seabed sand content. This work applies and compares
the accuracy of the following four methods to GFS weather data: linear interpolation, the
RBF method, Kriging, feedforward neural networks, and decision tree methods. Therewith,
we contribute by finding a more accurate interpolation in three-dimensional space, with
temporal dimension being left to future research, for guaranteeing smooth weather data
function for trajectory optimization. Moreover, we investigate the effect of the errors from
the interpolation methods and GFS data on the optimal trajectory. Findings from our paper
are unique and vital for the aircraft operators for relying on the interpolated weather data.

https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
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This paper is organized as follows. The first section describes weather variables in
three spatial dimensions. Interpolation methods are introduced successively, along with
parameter fitting, in Section 3. In the next section, these methods are compared based on
accuracy regarding cross-validation. Finally, we take a trajectory from Prague to Tunis as
an application and examine how the errors in GFS data and the interpolation method can
impact the simulated trajectories.

2. Data
2.1. Data Sources

There are various weather data sources, but, unfortunately, most of them are not
suitable for our study. Data from weather stations or weather services such as weather.com
(accessed on 16 November 2020) or wetter.de (accessed on 16 November 2020) do not
provide any information on the vertical dimension necessary for trajectory optimization.
Well-known automatic dependent surveillance-broadcast (ADS-B) data collected along
flights usually lack temperature, air pressure, wind speed, and wind direction information.
These weather variables are often extracted from ADS-B data, as in [19,20], for further
interpolation. In this work, we consider two important resources of weather data: GFS and
weather balloon stations (https://www.ncei.noaa.gov/products/weather-balloon/integra
ted-global-radiosonde-archive (accessed on 18 December 2018)), also from NOAA.

Weather information about the troposphere is routinely collected with weather bal-
loons released globally. In general, we prefer GFS data to weather balloon data as an input
for trajectory optimization, due to the regular grid and higher resolution. A comparison of
weather balloon stations and the GFS data grid can be found in Figure 1. In future research,
we aim at fusing two sources for even more reliable data, but we concentrate on GFS data
in the largest part of the current work. Later, in Section 4, we use balloon data to compare
and evaluate interpolation results with GFS input.

Figure 1. (Left) Locations of 813 weather balloon stations. (Right) A comparison of weather balloon
stations collaborating with NCEP in Europe and GFS data grid (crossings of the gray grid with
one-degree resolution). Data are from www.ncdc.noaa.gov (accessed on 13 November 2018).

2.2. Data Description

Two types of variables are used in GFS data, namely coordinate variables and weather
variables. Coordinate variables mark the locations, including longitude (°), latitude (°), and
altitude (°). The time domain is left for future research, and we believe that, as in the current
examples, changes over time are not that great for a few-hour flight. Altitude is reported as
geopotential altitude (m) and calculated from the gravity acceleration (m · s−2). Weather
variables include temperature (K), wind (m/s), relative humidity (%), and air pressure
(hPa) for every coordinate variable set. We consider these variables because they are input
variables for SOPHIA and included in GFS data, and it is a known fact that temperature
and wind are crucial for trajectory optimization. The ground speed (m/s), i.e., the speed of
an aircraft relative to the ground, can be calculated [21] with (m/s); VT is the true airspeed
(m/s) relative to the still air; ZWind and ZTemp are the wind vector and temperature (K);
Mach denotes the Mach number, the vehicle airspeed relative to the speed of sound at
current atmosphere condition; and k and R are constant for heat capacity ratio and gas

weather.com
wetter.de
https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive
www.ncdc.noaa.gov
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constant, respectively. From this equation, we can see the importance of temperature and
wind on the key parameters describing the status of an aircraft. The relative humidity is
included in calculating contrail, see [8].

VG = VT + ZWind, and VT = Mach
√

kRZTemp, (1)

Following notations in [22], let s = {si}, with si ⊂ Rd, i ∈ 1, . . . , n denote a series
of n locations in a d-dimensional space. In our setup, d = 3 and the dimensional vec-
tor si = (si,1, si,2, si,3)

> corresponding to the longitude (°), latitude (°), and geopotential
altitude (m). Let Z(s) = {Z(s1), Z(s2), · · · , Z(sn)} be the sequence of random variables
connected to the location s. For instance, Z(si) can be temperature (K), wind (m/s), relative
humidity (%), or air pressure (hPa) at location si. Realizations of Z(s) are denoted by
z(s) = {z(s1), z(s2), · · · , z(sn)}.

As mentioned above, GFS offers structured data over a grid of longitudinal, latitudinal,
and vertical points. Figure 2 is a three-dimensional snapshot of temperature data of this
grid, at 1 degree or 100 km, by longitude and latitude. As for the altitude, the data
are provided with the same pressure. These altitudes are still provided as geopotential
altitudes, not “pressure altitudes” generated from pressure using exponential Formula (2),
to be discussed at the end of this section. We generally operate below the troposphere,
ranging from 0 to 11,000 m in geopotential altitude following the international standard
atmosphere (ISA) [23]. The data are denser near the Earth’s surface with 200 m altitude
resolution and sparser to around 2000 m at higher altitudes.

Figure 2. A snapshot of temperature (in Kelvin) with GFS data on 4th of September 2018 and
longitude ranges from 15E to 20E, latitude from 35N to 40N.

The wind is different from the other variables due to being a vector represented in a
georeferenced coordinate system. A wind vector can be decomposed into two orthogonal
components (see Figure 3); the U-wind (m/s) is the component from the west to the
east, and the V-wind (m/s) is the component from the south to the north. Besides the
two orthogonal components, wind vectors can also be denoted as wind speed (m/s) and
direction (°). Wind speed is the length of this vector |Zw| = (Z2

u + Z2
v)

1/2. Wind direction
(°), Zθ in Figure 3, is the direction towards which the wind is blowing and measured by the
angle from the true (geographic) north. GFS provides wind in U and V components, and
we derive wind speed and direction.
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Figure 3. Wind vector Zw and components U-wind and V-wind.

Figure 4 depicts using boxplots how weather variables for the given data sample,
namely temperature (K), U-wind (m/s), V-wind (m/s), wind speed (m/s), and relative
humidity (%), behave along with the air pressure. Temperature data in Figure 4 presents
a noticeable trend with altitude but not for wind or relative humidity, in line with the
international standard atmosphere model. We will discuss this trend model of temperature
later in Section 3.2.
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Figure 4. Boxplots of three variables grouped by air pressure with a snapshot on 4th of September
2018 and longitude ranges from 15E to 20E, latitude from 35N to 40N.

Air pressure (hPa) in GFS depicted with dots as the function of the altitude in Figure 5
presents a classical pattern. Thus, we can apply the exponential atmosphere formula [23].

ẑp(si) = β̂0(1− si,3/β̂1)
β̂2 . (2)

The curve results for our data are fitted by the OLS into ẑP(si) = 1022.79(1− si,3/
49, 262.75)5.80. We will continue with the estimated air pressure from altitude as the residu-
als are within 4 hPa. We have tried other, more sophisticated regression techniques, but the
current exponential formula is simple and provides acceptable accuracy.
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Figure 5. Points: weather data from GFS; curve: fitted non-linear regression.

In the next sections, we provide details in the various interpolations methods used for
weather variables. In order to evaluate them, we examine the trajectory from Prague to
Tunis. Some of the techniques are extremely time-consuming. For the sake of computational
time, the GFS data are reduced along the trajectory to be as small as possible. The data are
reduced as an “arc” shape along the trajectory, as shown in Figure 6. From the horizontal
perspective, the data are the union of blocks with the sizes of two degrees along the
trajectory; from the vertical perspective, data below the trajectory are removed to guarantee
a fast computation. A smaller data set is indeed important for Kriging and RBF. Other
methods, such as linear interpolation, decision trees, and neural networks, do not require
small data; still, we kept the reduced dataset for a fair comparison. The ranges of all the
variogram models in Kriging are fixed as one to fit with the local GFS data and avoid
singularities in the covariance matrices.
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Figure 6. The blue points denote the GFS data used along the trajectory (black curve) from Prague
to Tunis.
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3. Interpolation Methods

In the following, we introduce interpolation methods: linear interpolation, Kriging
(Ordinary Kriging and Universal Kriging), RBF methods, feedforward neural networks,
and decision trees with bagging and gradient boosting machines to interpolate spatial
dimensions. As already stated in the previous section, we consider these methods because
they are widely used in the variety of applications. For example, linear interpolation
is often used for weather information in the trajectory optimization [8], applications of
Kriging on meteorological data [12,24], soil organic matter content [13], RBF methods on
air pollution [25], neural network on dissolved gas in the dam’s reservoir [15], surface daily
minimum temperature [16], and decision trees on seabed sand content [17,18].

3.1. Linear Interpolation

For simplicity and completeness, let us first consider a one-dimensional setting de-
picted in Figure 7.

si,1 sj,1
s0,1

wi wj

Figure 7. A simplication to estimate z(s0) based on z(si) and z(sj) with linear interpolation for d = 1.

Suppose si,1, sj,1 ∈ {s1,1, . . . , sn,1} are locations of two closest observations to s0,1 in
the Euclidean sense. Linear interpolation estimates the unknown value of the variable of
interest z(s0,1) by the weighted average of closest neighbours z(si,1) and z(sj,1) as

ẑ(s0,1) =
sj,1 − s0,1

sj,1 − si,1
z(si,1) +

s0,1 − si,1

sj,1 − si,1
z(sj,1). (3)

For multiple dimensions, ref. [7,8] interpolate first vertically then horizontally, and the
detailed steps are as follows.

Suppose s1, s2, . . . , s8 in Figure 8 are the observations, and s0 lies on the grey plane.
The value at the intermediate locations (s9, s10, s11, s12) and (s13, s14) are to be interpolated
first. The estimations are first identified at locations on the grey plane, specifically s9, s10, s11,
and s12, thus with the same altitude s0,3 as s0. An estimation ẑ(st) for t ∈ {9, 10, 11, 12}
can be calculated from z(st−8) and z(st−4) with one-dimensional linear interpolation as
st−8,1 = st−4,1 = st,1 and st−8,2 = st−4,2 = st,2,

ẑ(st) =
st−4,3 − st,3

st−4,3 − st−8,3
z(st−4,3) +

st,3 − st−8,3

st−4,3 − st−8,3
z(st−8,3). (4)

This three-dimensional interpolation is thus reduced to a two-dimensional problem,
with the points lying on the grey plane in Figure 8. Afterward, we interpolate ẑ(s13) and
ẑ(s14) along the latitude,

ẑ(s13) =
s12,2 − s13,2

s12,2 − s9,2
ẑ(s12,2) +

s13,2 − s9,2

s12,2 − s9,2
ẑ(s9,2), (5)

ẑ(s14) =
s11,2 − s14,2

s11,2 − s10,2
ẑ(s11,2) +

s14,2 − s10,2

s11,2 − s10,2
ẑ(s10,2). (6)

Finally, z(s0) can be interpolated along the longitude dimension with ẑ(s13) and ẑ(s14),

ẑ(s0) =
s14,1 − s0,1

s14,1 − s13,1
ẑ(s14,1) +

s13,1 − s0,1

s14,1 − s13,1
ẑ(s13,1). (7)

Linear interpolation interpolates dimension by dimension and, apparently, the inter-
polation values can vary when the order of interpolating dimensions changes.
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s1 s2

s3s4

s5 s6

s7s8

s9 s10

s11
s12

s13 s14s0

longitude

latitude

altitude

Figure 8. A representation to estimate dimension by dimension with linear interpolation for d = 3.
s1, s2, . . . , s8 are the observations, and s0 lies on the grey plane. The value at the intermediate locations
(s9, s10, s11, s12) and (s13, s14) are to be interpolated.

When we, however, employ Leave-One-Out Cross-Validation (LOOCV) for linear
interpolation later in Section 3.4, we choose a slightly different way from the one in Figure 8
due to the one observation being removed from the grid. A weighted average of six
nearest observations in three coordinates is used as an estimate for ẑ(s7)|z(s)\z(s7) in
Figure 9, where z(s)\z(s7) means z(s) with z(s7) removed. In this way, the weights can be
calculated separately on longitude, latitude, and altitude based on the one-dimensional
linear interpolation,

longitude: ẑ(s7) = ŵ2z(s2) + ŵ1z(s1) =
s2,1 − s7,1

s2,1 − s1,1
z(s2) +

s7,1 − s1,1

s2,1 − s1,1
z(s1), (8)

latitude: ẑ(s7) = ŵ4z(s4) + ŵ3z(s3) =
s4,2 − s7,2

s4,2 − s3,2
z(s4) +

s7,2 − s3,2

s4,2 − s3,2
z(s3), (9)

altitude: ẑ(s7) = ŵ6z(s6) + ŵ5z(s5) =
s6,3 − s7,3

s6,3 − s5,3
z(s6) +

s7,3 − s5,3

s6,3 − s5,3
z(s5). (10)

s1 s2

s3

s4

s5

s6s7

Figure 9. LOOCV for linear interpolation with six nearest observations.

The estimate is made by averaging the values of these neighbours,

ẑ(s7)|z(s)\z(s7) =
∑6

k=1 ŵkz(sk)

∑6
k=1 ŵk

. (11)

For the points on faces, edges, or vertices, the estimation is made by averaging values of
available neighbours. The RBF method is a flexible interpolation technique that interpolates
through basis functions, also known as kernels, κ(s, s>) = 〈ψ(s), ψ(s>)〉, which are dot
products in the feature space with a map ψ. The so-called “kernel trick” allows the definition
of kernels without specifying the mapping ψ(s). This paper applies the Gaussian kernel

κ(si, sj) = exp{−
(
ε‖si − sj‖2

)2}, where ‖si − sj‖2 =
√

∑3
p=1
(
si,p − sj,p

)2 is the Euclidean
distance between locations si and sj, and ε is the shape parameter that controls the range.
RBF methods interpolate through a linear combination of kernels as z(s) = K(s, s) · w,
where w = (w1, . . . , wn)> is a vector of weights and the kernel matrix K(s, s) has entries
{K}i,j = κ(si, sj) = κ(‖si− sj‖2), i, j = 1, . . . , n. A kernel κ(si, sj) is said to be strictly positive
definite [26] if the kernel matrix K is strictly positive definite for any set s = {s1, . . . , sn}.
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The Gaussian kernel is a strictly positive definite kernel, thus allowing inversion. Weights
w and prediction at location s0 are therefore estimated as

ŵ = K−1(s, s)z(s), (12)

ẑ(s0) = K(s0, s)ŵ = K(s0, s)K−1(s, s)z(s), (13)

The accuracy of the interpolation and RBF method strongly depends on the parameter
ε in the Gaussian kernel. Figure 10 shows interpolation results of wind speed as a surface
with three different ε, which controls the locality of the estimation. For small ε, the Gaussian
kernel decays slowly, and the interpolation surface becomes flat; if ε is large, interpolation
relies on close neighbours, and the corresponding interpolation surface is noisy.
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Figure 10. The RBF method interpolation surface with ε = (0.01, 1, 10). When ε = 0.01, interpolation
surface is flat (left), ε = 1 returns a satisfactory surface (middle), when ε = 10, surface will be
noisy (right).

Besides ε, the estimation of z(s0) depends on neighbours weighted according to the
distance. As written in Section 2, along the vertical direction, the data is denser. A scaling
factor b is used to convert altitude from meter to the same scale as longitude and latitude,
s∗i,3 = si,3/b, and we continue interpolating with si,3. Finally, parameters ε and b are found
via minimization of the 10-fold cross-validation Mean Squared Error (cv-MSE),

cv-MSE =
1
n

n

∑
i=1
{z(si)− ẑ(si)}2, (14)

where ẑ(si) are estimated by the train set and evaluated by the test set at each fold. The
optimal parameters are searched to minimize cv-MSE for temperature, wind speed, and
relative humidity with a simulated annealing algorithm, see [27]. Finally, the optimal in the
sense of the smallest cv-MSE of pairs of ε and b are (ε = 0.23, b = 801.87) for temperature,
(ε = 0.51, b = 800.00) for wind speed, and (ε = 0.27, b = 800.00) for relative humidity.

3.2. Kriging

Kriging is similar to the RBF method through the utilization of kernels, but differs in
finding appropriate parameters. In contrary to the search for ε in the RBF method, Kriging
estimates parameters using covariance structure. In this section, we will first discuss the
Ordinary Kriging and extend to the Universal Kriging. Furthermore, we also discuss how
to bridge the different units of coordinate variables, longitude (in degrees), latitude (in
degrees), and altitude (in meters).

3.2.1. Estimation of Kriging Weights

An in-depth discussion about Kriging can be found in [28,29]; for that reason, we con-
centrate only on the points that are relevant for our application of flight routing. Ordinary
Kriging seeks to find weights w to obtain Z(s0) = ∑n

i=1 wiZ(si) through the minimization
of the Mean Squared Error, MSE = E

[
{Z(s0)− Ẑ(s0)}2], under the assumption of second-

order stationarity, E{Z(si)} = E{Z(sj)} = µ and Var{Z(si)} = Var{Z(sj)}. We stress here
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that capitalized Z corresponds to random variables, with lower-case z standing for realiza-
tions. By setting the first-order derivative ∂MSE

∂w equal to zero, we have the representation of
the weights,

ŵ = [Var{Z(s)}]−1Cov{Z(s0), Z(s)}, (15)

where Z(s) = [Z(s1), Z(s2), · · · , Z(sn)]
>.

Furthermore, the prediction of Z(s0) at the unobserved location is given through

Z(s0) = Z(s)ŵ = Z(s)[Var{Z(s)}]−1Cov{Z(s0), Z(s)}. (16)

In order to obtain the interpolated value ẑ(s0), all the theoretical covariances in (16)
should be replaced by their empirical counterparts. Thus, we need an estimate of the
covariance Cov

{
Z(si), Z(sj)

}
between Z(si) and Z(sj), which, assuming local spatial ho-

mogeneity, can be represented by a covariance function of the distance h = ‖si − sj‖2
between locations si and sj:

C(h) = Cov
{

Z(si), Z(sj)
}

. (17)

Covariance Cov{Z(si), Z(sj)} is a measure of the similarity between variables Z(si)
and Z(sj). The farther the two points are, the smaller the empirical covariance is, of course,
with the fixed scale. Points far away are assumed to have a more negligible impact on
estimation than nearer observations. Corresponding covariance function C(h) is also a
non-increasing function with h. We define the semivariance, and its relation to C(h) is
as follows,

γ(h) :=
1
2

Var{Z(s + h)− Z(s)} = C(0)− C(h), (18)

The empirical counterpart of γ(h) is given through

γ̂z(h) ≡
1

2|Ns(h)| ∑
si ,sj∈Ns(h)

{
z(si)− z(sj)

}2, (19)

where Ns(h) is the set of locations with distance h. With γ̂z(h) being evaluated at different
h, we can use variogram models to fit γ̂(h). Figure 11 shows blue points γ̂z(h) calculated
with (19). It is important to note that γ̂(h) can be affected by the unit of zi but unaffected by
the unit of distance h. There are many parametric models for modelling the semivariance,
such as the spherical model or Gaussian model. Figure 11 presents an exponential model es-
timated via OLS with the nugget effect, γ̂(h) = 7.38− 4.15e−h/9.46 and Ĉ(h) = 4.15e−h/9.46

when h > 0. Below, we summarize computation steps of the Kriging estimation:

1. Calculate empirical semivariance γ̂z(h) with (19);
2. Fit a semivariance model γ̂(h) from γ̂z(h);
3. Find covariance function Ĉ(h) from γ̂(h) with (18);
4. Calculate covariance Ĉov{Z(s), Z(s)} and Ĉov{Z(s0), Z(s)} with (17);
5. Estimate Z(s0) with (16).
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Figure 11. Semivariance γ̂(h) = 7.38− 4.15e−h/9.46 and Covariance C(h) = 4.15e−h/9.46 when h > 0.
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3.2.2. Trend

Ordinary Kriging, discussed in the previous section, assumes stationarity, which can
be relaxed by including trend as a function of location s, µ(s) = E{Z(s)}, also known as
Universal Kriging. After detrending, Z∗(s) = Z(s)− µ(s) remains stationary; accordingly,
the model for Z(s0) becomes

Z(s0) = µ(s0) + Z∗(s)[Cov{Z∗(s), Z∗(s)]−1Cov{Z∗(s0), Z∗(s)}. (20)

Usually, trend µ(s) is unknown and needs to be estimated. Among the weather
variables in Figure 4, temperature presents high dependence on altitude, while wind and
relative humidity reveal no obvious trend. For this reason, we use ordinary Kriging for all
the variables except temperature. We compare the following four classical trend models in
Figure 12, which we use for temperature:

1. No trend or Ordinary Kriging as in (16).
2. Cubic spline [30]: ẑTemp(si) = β̂0 + β̂1si,3 + β̂2s2

i,3 + β̂3s3
i,3 + β̂4(si,3 − ξ1)

3 + β̂5(si,3 −
ξ2)

3 + β̂6(si,3 − ξ3)
3, where zTemp(si) is the temperature at si and si,3 denotes the

altitude at location si. Knots are set as (ξ1, ξ2, ξ3) = (3000, 7000, 10,500) m.
3. Linear regression: ẑTemp(si) = β̂0 + β̂1si,3.
4. International Standard Atmosphere (ISA) assumes a piecewise linear function for

temperature [23].

ẑTemp(si) =

{
β̂0 + β̂1si,3, 0 < si,3 < 11, 000,
β̂3, 11, 000 ≤ si,3 < 20, 000.

(21)

From the right panel of Figure 12, we can see no notable improvement from no trend
to trend models, no matter what kind of trend model being used. The physical model ISA
(International Standard Atmosphere) and spline model are slightly better than no trend
model. We utilize Ordinary Kriging in the following Sections 3.4 and 4, assuming that the
GFS data is second-order stationary and has a constant but unknown mean µ.
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Figure 12. (Left) Scatterplot of temperature and three trend models: spline, linear regression, and
ISA. (Right) LOOCV errors with four trend models.

3.2.3. Scaling Factor and Function

Unit transformation is needed to bridge the gap among coordinate variables, longi-
tude (in degrees), latitude (in degrees), and altitude (in meters). A degree of longitude
corresponds around 100 km, but this unit conversion has problematic interpolation. Ob-
servations in the vertical direction are much denser than in the horizontal direction, so
the estimated value will be equivalent to the ones of the neighbouring altitudes. The first
row in Figure 13 shows that interpolation results deviate heavily from longitudinal and
latitudinal observations. For this reason, the initial conversion will also generate a much
higher cross-validation error. Besides these problems, the computation becomes unstable
when distances over one million meters are converted from the degree, and Ĉ(h) often
becomes singular.
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Figure 13. In-sample interpolation of wind speed with Ordinary Kriging demonstrates the necessity
of the scaling factor. Data are from GFS analysis data on 3 November 2018, with longitude ranges
from 5E to 10E and latitude from 45N to 50N.

In contrast, the second row in Figure 13 interpolates by introducing a scaling factor.
We divide the altitude by this scaling factor, which converts altitude from meter to the same
scale as longitude and latitude. This scaling factor will improve the interpolation results
and generate a much smaller cross-validation error. Therefore, which scaling function to
use is still an open question. To allow for the variogram function to have the same weight
for vertical and horizontal neighbours, we rescale the altitude si,3 as one unit distance
s∗i,3 ∈ {1, 2, 3, . . . , 20}, which becomes the same as the horizontal distance. The scatterplot
of s∗i,3 and si,3 can be seen from Figure 14, and they are fitted with OLS as

ŝ∗i,3 = −2.36 + 21.10 exp
( −si,3

6884.60

)
, (22)

also the curve in Figure 14. Figure 15 shows the original GFS data on the left panel and the
rescale data on the right.
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Figure 14. The scaling function for the altitude. Blue points: target GFS altitude and scaling results;
black curve: the scaling function (22).
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Figure 15. (Left) the original GFS data with various gaps along the altitude; (Right) rescaled altitude
of the vertical dimension with (22).

The semivariance models γ̂(h) for temperature, wind speed, and relative humidity is
depicted in Figure 16, with Gaussian semivariance model and scaling function (22).
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Figure 16. Curves: semivariance models γ̂(h) for temperature, wind speed, and relative humidity;
points: empirical semivariance γ̂z(h) calculated by (19).

3.3. Feedforward Neural Networks

In line with the current strand of research, we also consider a neural network for
interpolation. Discussion of this section mainly refers to [31,32]. For a brief recall, a
network regression fits fNN(s;W) , where s is locations as input and W is a matrix of
weights for all layers. ParametersW are estimated by minimizing cost function J(s,W),

W = arg min
W
{J(s,W)}. (23)

We used cv-MSE as in (14) as a cost function; to be more specific,

J(s,W) = cv-MSE =
1
n

n

∑
i=1
{z(si)− fNN(si;W)}2, (24)

where n is the sample size for train/test set, ẑ(si) is an estimation using a deep feedforward
neural network with the weights being updated using the back-propagation. In this study,

we used tanh(x) =
sinh x
cosh x

=
exp(x)− exp(−x)
exp(x) + exp(−x)

as an activation function.

We used a deep feedforward network estimation implemented by TensorFlow [33]
and Keras [34]. Figure 17 and Table 1 present a comparison of cv-MSE in (24) with various
model sizes. The cv-MSE is evaluated on the test set, which contains 20% of the data.
The input layer has three units for all models, corresponding to three dimensions in space,
longitude, latitude, and altitude. The output layer predicts the weather variables. A deeper
network attains smaller cv-MSE faster for temperature and wind speed but not necessarily
for relative humidity. The cv-MSE differences are not discernible after sufficient epochs in
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Figure 17 and can be seen in Table 2. A deeper network can have smaller cv-MSE, even
if compared with the perceptron for the last epochs. Therefore, we apply the deep neural
network with four layers.
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Figure 17. cv-MSE and epochs with five neural network models for temperature, wind speed, and
relative humidity. Sizes of networks grow from a small model with one hidden layer to a huge model
with four hidden layers. Validation errors and training errors are denoted with dashed and solid lines,
respectively.

To avoid overfitting, we added the L2 penalty on the weight parameter to the deep
network, with the final objective function being

J̃{s,W} = α

2
W>W + J{s,W}. (25)

Penalty α is searched on a grid of (0, 0.001, 0.01, 0.1, 1, 10, 100, 1000) with cv-MSE
results as listed in Table 2. For example, setting α as 0.01 would generate the smallest
cross-validation error for temperature. The final model is regularized with α = (0.01, 1, 1)
for temperature, wind speed, and relative humidity. Therefore, the feedforward neural
network evaluated in Section 3.4 is a regularized deep network with four layers, with 500,
300, 100, and 50 units, respectively (the model in the last row of Table 1).

Table 1. cv-MSE on the test set with four network models of different sizes.

Model Size Units Activation
cv-MSE 1

Temperature
(K2)

Wind Speed
(m2· s−2)

Relative
Humidity (%2)

H
id

de
n

la
ye

rs

Small 50 tanh 652.70 78.07 599.68

Medium 300 tanh 652.80 33.54 582.7750 tanh

Large
400 tanh

17.05 34.83 581.41100 tanh
50 linear

Huge

500 tanh

7.16 33.16 424.28300 tanh
100 tanh
50 linear

1 cv-MSE results are averaged over the last 20 epochs.

Table 2. cv-MSE cross-validation results with grid search for parameter α in the regularized neu-
ral network.

α 0 0.001 0.01 0.1 1 10 100 1000

Temperature (K2) 9.84 6.03 7.28 11.07 18.59 9.50 29.46 536.56
Wind speed (m2 · s−2) 38.84 39.36 39.58 40.50 39.06 41.16 77.55 77.69
Relative humidity (%2) 593.05 585.94 559.01 536.48 481.06 600.70 654.94 652.03
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3.4. Decision Tree

Classification or regression trees can perform non-linear regression, thus can per-
fectly serve for interpolation as well, see [32,35,36]. For implementation, we refer to [37].
A decision tree can be defined as the sum of piecewise functions,

T(s; Θ) =
Q

∑
q=1

cq1{s ∈ Rq}, (26)

where 1{·} is the indicator function, Q denotes the number of trees, and Θ = {Rq, cq}q=1,...,Q
(see [35]) with {Rq} being disjointed regions and cq are constants corresponding to region
Rq. Regions are selected by minimizing Residual Sum Squared (RSS) ∑Q

q=1 ∑i∈Rq{z(si)−
T(si; Θ̂)}2. For every possible split, a partition is made where minimal RSS can be attained.

Bagging and boosting are applied in this section to improve the accuracy of the
regression tree, which may have a large variance, and bagging improves prediction accuracy
by averaging the prediction from a bunch of trees. For bagging with B subsamples, decision
trees are estimated as T1(s, Θ̂1), . . . , Tb(s, Θ̂2), . . . , TB(s, Θ̂B) using B sample sets, and then
they are averaged for a bagged model [35],

f̂bag(s) =
1
B

B

∑
b=1

T̂b(s). (27)

Besides bagging, boosting can learn and update the previous tree model. Boosting
uses the sum of weak learners to construct a strong prediction model. Gradient Boosting
Machines (GBM) boost by combining a gradient descent algorithm and modelling tangent
of cost function then updating models towards the optimal. A gradient boosting machine
estimates fgbm(s) by minimizing the cost function with regularized objective [38],

f̂gbm(s) = arg min
fgbm(s)

L{z, fgbm(s)}+ Ω( fgbm), (28)

where Ω adds the penalty and L{z, fgbm(s)} is a loss function, in this paper as Root Mean

Square Error, RMSE=

√
1
n ∑n

i=1

{
z(si)− f̂gbm(si)

}2
. We restrict fgbm(s) to be a function

with parameters fgbm(s, {βm, Θm}M
1 ) = ∑M

i=1 βmT(s; Θm) with T(s; Θ) being a decision tree
in (26), also served as a weak learner. Ref. [36] proposed a steepest descent algorithm
to update fgbm(s) step by step and use trees to approximate the gradients of the loss
function. A grid search procedure with a minimal 10-fold cross-validation RMSE selects
the hyperparameters, including the learning rate of (0.1, 0.05, 0.05), maximum tree depth
of (20, 10, 10), a minimum number of observations within a node as (3, 3, 3), L1 norm
regularization parameter as (100, 0, 0), and L2 norm penalty parameter as 0 for temperature,
wind speed, and relative humidity. The learning process to update fgbm(s) can be seen in
Figure 18.
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3.5. Comparison of Methods

To summarize, all the methods aim to construct a complex function for interpola-
tion but with different approaches. Both the RBF method and Kriging construct a sur-
face with kernels, which maps s into a higher dimensional space. Estimation surface as
z(s0) = K(s0, s)w can be thought of as a linear regression in the higher dimensional feature
space. The difference between the RBF method and Kriging lies in the way to estimate
parameters of kernels. Machine learning methods applied in this paper interpolate by
network or tree structure. Parameters are fitted by minimizing the loss function L{z, f (s)},
which for all the methods is almost the same, up to regularization. Both machine learning
methods require derivatives of cost function L{z, f (s)} to update parameters. Neural
network updates by backpropagation and GBM updates f (s) by estimating gradient with
a decision tree.

This section evaluates and compares by the leave-one-out Mean Squared Error (loo-MSE),

loo-MSE =
1
n

n

∑
i=1
{z(si)− ẑ(si)|z(s)\z(si)}2, (29)

where z(s)\z(si), as mentioned before, corresponds to the data with observation z(si)
being removed, ẑ(si)|z(s)\z(si) is the estimation with observation z(si) being removed,
and z(si)− ẑ(si)|z(s)\z(si) is the cross-validation error.

Data preprocessing and hyperparameters searching for each method are in Section 3.
Cross-validation usually splits the data into train, test, and validation sets. We consider
only train and test sets, with no validation set in Table 3, because we can fit models and
interpolate with the same data set in SOPHIA. Errors by test set can evaluate the methods
when interpolating trajectories. We have a more realistic assessment of the Kriging method
in Section 4 with balloon data as the validation set.

Table 3. loo-MSE for methods with GFS data along the trajectory from Prague to Tunis.

Methods
loo-MSE

Temperature (K2)
Wind Speed

(m2· s−2)
Relative Humidity

(%2)

Ordinary Kriging 11.79 3.53 69.10

the RBF method 0.42 1.93 85.73

Neural Network 13.05 47.33 678.50

Bagging 15.04 16.15 153.29

GBM 2.39 13.34 179.21

Linear Interpolation 9.31 13.01 178.11

Table 3 presents loo-MSE results by these methods. The RBF method and Kriging have
the smallest loo-MSE for temperature, wind speed, and relative humidity. The statistical
learning methods such as neural networks and bagging have less satisfactory loo-MSE.
Actually, the trajectory with GBM interpolation does not land on the runway, resulting
from not even continuous weather values (see Figure 19). Neural networks make SOPHIA
often abort with an error message of an invalid aircraft state. Ordinary Kriging and the RBF
method are the potential methods to interpolate the weather variables along the trajectory.
In Section 4 we experiment with Ordinary Kriging due to its comparable loo-MSE to the
RBF method for wind speed and relative humidity. Additionally, the RBF method is four
times slower than Ordinary Kriging when integrating into SOPHIA. Ordinary Kriging
takes 23 h to generate a trajectory, while the RBF method can take up to 4 days. As we see
in Section 4, Ordinary Kriging can have minor errors when validated with balloon data.
These errors have a trivial impact on the trajectories, according to the simulation results.
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Figure 19. Trajectory generated by SOPHIA (topleft) and weather information interpolated by GBM.

4. Monte Carlo Simulation

As discussed in the introduction, we need a perfect understanding of the weather
conditions for trajectory planning. Considering that all the data sources deliver very
sparse data information, interpolation is needed, which was discussed in the previous
sections. Nevertheless, what happens if the data source is not perfectly reliable, but affected
by measurement or modelling errors? Earlier, we concentrated on the GFS data source,
considering it the best available source for our needs, but it is known that it is not a perfect
weather data source either, nor is using further models for interpolation. We hope to
investigate the effect of this inaccuracy on SOPHIA in this section by adding simulated
errors to the GFS data and running Monte Carlo simulations. These simulation results can
reveal how the errors of GFS data and Kriging interpolation impact the trajectory. Our
choice of the interpolation method has been clearly motivated in the previous sections. The
steps, which are explained in detail later, are as follows:

1. We regard the data collected by the releasing balloons as the accurate weather data
and compare the interpolation results by the Ordinary Kriging with GFS data as
input. The errors are defined as the difference between the balloon data zj,bal and
the interpolated values by Ordinary Kriging with the GFS inputs ẑj,GFS,Kriging. For
j ∈ {Temp, U-wind, V-wind},

êj = zj,bal − ẑj,GFS,Kriging; (30)

2. Quantify and investigate the dependency among the errors êTemp, êU-wind, and êV-wind;
3. Select bivariate copulas such that

F̂j(êj), F̂k(êk) ∼ Cj,k(·, ·); (31)

where the empirical margins F̂j(x) = 1
n+1 ∑n

i=1 I{x ≤ êj,i} with j 6= k and j, k ∈
{Temp, U-wind, V-wind};

4. Generate uniform pseudo-noise ũTemp, ũU-wind, ũV-wind based on the selected cop-
ula model;

5. Generate random errors ẽj = F̂−1
j (ũj) with j ∈ {Temp, U-wind, V-wind}. In this step,

instead of using empirical distribution function, the kernel smoothed one is used in
order to avoid purely bootstrapped observations;
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6. Generate weather scenarios with GFS data and errors where weather data at each
location of GFS grid has the simulated error added,

z̃Temp = zTemp,GFS + ẽTemp,

z̃U-wind = zU-wind,GFS + ẽU-wind,

z̃V-wind = zV-wind,GFS + ẽV-wind;

(32)

7. Calculate the trajectories with Ordinary Kriging interpolations and simulated weather
scenarios,

SOPHIA(z̃Temp, z̃U-wind, z̃V-wind). (33)

The errors in the first step are the differences between the balloon data and the Kriging
interpolation with the GFS inputs. Figure 20 has the GFS data as blue points and weather
stations as the black points, which are no more than 1.5 km away from the trajectory
(minimal distance). We assume the balloons are released at the exact location of the weather
stations and will not drift away. We only consider the data which are lower than 150 hPa.
Three snapshots from 3 to 4 November 2018 are used to increase the error sample size; see
Figure 21 regarding the distributions of errors from three snapshots.
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Figure 20. Blue points: the GFS data; black points: weather stations; black curve: the trajectory from
Prague to Tunis.
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4.1. Dependency

Weather variables in the real world can be naturally dependent, such as temperature
and wind, which both GFS and balloon data confirm. However, the errors can have
dependencies as different as the weather value themselves. Figure 22 depicts the normal
scores of errors for all pairs {(Φ−1(êU-wind), Φ−1(êV-wind)}, {Φ−1(êTemp), Φ−1(êU-wind)}
and {Φ−1(êTemp), and Φ−1(êV-wind)}, with Φ(·) being the CDF of the standard normal
distribution. This figure shows a weak correlation among these errors, probably resulting
from correlation deprived by GFS data from the balloon data.
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Figure 22. Normal scores of the errors between weather variables.

Both Spearman’s ρ and Kendall’s τ [39] are presented in Table 4 to quantify these
results, where ρ is the measure of monotone dependency and τ is a measure of concordance
with the paired signs. The rank correlation results in this table confirm weak monotone
dependence between the errors.

Table 4. Dependency test of the errors between weather variables.

ρs pρ τ pτ

Temperature (K) U-wind (m/s) 0.12 0.19 0.08 0.08 (positive)
Temperature (K) V-wind (m/s) −0.19 0.04 −0.12 0.02 (negative)

U-wind (m/s) V-wind (m/s) −0.13 0.16 −0.10 0.06 (negative)

4.2. Modelling the Dependency

Even if these errors are weakly correlated, a joint multivariate distribution is needed
to model their dependency structure and generate weather scenarios for Monte Carlo
simulation. As the flexible tool for dependence modelling, the copula is commonly applied
to model the multivariate distribution of weather variables. Ref. [40] model several meteo-
rological variables, including maximum and minimum temperatures, sea-level pressure,
maximum wind speed, and precipitation, with the Gaussian copula. Ref. [41] applies copula
to describe the dependence between temperature and precipitation with daily data collected
by eastern and western Mediterranean stations. According to Sklar’s theorem [42], a bivari-
ate distribution can be expressed as a copula of margins, Hj,k(ej, ek) = Cj,k{Fj(ej), Fk(ek)}.
Copula enables us to model the multivariate distribution of random variables by sepa-
rating the marginal distribution and dependency structure of these margins. For recent
developments in the field of the copula, the interested reader can refer to [43].

This paper focuses on the Gaussian, t, Gumbel, Clayton, Frank, and Joe copula fami-
lies. Gaussian copula and t copula are the dependence structure of multivariate Gaussian
distribution and t distribution. Other copula families belong to the Archimedean copula
class, which has the form C(u1, u2) = φ

{
φ−1(u1) + φ−1(u2)

}
, where generator φ is contin-

uous, decreasing function from [0, ∞) to [0, 1] [44,45]. The summary of commonly used
one-parameter generator φ can be found in Table 5, see also [44].
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Table 5. Archimedean copula families with one-parameter generator functions φ used in this paper.

Family θ φ(t) C(u1, u2)

Gumbel θ ∈ [1, ∞) exp(−t) exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
Clayton θ ∈ [1, ∞) 1

θ

{
max(u−θ

1 + u−θ
2 − 1, 0

}−1/θ

Frank θ ∈ (−∞, ∞)\{0} − log
exp(−θt)− 1
exp(−θ)− 1

− 1
θ log

[
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)
exp(−θ)− 1

]
Joe θ ∈ [1, ∞) − log{1− (1− t)θ} 1−

{
(1− u1)

θ + (1− u2)
θ − (1− u1)

θ(1− u2)
θ
}1/θ

A misspecified copula family can result in erroneous dependency modelling. Goodness-
of-fit tests assess whether the unknown copula C belongs to a copula family C := {Cθ , θ ∈ Θ}
by testing

H0 : C ∈ C against H1 : C /∈ C. (34)

Besides testing a single copula family, goodness-of-fit tests can select the best copula
model by the largest p-value [46]. This paper focuses on the blanket tests, which require
neither categorization of the data nor choice of parameters [47]. Ref. [48] implement or
wrap cross-validated tests [46], White test [49], tests based on Kendall’s transform [50],
tests based on Rosenblatt’s transform [51], and kernel-based tests [52]. There is no single
optimal test for all circumstances [46,47], so [46] introduced a hybrid test by combining the
test powers of q different tests. This hybrid test outperforms any of the individual tests by
an overall p-value,

phybrid
n = min{q×min(p(1)n , · · · , p(q)n ), 1}, (35)

where p(1)n , · · · , p(q)n are p-values for q different tests.
Figure 23 presents the pirateplots [53] of p-value results of hybrid tests of bivariates

regarding Gaussian, t, Gumbel, Clayton, Frank, and Joe copula families. For the individual
test, a parametric bootstrapping is performed to obtain numerous p-values, and the results
of the hybrid tests include possible combinations of individual ones. The hybrid 7 in
Figure 23 indicates a combination of seven different tests with q = 7 in (35). We consider
90-degrees rotated Gumbel and Clayton copulas due to the negative dependency between
(eTemp, eV-wind) and (eU-wind, eV-wind). Bivariate (eTemp, eU-wind) and (eTemp, eV-wind) accept
almost all the copula families. The pair U-wind and V-wind fits better for Frank and t
copula. In the final decision, we utilize the t copula for the joint distribution of errors by all
three variables for its test values and feasibility to construct a multivariate copula.
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Figure 23. Hybrid Goodness-of-fit p values of the Gaussian, t, Gumbel, Clayton, Frank, and Joe
copula families. A p-value close to zero will reject the copula family hypothesis.

4.3. Empirical Margins and Random Number Generator

Simulation procedures are various for different copula families. The t copula is
simulated using the normal mixture construction [45,54]. As for random number generation
with the selected t copula, we first generate components (ũTemp, ũU-wind, ũV-wind) ∼ Ct

θ̂
;

then generate the errors (ẽTemp, ẽU-wind, ẽV-wind) based on ũ with the inverse CDF method
ẽj = F̃−1

j (ũj) with j ∈ {Temp, U-wind, V-wind}, where F̃ is a kernel-smoothed empirical
cumulative distribution function, which together with the KDE are exemplarily for the
temperature depicted in Figure 24. The simulated errors and the balloon-GFS errors have
similar bivariate distributions, as can be seen from the contourplots Figure 25, where the
simulated and balloon-GFS errors are in black and blue. This is exactly what we wanted to
achieve in order to investigate the effect of error in the GFS data and the robustness of the
SOPHIA. We then have the simulated weather scenarios by adding the simulated errors to
GFS data, as in (32). There are n = 468 GFS grid points in our experiment from Prague to
Tunis. The same number of distinct simulated errors are added to the GFS temperature,
U-wind, and V-wind. The weather an aircraft experiences is interpolated by Kriging with
the simulated errors added to the GFS data as an input, i.e., (z̃Temp, z̃U-wind, z̃V-wind) in (32).
These weather values interpolated along the trajectory can be seen in Figure 26, where the
black lines are the interpolated temperature, U-wind, and V-wind with the GFS data and
the chromatic lines the interpolated value with simulated weather scenarios.
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Figure 24. Kernel smoothed empirical PDF (left) and CDF (right) of errors of temperature by the
difference of balloon data and estimates by Kriging.
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Figure 25. Contourplots of the errors from the difference of balloon data and interpolated values
with GFS data and simulated errors generated by t copula and kernel-smoothed empirical CDF.
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Figure 26. The black curve: the interpolation value with the GFS data; the chromatic curves: the
interpolated values with simulated weather scenarios.

4.4. Trajectory Simulation Results

Given weather scenarios with GFS data and simulated errors, we can examine how
the errors from GFS data and Kriging interpolation can impact the trajectories in SOPHIA.
Figure 27a presents vertical profiles of 50 trajectories from Prague to Tunis, which have start,
climb, cruise, and descent phases. The trivial difference can be spotted in the trajectories
with the weather scenarios having the errors added. We use the trajectory with GFS inputs
as the baseline to reveal such differences and calculate the altitude difference between the
50 trajectories with simulated weather scenarios and baseline trajectory in Figure 27b,d.
The altitude differences in the start and climb phases are slight and increase as the travel
distance increases in the cruise phase, resulting from cumulative differences along time. We
can spot more visible differences during the descent phase because SOPHIA implements
continuous descent operation (CDO) in search for the top of descent (TOD) to guarantee a
maximum descent distance and minimum fuel burn [8]. Nevertheless, the differences are
still within 300 m range. Besides the vertical profile, total fuel burn has variation within
70 kg and flight time in 3 min as in Figure 27c, which confirms the small impact of errors
from GFS data and Kriging interpolation on the trajectories.
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Figure 27. (a) The vertical profiles of the trajectories from Prague to Tunis by SOPHIA; red curve:
with GFS data; blue curve: with simulated weather scenarios. (b,d) The chromatic line plots
present the altitude differences between trajectories with simulated weather scenarios and GFS input.
(c) Total fuel burn and flight time of 50 trajectories with simulated weather scenarios.

5. Conclusions

The atmospheric state has a significant impact on the motion of an aircraft and the
optimized trajectories. The target function in the optimizer requires accurate meteorological
data as input. In this paper, meteorological information such as temperature, wind speed,
and wind direction can seriously influence the path and performance. We examined linear
interpolation, RBF, Kriging, neural network, bagging, and GBM to interpolate weather
variables for an accurate method. Linear interpolation, Ordinary Kriging, and the RBF
method are accurate when evaluated by loo-MSE with GFS data from Prague to Tunis.
Considering accuracy and time efficiency, we integrated Ordinary Kriging into SOPHIA.
Nevertheless, errors in both GFS data and Ordinary Kriging are inevitable. This paper
studies the impact of such inaccuracy, including in the GFS data and Kriging interpolation
method, on the optimized trajectories. To achieve this, we further modelled the dependency
of these variables with the copula and generated weather scenarios out of the copula model
for SOPHIA as input. We simulated a trajectory from Prague to Tunis given the weather
scenarios. Even though both GFS and Kriging are not accurate, these inaccuracies had a
trivial impact on the trajectory, total fuel burn, and flight time, according to the simulation
results. To summarize, we have confirmed that,

1. the kernel method works better than machine learning methods for the meteorological
data interpolation for a flight trajectory;

2. even though errors in GFS data and Ordinary Kriging are inevitable, the inaccuracy
of the data has a very minor impact on the trajectory, total fuel burn, and flight time.

Despite the fact that the trajectory simulation results from Prague to Tunis, and another
trajectory from Nantes to Athens in the Appendix A, confirm the above statements, these
two trajectories are restricted within the short trajectories in Europe. Other regions may
not have weather balloon stations to provide data to compare with interpolation. More-
over, long-distance and cross-continent trajectories first require significant computational
resources and can also overpass regions with no or scattered weather stations, making the
GFS data unreliable and impractical to validate the effect of the inaccuracy of the data on
the trajectory. This paper involves only the three-dimensional spatial interpolations, and
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the four-dimensional spatio-temporal interpolation still deserves further research. This
four-dimensional spatio-temporal interpolation with the kernel methods also requires a
fast implication for the trajectory optimizer.
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Appendix A. A Trajectory from Nantes to Athens

Besides the trajectory from Prague to Tunis, we simulate another trajectory from
Nantes to Athens to confirm that the errors in GFS data and Ordinary Kriging interpolation
have a slight impact on the vertical profiles of the trajectory. Figure A1 presents the trajec-
tory from Nantes to Athens; Figure A2a,b,d show vertical profiles and altitude differences
with the simulated weather scenarios. The same pattern of cumulative differences along
time can be seen as in Figure 27. The simulated weather scenarios produce small differences
in fuel burn and flight time in Figure A2c.
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Figure A1. Blue points: the GFS data; black points: weather stations; black curve: the trajectory from
Nantes to Athens.
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Figure A2. (a) The vertical profiles of the trajectories from Nantes to Athens by SOPHIA; red
curve: with GFS data; blue curve: with simulated weather scenarios. (b,d) The chromatic line plots
present the altitude differences between trajectories with simulated weather scenarios and GFS input.
(c) Total fuel burn and flight time of 11 trajectories with simulated weather scenarios.
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