m stats

Article

Path Analysis of Sea-Level Rise and Its Impact

Jean Chung ¥, Guanchao Tong ¥, Jiayou Chao *

check for
updates

Citation: Chung, J.; Tong, G.; Chao, J.;
Zhu, W. Path Analysis of Sea-Level
Rise and Its Impact. Stats 2022, 5,
12-25. https://doi.org/10.3390/
stats5010002

Academic Editor: Victor De Oliveira

Received: 22 October 2021
Accepted: 17 December 2021
Published: 24 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Wei Zhu *

Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, NY 11794, USA; chungg64@gmail.com (J.C.); guanchao.tong@stonybrook.edu (G.T.);
jiayou.chao@stonybrook.edu (J.C.)

* Correspondence: Wei.Zhu@stonybrook.edu; Tel.: +1-(631)-632-8374

t These authors contributed equally to this work.

Abstract: Global sea-level rise has been drawing increasingly greater attention in recent years, as it
directly impacts the livelihood and sustainable development of humankind. Our research focuses
on identifying causal factors and pathways on sea level changes (both global and regional) and
subsequently predicting the magnitude of such changes. To this end, we have designed a novel
analysis pipeline including three sequential steps: (1) a dynamic structural equation model (ASEM)
to identify pathways between the global mean sea level (GMSL) and various predictors, (2) a vector
autoregression model (VAR) to quantify the GMSL changes due to the significant relations identified
in the first step, and (3) a generalized additive model (GAM) to model the relationship between
regional sea level and GMSL. Historical records of GMSL and other variables from 1992 to 2020 were
used to calibrate the analysis pipeline. Our results indicate that greenhouse gases, water, and air
temperatures, change in Antarctic and Greenland Ice Sheet mass, sea ice, and historical sea level
all play a significant role in future sea-level rise. The resulting 95% upper bound of the sea-level
projections was combined with a threshold for extreme flooding to map out the extent of sea-level
rise in coastal communities using a digital coastal tracker.

Keywords: unified (dynamic) structural equation model; generalized additive model; vector autoregression
model; global mean sea level

1. Introduction

Since the industrial age, global mean sea-level (GMSL) rise has become a persistent
trend that has greatly accelerated within the last two and a half decades [1]. This is largely
due to thermal expansion, or increased temperature leading to a greater volume of water
per unit mass, and the melting of glaciers and land-based ice caps [2]. The IPCC reports
that beyond 2050, anthropogenic activities such as increased greenhouse emissions could
result in further climate warming and a substantial increase in GMSL [3]. Additionally,
high tide floods are becoming more frequent and reaching farther inland [4]. Many large
cities located along coastal regions are likely to suffer drastic socioeconomic impacts from
sea-level rise and high tide flooding. Hundreds of coastal communities, home to over
634 million people [5], are likely to face increased flooding that would devastate homes,
lives, and communities, as seen in recent major flooding occurrences in Miami, New York
City, and New Orleans (Figure 1).

The inherent relationship between GMSL and predictors such as glaciers, ocean circu-
lation, and thermal expansion is not fully understood. Several recent studies were proposed
in an attempt to simplify the relationship [6,7]. These approaches are able to recognize
a trend or inherent relationship, but an estimate of the underlying causal pathways for
long-term projection of GMSL is not given. Some researchers made predictions within the
next 100 years [8-10]. Based on these studies, the GMSL rise by 2100 is estimated to be in the
range between 60 to 130 cm. However, such models are either overly simplified, lacking the
incorporation of essential causal relations, or overly complicated, featuring sophisticated
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atmospheric and climate models that can only be shown as a black box. This is a significant
gap between existing analyses and public comprehension—and hence public actions.

Figure 1. (a) Condominium collapse in Miami due to flooding (Courtesy of: Miami Herald); (b) Sub-
way/streets flooding in New York City due to Hurricane Ida (Courtesy of: New York Post); (c) New
Orleans flash flood (Courtesy of: Washington Post).

“Seeing is believing”—if we, as unbiased citizen scientists, could utilize available
public data, design a comprehensive analysis pipeline to uncover the underlying causal
relations and predict GMSL on our own, we would then be more convinced of the impend-
ing danger and thus take up actions to control for the causal links, such as the man-made
greenhouse gas emission, to help curb this chain reaction. To this end, we have proposed a
three-step statistical analysis pipeline (Figure 2) to model and predict the global mean sea
level. Firstly, a dynamic structural equation model (dASEM) is used to establish a pathway
model to evaluate the effects of greenhouse gases, increasing air and water temperatures,
decreasing Antarctic and Greenland Ice Sheet size, and decreasing sea ice. This pathway
can help gauge the underlying pathway towards sea-level rise and help confirm whether
the increase in greenhouse gases was responsible for the chain reaction that resulted in
increased air temperature, which thus increases water temperature, the melting of ice sheets
and ice caps, which then contributes to sea-level rise. In addition, we aim to analyze the
relationship between sea ice, which has no direct contribution to sea-level rise, and the
various predictors in our model. In our second procedure, we used a vector autoregression
model (VAR) with more lags to more accurately forecast global mean sea-level rise based on
direct causal factors identified through the SEM analysis. In our third procedure, we used a
generalized additive model (GAM) in order to link global mean sea level to regional coastal
areas in the United States and forecast regional sea level changes. Lastly, our predictions
were used to analyze the extent of extreme coastal flooding by 2050 and 2100 using tidal
gauge data in coastal urban areas such as New York City, Miami, and New Orleans.

< Regional Tide Gauge 1

$ Regional Tide Gauge 2

< Regional Tide Gauge k

Water Temperature

Dynamic Structural Equation Model (SEM) Vector Autoregressive Model (VAR) Generalized Additive Model (GAM)

Figure 2. The proposed sea-level change analysis pipeline with three sequential steps: (1) a dynamic
Structural Equation Model (SEM) to identify pathways between the global mean sea level (GMSL)
and various predictors, (2) a Vector Autoregression Model (VAR) to quantify the GMSL changes due
to the significant relations identified in the first step, and (3) a Generalized Additive Model (GAM) to
model the relationship between regional sea level (RSL) and GMSL.
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2. Data and Methods
2.1. Data

All data were recorded in monthly averages and available in publicly accessible
repositories. To gather data on sea-level rise, we used NASA'’s sea-level data, which
were generated through multi-mission ocean altimetry [11]. We gathered the data for
the monthly average sea ice extent in the Northern Hemisphere, mainly composed of
Arctic sea ice, through the NSIDC (National Snow & Ice Data Center) [12]. The Greenland
and Antarctic Ice Sheet mass losses were accessed through the IMBIE (Ice sheet Mass
Balance Inter-comparison Exercise) datasets [13] and NASA [14]. The data for the average
monthly air and water (sea surface) temperatures were accessed through Berkeley Earth [15].
The atmospheric CO, data were taken from the Mauna Loa Observatory, as part of the
Scripps CO; program [16]. The CH, and N, O data were taken from 2degreesinstitute [17].
Lastly, the local tidal gauge stations for coastal areas in New York, Miami, and New
Orleans were accessed through the NOAA Center for Operational Oceanographic Products
and Services [18].

Prior to analysis, all monthly data were combined to range from 1992 to 2020. The
Water Temperature and Air Temperature represent the global average temperature. They
are calculated by adding the corresponding global average water/air temperature anoma-
lies and their baselines, which are the monthly means of the global average water/air
temperature. Data for the Antarctic and Greenland Ice Sheet mass loss ranged from 1992
to 2002 were taken from NSIDC [13], and those ranging from 2002 to 2020 were from
NASA [14] after removing the seasonal effect.

2.2. Step 1: The Dynamic SEM Model

Structural equation modeling (SEM) is a multivariate technique [19] towards the
confirmatory analysis of causal associations among a set of variables [20,21]. Even so, SEM
is flexible enough to incorporate exploratory analyses of data as unsure pathways can be
kept in the hypothesis to be validated by the analysis. SEM assumes that proposed relations
among variables can be represented in a set of structural regression equations and that
these relations can be represented pictorially in the form of a path diagram [19,22].

The unified (or dynamic) structural equation model [22], also known as VAR-SEM
model or MAR-SEM model, can be used to analyze the proposed causal associations among
a set of time-series variables by incorporating both the contemporaneous relations as well
as the longitudinal relations represented by the VAR model. Specifically, longitudinal
temporal relations are defined as relationships between regions involving different time
points, while contemporaneous relations reflect relationships between regions at the same
time point. Let yj(t) be the jth measured at time ¢, j = 1, 2, ..., m. The m-dimensional
multivariate autoregressive process of order p (VAR (p)) with an added component of
contemporaneous relations can be written as:

y(t) = c+Ay(t) + dry(t — 1) + boy(t —2) +... + dpy(t —p) +e(t) ,

Here y(t) = [y1(t),y2(t),...,yn(t)] is the (n x 1) vector of observed variables mea-
sured at time ¢, e(t) is the (n x 1) vector white noise with zero-mean, A is the parameter
matrix of the contemporaneous relations, and ¢;, i =1, 2, ..., p is a series of (n x n) parame-
ter matrices representing the longitudinal relations.

There is no latent variable in our VAR(1)-SEM model. In our model, there are six ob-
served variables in total, which are GMSL, Sum (glacier) Mass, Sea Ice, Water Temperature,
Air Temperature, and Greenhouse Gas. The definition of the variables is shown in Table 1.

As it is a VAR(1)-SEM model, each variable has two states in the model, at time t and
time t — 1. Thus, there are 6 x 2 = 12 variables in the VAR(1)-SEM totally. If we use the
original data Sum Mass to estimate the parameters in the VAR-SEM model, the model
will fail to converge, as the value of Sum Mass is 1000 times larger than others. Thus, we



Stats 2022, 5

15

take the natural log on the Sum Mass (cumulative glacier mass change) plus 8000 towards
the VAR(1)-SEM.

Table 1. Definition of global variables used in the proposed analysis pipeline. The only variable not
included are regional sea levels measured by various regional tidal gauge stations.

Variable Explanation
Air Temperature Global average air temperature
GMSL Global mean sea-level variation
Sum Mass Summation of Greenland and Antarctic cumulative glacier mass change
Greenhouse Gas The amount of CO,, N,O and CHy in the air (parts per million)
Water Temperature Global average water temperature
Sea Ice Northern hemisphere sea ice extent

Based on extensive literature review, we proposed a climate model as follows. First,
increasing Greenhouse Gas would lead to an increase in Air Temperature. The increase
in Air Temperature would correlate to rising Water Temperature. Increase in Air/Water
Temperature would then lead to the loss of Sea Ice and Sum Mass (glacier mass). The loss
of glacier mass would in turn increase the Global Mean Sea Level.

Based on the above induction and the model parsimony principle, our hypothesis for
the dynamic SEM was generated with the longitudinal relations only involving the lag one
pathways, that is, a VAR(1)-SEM model, as shown in Figure 3.

Sum Mass

Water Temperature

Greenhouse Gas

Air Temperature

Figure 3. Hypothesized path diagram for the dynamic structural equation [VAR(1)-SEM] model.
Here, red lines represent contemporaneous relationships while blue lines represent longitudinal
relationships. ‘GMSL’ represents the monthly global mean sea level. ‘Sum Mass’ represents the
combined Greenland and Antarctic (land) Ice Sheet monthly mass losses. ‘Sea Ice’ refers to the
monthly average sea ice extent in the Northern Hemisphere. See Table 1 for more variable definitions.

2.3. Step 2: A More Refined Vector Autoregression Model

Let y(t) = [y1(t),y2(t),...,ya(t)]’ denote an (n x 1) vector of time series variables.
The basic p-lag vector autoregressive (VAR(p)) model [20] has the following form:

y(t) =c+ dry(t—1) + doy(t—2) +...+ dpy(t—p) +e(t), t=1,2,..., T

where ¢; are (n x n) coefficient matrices, ¢ is an (n x 1) constant matrix, and e(t) is
an (n x 1) white noise with a mean of 0. The coefficient estimation can be obtained by
using ordinary least squares (OLS) per equation. When using a VAR(p) model, lag length
selection can be an essential part as adding unrelated variables may reduce the forecast
accuracy by increasing the estimation error, while insufficient lagged variables are not
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able to model the internal relationship. The general approach is to fit VAR(p) models with
orders p = 0,1,..., pmax and choose the value of p that minimizes some model selection
criteria such as the widespread Bayesian information criterion (BIC):

BIC(p) = log {det(iuﬂ +n(np + 1)log;T),

where iu =71 Zthl é;&/ is the estimate of the covariance matrix of the VAR error. For our
analysis pipeline, we select significant direct predictors for GMSL based on the dynamic
SEM results, where three predictors were selected, and BIC analysis shows that a lag 3 VAR
model is the optimal choice, as shown in Figure 4. This further validated our pipeline of
using a more detailed VAR(3) model as the second link, for more accurate global sea-level
rise prediction, rather than using the less refined VAR(1)-SEM from the first step.

Sum Mass

Water Temperature

Figure 4. Path diagram for VAR(3) with GMSL being the response variable and three predictors
selected from the dynamic SEM step.

To validate the VAR(3) model, we used both the walk-forward (one-step ahead)
method and the train-test split method (80:20 train/test split ratio). For the walk-forward
method, a moving forecast scenario is used. For the train-test split method, we make
predictions for all the time steps in the test data and compare the predictions to the actual
observations. We utilize the R package tsDyn [23] for the walk-forward validation and
package vars [24] for train-test split validation. We also use a univariate ARIMA model as
the baseline model to compare the effectiveness of our model.

2.4. STEP 3: The Generalized Additive Model

To predict the magnitude of sea-level rise for each coastal region of interest, we linked
the global mean sea level (GMSL) to the regional sea level (RSL) using a generalized
additive model (GAM). A GAM is a type of generalized linear model (GLM) in which the
linear predictor is defined as the sum of the smooth functions, which may be formed as
linear combinations of basis functions of the predictors plus a conventional parametric
component of the linear predictor. It extends linear and generalized linear models by
including smooth functions of predictors. The equation form of a GAM can be written as

s(y) = XB+Zy,

where g(.) is the link function, y is the response variable, X is the model matrix with n rows
and p predictors (plus an intercept column), Z is an n by d matrix containing the basis
functions of some subset of X, where d is of an arbitrary length, and B and v are vectors of
model coefficients.

The main feature that distinguishes the GAM from other models is that each predictor
variable is assigned its smoothing function and these functions are added together to create
a model [25]. Each function is also nonparametric, meaning that they are shaped by the
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data alone rather than parameters of previously defined distributions. Despite this, these
functions can be both linear and nonlinear. This allows GAM to be more flexible than other
models, preventing the data from being overfitted. When constructing the GAM, we used
a simple linear regression model as a baseline and compared its performance to GAM.
We conducted the GAM analysis with the assistance of R package “mgcv” [26]. In the
mgcv implementation, GAM’s penalized regression splines are used to define smoothing
functions, where the model’s (negative log) likelihood is modified by penalizing each
smoothing function. The basis functions employed in these splines are typically designed
to be as efficient as possible, given the many basis functions utilized. The GAM in mgcv
tackles the smoothing parameter estimation problem using the generalized cross-validation
(GCV) criterion. The GAM penalized likelihood maximization problem may be efficiently
addressed using penalized iterative reweighted least squares (P-IRLS). Wood (2011 and
2004) documented detailed information about the underlying fitting methods [27,28]. The
pathways for the GAM is shown in Figure 5.

< Regional Tide Gauge 1

< Regional Tide Gauge 2

< Regional Tide Gauge k

Figure 5. Pathway diagram of the Generalized Additive Model (GAM) to model the relationship
between GMSL to RSL (Regional Sea Level) via select tidal gauges near each region of interest
(e.g., NYC and Long Island, Miami, New Orleans).

3. Results

We performed the data analysis following the proposed three-step pipeline. The con-
firmed pathways and factors from the Step 1 dynamic structural equation model in the form
of VAR(1)-SEM were subsequently used to guide the construction of the more refined vector
autoregressive model in Step 2. Model selection with BIC has subsequently recommended
a VAR(3) model. This model was fitted via existing data and subsequently used to predict
the future global mean sea level. Finally, in Step 3, we applied the generalized additive
model to link the global sea level to regional sea level. Predicted regional sea-level changes
for three coastal regions (New York City, Miami, and New Orleans) were subsequently
depicted using a digital mapping tool.

3.1. Dynamic SEM Results

After the data transformation, the dynamic VAR(1)-SEM can be analyzed by the
usual SEM software as we have shown previously [21]. In this work, the SEM software
adopted is the Lavaan package in R. Confirmed pathways are depicted in Figure 6 below,
with the estimated path coefficients and other statistics tabulated in Table 2. In summary,
we found that nearly all the contemporaneous pathways were significant except for the
pathway between Sea Ice(t) and Sum Mass(f). The data validated a significant pathway
from Greenhouse Gas increase to Air Temperature increase, to Water Temperature increase,
to Sea Ice Extent, to Sum Mass (glaciers cumulative mass loss), and subsequently, to Global
Mean Sea-level rise.

Table 2 shows the estimates of the parameters in the VAR(1)-SEM model. The RMSEA
of this model is 0.400. The Mean in this table is the mean slope across the multiple
imputation samples. After we drop the non-significant pathway at the significance level of
0.05 (2-sided), the resulting validated VAR (1)-SEM model is represented by the following
equation system:
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GMSL(t) = 9.182 x Sum Mass(t) — 10.005 x Sum Mass(t — 1) +0.983 x GMSL(t — 1) + 7.315,
Sum M.(t) = 0.019 x Water T.(t) — 0.024 x Water T.(t — 1) — 0.005 x Sea Ice(t — 1)
+1.034 x Sum Mass (f —1) — 0.163,

Sea Ice(t) = —0.802 x Water T.(t) — 0.466 x Water T.(t — 1) + 0.646 x Sea Ice(t — 1) 4 23.307,
Water T.(t) = 0.951 x Air T.(t) — 0.447 x Air T.(t) + 0.447 x Water T.(t — 1) + 1.011,

Air T.(t) = —0.118 x Greenhouse(t) 4+ 0.123 x Greenhouse(t) + 0.755 x Air T.(t — 1) + 1.655,
Greenhouse(t) = 0.979 x Greenhouse(t — 1) 4 8.108.

Sum Mass

Water Temperature

Greenhouse Gas

Air Temperature

Figure 6. Dynamic VAR(1)-SEM Results: The dashed lines indicate pathways that were not significant.
Solid blue lines indicate a significant longitudinal path from ¢ — 1 to ¢, while solid red lines indicate a

significant contemporaneous path from ¢ to ¢.

Table 2. VAR(1)-SEM Results.

Significant Path Connection Mean (SE) t-Value (p-Value, 2-Sided)
Sum Mass(t) — GMSL(t) 9.366 (4.528) 2.068 (0.039)
Sum Mass(f — 1) — GMSL(#) —10.242 (4.714) —2.173 (0.030)
GMSL(t — 1) — GMSL(t) 0.979 (0.009) 107.188 (0.000)

Sum Mass(t — 1) — Sum M.(f) 1.034 (0.001) 817.450 (0.000)
Water T.(f) — Sum M.(¢) 0.021 (0.002) 8.305 (0.000)
Water T.(f — 1) — Sum M.(f) —0.024 (0.002) —13.721 (0.000)
Sea Ice(t) — Sum M.(f) 0.002 (0.002) 0.944 (0.345)
Sea Ice(t — 1) — Sum M.(t) —0.006 (0.001) —4.727 (0.000)
Sea Ice(t — 1) — Sea Ice(t) 0.697 (0.013) 52.521 (0.000)
Water T.(f)— Sea Ice(t) —1.098 (0.052) —20.924 (0.000)
Water T.(f — 1) — Sea Ice(f) —0.328 (0.053) —6.202 (0.000)
Air T.(t) — Water T.(t) 0.951 (0.005) 203.096 (0.000)
Air T.(t — 1) — Water T.(¢) —0.447 (0.040) —11.039 (0.000)
Water T.(t — 1) — Water T.(t) 0.447 (0.043) 10.324 (0.000)
Greenhouse(t) — Air T.(f) —0.118 (0.007) —16.941 (0.000)
Greenhouse(f) — Air T.(t) 0.123 (0.007) 17.625 (0.000)
Air T.(t — 1) — Air T.(¢) 0.755 (0.020) 37.435 (0.000)
Greenhouse(t — 1) —
Greenhouse(t) 0.979 (0.012) 82.789 (0.000)

3.2. GMSL Projection with VAR(3)

Using significant variables and pathways confirmed by the dynamic SEM analysis, we
have subsequently selected monthly Average Sea Ice Extent, Water Temperature, the sum
of Antarctic and Greenland Ice Sheet mass, in addition to GMSL, for the ensuing refined
VAR analysis. Although Air Temperature is also significant, it is highly correlated to Water
Temperature, and was thus discarded to avoid multicollinearity. The optimal number of
lags is determined by using the Bayesian Information Criterion (BIC). This analysis resulted
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GMSL(t) = 1.398

in the optimal number of lags being 3, and thus the VAR(3) model is fitted subsequently.
The Multiple R? for GMSL is 0.997. To validate the superiority of the VAR(3) model, we
have also compared it to the best baseline ARIMA model, the ARIMA(2,1,2) as selected
by BIC. We applied Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
to compare the predicting performance of these two models. Both statistics are used for
measuring the discrepancy between predicted and observed values, and thus a smaller
value indicates better performance. These results are shown in Figure 7 and Table 3. One
can find that the predicting accuracy is improved by using VAR(3) than the ARIMA(2,1,2)
according to both RMSE and MAE.

GMSL (mm)
GMSL (mm)

0216 1116 0817 9 1119 0820 0572 2/16 111 )8/17 )2/19 1111

Date Date
Type Observation Walk-forward Prediction Type Observation Train-test Split Prediction

(a) (b)

Figure 7. (a) Predicted numerical results for walk-forward validation method by VAR(3); (b) Predicted
numerical results for train-test split validation method by VAR(3).

Table 3. Comparison of predicting performance between VAR(3) and ARIMA(2,1,2).

Method Model RMSE MAE
Walk-forward ARIMA(2,1,2) 1.44 1.21
Walk-forward VAR(3) 1.07 0.89
Train-test split ARIMA(2,1,2) 6.67 5.55
Train-test split VAR(3) 2.48 2.02

After validating the model, we reconstructed the VAR(3) model by applying all ob-
served data available to date, from January 1993 to May 2021, and forecasted the global
mean sea level for the next 80 years (see Figure 8). The expected mean global sea level
change is 0.31 m by the end of the 21st century. However, to ensure statistical confidence and
to guard against the worst-case scenarios, we used an upper bound of the 95% prediction

interval for the ensuing forecast.
The relevant equation used to predict GMSL by the VAR(3) model is shown below:

XGMSL(t —1) —0.010 x Water T.(t — 1) — 0.018 x Sum Mass(t — 1) — 0.702

x Sea Ice(t — 1) — 0.835 x GMSL(t — 2) + 0.150 x Water T.(t — 2) + 0.044

xSum Mass(t —2) 4+ 0.894 x Sea Ice(t —2) 4+ 0.359 x GMSL(t — 3)

+ 0.403 x Water T.(t — 3) — 0.026 x Sum Mass(t — 3) — 0.220 x Sea Ice(tf — 3) + 0.013 x £—10.339

3.3. Projections of Coastal Regional Sea-Level Rise with GAM

We analyzed regional tidal gauges located in areas of New York City and Long Island,
Miami, and New Orleans. Using the generalized additive model (GAM), we modeled the
relations between Global Mean Sea Level and Regional Sea Level (RSL). The RSL data for
each region of interest are obtained by averaging the observed RSL from multiple regional
tidal gauge stations. For instance, the RSL of New York City and Long Island is obtained
from the Montauk, Kings Point, Battery Park, and Bergen Point tidal gauge stations. The
related path diagram for this GAM analysis is shown in Figure 9.
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Figure 8. GMSL from 2021 to 2100 predicted by the VAR(3) model using the observed data (Jan-
uary 1993-May 2021) with the 80% (darker blue area) and the 95% (lighter blue area) prediction
interval bands.

Montauk
Kings Point
Battery Park
Bergen Point

TR

Figure 9. Pathway diagram of the Generalized Additive Model (GAM) to model the relationship
between GMSL to RSL (Regional Sea Level) via four regional tidal gauge stations in the New York
City and Long Island area.

According to the results from the GAM model, the expected RSL rise for the New York
City and the Long Island area is approximately 0.24 m by 2050 and 0.65 m by 2100. The
prediction intervals show the likely RSL rise can range from —0.43 to 1.04 m by the end of
2050 and from —1.22 to 2.63 m by the end of 2100. The performance of linear regression
and GAM were compared, and we found that the adjusted R? improved by 0.083, and the
deviance explained improved by 0.098 using GAM with its adjusted R? being 0.348. One
may notice that the prediction bands would rise over time. This is due to two main reasons:
(1) The increased variability of RSL as time increases, which subsequently increased the
prediction temporal volatility of GAM; (2) To calculate the prediction bands, we first use
the upper bounds and lower bounds of the 95% prediction intervals for GMSL from the
VAR(3) predictions as our predictor. Using the upper bounds of the VAR(3) and then GAM
prediction bands, we can predict the worst-case scenario for coastal flooding, which is
defined at a certain threshold above normal sea level. According to NOAA, the threshold
for major flooding scale is 1.17 m (£0.39) above the local diurnal tidal range [4]. Therefore,
we can approximate the worst-case scenario for flooding for the New York City and Long
Island region tobe 1.17m + 0.39 m + 1.04 m = 2.6 m by 2050 and 1.17 m + 0.39 m + 2.63 m =
4.19 m by 2100. The results for other locations are similar as shown below.

The expected RSL rise for Miami is approximately 0.49 m by the end of 2050 and
1.21 m by the end of 2100. The prediction intervals show the likely RSL rise can range
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from 0.06 to 0.99 m by the end of 2050 and from 0.07 to 2.42 m by the end of 2100. After
replacing the linear regression with a GAM, the adjusted R? improved by 0.123, and the
deviance explained improved by 0.13. Its adjusted R? is 0.388. Using NOAA’s major
flooding threshold, we can approximate the worst-case scenario for flooding for Miami to
be 1.17 m + 0.39 m + 0.99 m = 2.55 m by 2050 and 1.17 m + 0.39 m + 2.42 m = 3.98 m by 2100.

The expected RSL rise for New Orleans is 0.58 m by the end of 2050 and 1.37 m by the
end of 2100. The prediction intervals show the likely RSL rise can range from 0.34 to 0.85 m
by the end of 2050 and from 0.78 to 1.98 m by the end of 2100. After replacing the linear
regression with a GAM, the adjusted R? improved by 0.418, and the deviance explained
improved by 0.418. Its adjusted R? is 0.683. Using NOAA’s major flooding threshold,
we can approximate the worst-case scenario for flooding for New Orleans to be 1.17 m +
0.39 m + 0.85 m = 2.41 m by 2050 and 1.17 m + 0.39 m + 1.98 m = 3.54 m by 2100. The RSL
projections for each of the three regions of interest are shown in Figure 10.
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Figure 10. The blue area represents the prediction intervals. (a) Predicted regional sea levels of New
York City; (b) Miami and (c) New Orleans over the next 80 years.

Using the NOAA Sea-level rise Viewer [29], we plotted the respective coastal inunda-
tion scenarios for 2050 and 2100, respectively, in New York City, Miami, and New Orleans
(see Figures 11-13).

(d)

Figure 11. Light blue regions indicate areas of sea-level inundation. (a) New York City and vicinity
with sea level in 2021; (b) and the extent of extreme flooding due to sea-level rise by 2100; (c) show
significant flooding pictured in the Central Park region of Manhattan, New York by 2050 and (d) 2100.
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Figure 12. (a) Here we show sea level at the present day (2021); (b) predicted extreme flooding by
2050 and (c) 2100 in Miami, Florida, and surrounding cities.

(b)

Figure 13. Here we show sea level (a) in 2021; (b) and predicted extreme flooding by 2050; (c) and

2100 in New Orleans, Louisiana and vicinity.

4. Discussion

Using the dynamic VAR(1)-SEM Model based on an existing public database, we have
confirmed a significant pathway, from rising levels of greenhouse gases, to air temperature
increase, to sea water temperature increase, to sea ice extent, to land ice (glaciers) mass loss,
and subsequently, to global sea-level rise. As expected, greenhouse gases were a significant
predictor of air temperature and global mean sea-level rise. In contrast, a controversial
discovery was that the sea ice turned out to be critical in keeping the effects of the dynamic
SEM Model. This could be due to a number of reasons. Firstly, declining sea ice means that
there is less white surface to reflect the incoming sunlight, which lowers the albedo and thus
leads to greater absorption and warming in the atmosphere, increasing the melting of sea
and land ice [30]. Secondly, sea ice is also integral to ocean circulation, as the brine rejection
below the sea ice increases the density of the water, causing it to sink and contribute to the
global ocean conveyor belt [30].

The VAR(3) model took up the three significant and most direct factors for global
sea-level rise from the dynamic SEM analysis. By using the optimal number of predictive
lags in time, which was found to be 3, the VAR(3) model rendered more refined forecasting
of sea level for the next 80 years, projecting a global mean sea-level rise of approximately
0.31 m by 2100. The GAM, which was found to be superior to the linear regression, was
able to link GMSL and RSL for three regions of interest: New York City and Long Island,
Miami, and New Orleans. The respective regional coastal sea-level rise projections were
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0.65 m for New York City and Long Island, 1.21 m for Miami, and 1.37 m for New Orleans
by 2100. Furthermore, the worst-case scenarios for flooding are projected to be 2.6 m by
2050 and 4.19 m by 2100, for New York City and Long Island; 2.55 m by 2050 and 3.98 m by
2100, for Miami; 2.41 m by 2050 and 3.54 m by 2100, for New Orleans.

Regional differences in elevation, ocean circulation, and coastal topography could
account for the differences in sea-level projections. When considering the increased scope
and severity of tidal flooding from sea-level rise, it is essential to factor in the thresholds for
major flooding scenarios. Decades ago, typically only powerful storms could cause coastal
flooding; however, due to regional sea-level rise, rather common wind events and season-
ally high tides are now often the main cause of coastal inundation in communities [31],
indicating that such events will persist and even worsen in future decades. Based on the
NOAA'’s major flooding threshold, our new RSL predictions, when analyzed in coastal
regions, show extensive flooding inland. Notably, flooding in Manhattan can be observed
reaching deep inland in the Central Park region, along with significant inundation along
the coast of Florida.

As a major objective of our analysis, we wish to develop a sensible open-box analysis
pipeline using publicly available data for sea-level rise prediction. We have found that
our predictions are aligned with major climate models from public agencies such as the
IPCC, which reports an estimated sea-level rise between 0.43 m (0.29-0.59 m) and 0.84 m
(0.61-1.10 m) [3]. This has convinced us that climate change and sea-level rise are not
fiction nor conspiracy. As temperature increases and climate change progressively worsens,
causing sea-level rise and extreme tidal flooding, millions of lives, property value, and
ecosystems are at stake. Potential impacts of recurrent coastal flooding extend beyond
sea-level rise. Examples include infiltration and degradation of stormwater and wastewater
systems, and saltwater intrusion that raises coastal groundwater tables [32]. Potential
responses for prevention measures could include building protective barriers, especially in
urban areas such as New York City, where infrastructure such as subways is unprepared
for the increased amount and severity of flooding, as evidenced by Hurricane Elsa in July
2021 [33]. Additionally, we hope our analyses encourages the protection of communities
that are disproportionately impacted by coastal flooding and are the most vulnerable to
socioeconomic damage. Developing sustainable technology and good management of
coastal communities is also essential. However, identifying the most appropriate way to
respond to sea-level rise is not straightforward and is contested with a range of gover-
nance challenges. Finding an ideal response to sea-level rise requires an assessment of
their relative effectiveness, technical limits, costs, drawbacks, and the specific governance
challenges associated with each type of response. Through our analysis, we hope to directly
impact public policy and opinion for the environmental protection of coastal properties
and proactive preparation from the impending climate crisis on the effects of sea-level rise
on communities.

Lastly, we acknowledge that our work is not without limitations. Even with our
model, it still remains a complex issue involving many other variables such as isostatic
adjustment, wind forcing, sea level pressure, or climatic periodicities. Additionally, to
account for the relatively low adjusted R? values for the GAM model, our confidence
intervals became much larger over time due to large noise in the dataset. Lastly, as the
data for the Greenland and Antarctic ice masses were only accessible from 1992, and as it
is critical to consider the proportions of missing data compared to the available dataset
when utilizing imputation, our ability to create more accurate forecasting of sea-level rise
was limited. As the concluding remark for our work, we call for public agencies to provide
more comprehensive data sets for citizen scientists in order to be able to independently
model, analyze, and thus verify critical claims on the ongoing climate crisis.
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