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Abstract: Understanding the factors that influence voter turnout is a fundamentally important
question in public policy and political science research. Bayesian logistic regression models are
useful for incorporating individual level heterogeneity to answer these and many other questions.
When these questions involve incorporating individual level heterogeneity for large data sets that
include many demographic and ethnic subgroups, however, standard Markov Chain Monte Carlo
(MCMC) sampling methods to estimate such models can be quite slow and impractical to perform in
a reasonable amount of time. We present an innovative closed form Empirical Bayesian approach
that is significantly faster than MCMC methods, thus enabling the estimation of voter turnout models
that had previously been considered computationally infeasible. Our results shed light on factors
impacting voter turnout data in the 2000, 2004, and 2008 presidential elections. We conclude with
a discussion of these factors and the associated policy implications. We emphasize, however, that
although our application is to the social sciences, our approach is fully generalizable to the myriads
of other fields involving statistical models with binary dependent variables and high-dimensional
parameter spaces as well.
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1. Introduction
Logistic Regression and Improvements to Bayesian Computation

From questions ranging from factors influencing voting decisions, to the determinants
of child poverty, to the success/failure of terrorist attacks, to medical outcomes, to consumer
choice, to baseball player hitting performance among others, modeling binary outcomes
is a fundamental question in myriads of fields [1–21]. With the proliferation of statistical
computing capabilities over the last several decades, incorporation of both unit-specific as
well as individual-level heterogeneity has become increasingly commonplace in applied sta-
tistical research. Researchers have developed a variety of methodologies for incorporating
heterogeneity including parametric and non-parametric Bayesian approaches, frequentist
finite mixture approaches, as well as combinations of both [22–28].

Yet despite improvements in statistical computing power over the course of the past
two decades, a practical challenge for such models—particularly their parametric Bayesian
implementations—lies in their computational costliness. Both in terms of memory and
computation time, estimating high-parameter models while incorporating unit-specific or
individual-level heterogeneity constitutes a non-trivial challenge. In the social sciences
in particular, these challenges are especially acute in certain applications with binary
outcomes, as many of these applications such as modeling vote or roll call choice [3–6],
voter turnout [7–9], and similar binary decisions [10,11] lend themselves to applications of
logistic regression.
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In this paper, we introduce an alternative method of estimation for logistic regression
models incorporating individual-level heterogeneity that renders associated estimation
considerably more computationally tractable. We then apply this method, based on poly-
nomial expansions, to a political behavior—voter turnout—that is both well-suited for
individual-level heterogeneity but nevertheless faces computational challenges due to the
large size of the data and associated parameter space. More specifically, following one
seminal paper on multilevel regression and poststratification (MRP) (Ghitza and Gelman
2013 [7]), we examine a dataset regarding voter turnout in three presidential elections (2000,
2004, and 2008) using Bayesian logistic regression to understand the factors influencing
turnout. Our analysis of this dataset, currently incapable of being estimated via existing
Markov Chain Monte Carlo (MCMC) methods, sheds light on the factors influencing voter
turnout over the course of three U.S. Presidential elections. Although our application is to
the social sciences, our method is fully generalizable to the myriads of other settings where
logistic regression is applicable as well.

2. Individual-Level Heterogeneity and Computational Challenges

A wide variety of applications in the social sciences benefit from the incorporation
of individual heterogeneity, at least in theory. Models of public opinion in particular
benefit from the incorporation of unit-specific or individual-level heterogeneity: there is
no a priori reason to believe a voter in New Jersey, for example, will respond to stimuli
identically to a voter in Texas. Similarly, certain individuals in the Deep South tend
to differ in important ways from their northern counterparts [29]. Nevertheless, given
the scale of common public opinion datasets such as the American National Election
Studies (ANES), Current Population Survey (CPS), and Cooperative Congressional Election
Study (CCES), incorporating individual-level heterogeneity likely implies an intractably
extensive parameter space. Ghitza and Gelman (2013), for example, explore voter turnout
using the CPS with Bayesian logistic regression analysis, in an important early political
science adaptation of MRP. However, even in their extensive application, the authors were
restricted in limiting their heterogeneity to particular subgroups within their dataset [7]. In
sum, although often theoretically justified, incorporating individual-level heterogeneity is
often concomitant with the drawbacks of the computational complexity associated with
numerical computation.

Although methodologists have developed an impressive number of estimation tech-
niques to deal with large numbers of estimands, most are nevertheless computationally
intensive as they pertain to individual-level heterogeneity. Frequently, researchers have
attempted to incorporate heterogeneity with parametric Bayesian models. However, with
limited data per individual in a data set, assuming a different parameterization for each
individual can potentially render a model statistically unidentifiable, making estimation
virtually impossible. In response, researchers will typically assume that these individual
response coefficients are drawn from their own lower-dimensional probability distribution.
They can then estimate these models from an empirical Bayesian perspective, or from
a fully Bayesian perspective by imposing priors on the parameters of the heterogeneity
distributions themselves [22,30]. Nevertheless, in addition to their computational intensive-
ness, commonly-used MCMC methods suffer from the drawback of sensitivity to starting
values and can consequently result in a significant amount of simulation error. Likewise,
numerical methods such as quadrature and simulated maximum likelihood methods can
be difficult and time consuming to implement, especially for large data sets involving
high-dimensional parameter spaces [31,32]. Given that the social sciences have seen a
growing interest in ever-larger data sets, such computational drawbacks are of importance.

To address this problem, we utilize polynomial approximations to develop an alterna-
tive, “MCMC-free” approach initially developed in Dayaratna (2014) [1]. As we will show,
this approach preserves the theoretical benefits of incorporating individual-heterogeneity
while providing a framework for tractable, practical estimation. We then apply this ap-
proach to the same data presented by Ghitza and Gelman (2013) and demonstrate not only
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the computational gains made possible by our method, but also the empirical insights
enabled by heightened attention to individual-level heterogeneity [7].

Our work builds upon previous scholarship that has employed some similar ap-
proaches for other models. For example, Everson and Bradlow (2002) used polynomial
expansions to approximate the posterior distributions of the beta-binomial random vari-
ables using a class of prior distributions previously considered non-conjugate [33]. Similarly,
Bradlow et al. (2002) used polynomial expansions to improve on researchers’ ability to
make posterior inferences about the negative binomial distribution [34]. In subsequent
research, McShane et al. (2008) used similar techniques to improve on Weibull count model
estimation [35]. Finally, Miller et al. (2006) used polynomial expansions to examine the
same problem examined here, namely for binary logistic regression [36]. Miller et al.’s ap-
proach, however, suffered from a serious limitation by requiring that the prior distribution
be single-sided. Consequently, their result, although nice in principle, is limited in scope,
as it is often unrealistic to be able to assume a priori that all coefficients have the same sign.

We address this limitation in this research by allowing the researcher to draw from
one of the richest and most commonly used two-sided prior distributions—the normal
distribution. Specifically, we offer a novel adaptation of Bayesian logistic regression with
an application to voter behavior. In particular, we examine a dataset of voter behavior from
three presidential elections (2000, 2004, and 2008) using our new approach to understand the
various factors influencing voter turnout. This dataset consists of over 140,000 observations
encompassing over 500 explanatory variables. As a result, incorporation of individual level
heterogeneity in analyzing a dataset of this size results in a parameter space consisting of
over 70 million parameters, thus far too large to estimate using standard MCMC methods.
We instead develop an alternative empirical Bayesian approach utilizing series expansions
that represents a viable alternative to existing MCMC methods. Although our approach
is not fully Bayesian, it nevertheless serves as an approximation to the fully hierarchical
Bayesian approach that is currently incapable of being estimated via existing MCMC
methods in this setting [30]. On a tangible level, our approach enables us to draw inferences
about the factors influencing voter turnout during these three elections. We conclude with
a discussion of these results, policy implications, and potential avenues of future research.

In the following section, we develop our alternative estimation technique for binary
logistic regression via polynomial expansions. Subsequently, we demonstrate the efficacy
of our approach by estimating our model on a dataset on voter turnout, which, as we
demonstrate, cannot be estimated by existing MCMC methods [7]. We emphasize, however
that our approach is fully generalizable to many other settings involving binary dependent
variables with high-dimensional parameter spaces as well.

3. Problem Formulation

As prefaced above, we utilize polynomial approximations as the basis of our alterna-
tive “MCMC-free” approach to estimation. We formulate our model as follows. Consider a
data set obtained from i ∈ {1, . . . , I} individuals (units) having j ∈ {1, . . . , J} categories
measured on t ∈ {1, . . . , Ni} occasions (repeated measures). As is standard, we define

yijt =

{
1 if outcome occurs for individual i pertaining to category j at time t
0 otherwise,

(1)

where pijt = Prob(yijt = 1) is the probability of a particular outcome occurring (e.g., choosing
to vote, choosing to form an alliance, living in poverty) for the ith individual pertaining
to the jth category on the tth occasion. Additionally, let p = 1, . . . , P represent a set of
attributes pertaining to the covariates, with corresponding values xijt,p ≥ 0 such that XT

ijt =

(xijt,1, . . . , xijt,P). To account for residual effects not manifested in the coefficient estimates
for the explanatory variables, we can allow xijt,1 = 1 defining category-level intercepts.

Multiplying over all individuals, categories, and occasions, we obtain the standard
logit likelihood of the data, Y = (yijt):
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P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

1 + eXT
ijt βi

, (2)

where βi = (βi,1, . . . , βi,P) is the coefficient vector for the ith individual with pth variable-
specific coefficient, βi,p and β = (β1, . . . , β I).

As argued above, our goal is to model individual- or unit-level heterogeneity, as there
is no reason to believe that all individuals will behave in an identical manner. We can model
this heterogeneity across individuals by allowing each βi,p to be drawn from probability
distributions. In doing so, we build upon the Miller et al. (2006) [36] approach, and take a
variety of steps, detailed below, to ameliorate the limitations of their approach.

3.1. Polynomial Expansions of the Binary Logit Model

We are interested in the following marginalized likelihood which we intend to maxi-
mize over our parameter space:

P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ. (3)

In the above equation, P(Y|β) is our standard logit likelihood with a prior distribution
N(β|Ω) and Ω represents the hyperparameters of our prior distribution. As mentioned
above, we have non-negative explanatory variables XT

ijt = (xijt,1, . . . , xijt,P) and binary
dependent variables Y = (yijt). We intend to maximize the above marginalized likelihood
over our prior distribution’s parameter space. Specifically, our logit likelihood is:

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

1 + eXT
ijt βi

, (4)

It is the heterogeneity across i = 1, ..., I individuals in their βi,p coefficients that we are
modeling by allowing these parameters to follow N(β|Ω). Due to the fact that the βi
appears in both the numerator and denominator of (4), performing the integration in
(3) analytically for most choices of heterogeneity distributions without any numerical
approximations is essentially impossible.

We can, however, take a series expansion approach to this problem and rewrite P(Y|β)
as follows:

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

1

1 + eXT
ijt βi

P(Y|β) = P1(Y|β)P2(Y|β). (5)

We refer to the second factor above as P2(Y|β) although it does not depend on Y. If we
assume XT

ijtβi < 0, we can expand P2(Y|β) via a geometric series expansion as follows [36]:

P2(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

1

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt ekijtXT
ijt βi . (6)

Putting together the pieces, we therefore have when XT
ijtβi < 0:
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P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

1

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt ekijt XT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt eyijt XT
ijt βi+kijt XT

ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e(yijt+kijt)XT
ijt βi

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e(yijt+kijt)∑P
p=1 xijt,p βi,p . (7)

If, on the other hand, we assume XT
ijtβi > 0, we can also use a geometric series expansion:

P2(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

1

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

e−XT
ijt βi

1 + e−XT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

e−XT
ijt βi 1

1 + e−XT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

e−XT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e−kijt XT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e−XT
ijt βi−kijt XT

ijt βi

P2(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e−(1+kijt)∑P
p=1 xijt,p βi,p . (8)

Furthermore, again putting together the pieces:

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

1

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e−(1+kijt)XT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt eyijt XT
ijt βi−(1+kijt)XT

ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e(yijt−1−kijt)XT
ijt βi

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

∞

∑
kijt=0

(−1)kijt e(yijt−1−kijt)∑P
p=1 xijt,p βi,p . (9)

In the next section we utilize these series expansions to derive closed-form expressions from
which we can make Bayesian inferences.
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3.2. Closed Form Bayesian Inference via Polynomial Expansions as Described in Miller et al. (2006)
Ideally, one would like to allow each βi,p to follow two sided prior distribution, under such

circumstances we would have a combination of both of the above situations, as well as when
XT

ijtβi = 0:

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijt XT
ijt βi

1 + eXT
ijt βi

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

[
eyijt XT

ijt βi

1 + eXT
ijt βi

(1)

]

=
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

[
eyijt XT

ijt βi

1 + eXT
ijt βi

[
I(XT

ijtβi > 0) + I(XT
ijtβi < 0) + I(XT

ijtβi = 0)
]]

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

[
eyijt XT

ijt βi

1 + eXT
ijt βi

I(XT
ijtβi > 0) +

eyijt XT
ijt βi

1 + eXT
ijt βi

I(XT
ijtβi < 0)

+
eyijt XT

ijt βi

1 + eXT
ijt βi

I(XT
ijtβi = 0)

]
.

This can be rewritten as:

P(Y|β) =
I

∏
i=1

J

∏
j=1

Ni

∏
t=1

 ∞

∑
kijt=0

(−1)kijt e(yijt−1−kijt)∑P
p=1 xijt,p βi,p I(

P

∑
p=1

xijt,pβi,p > 0)

+
∞

∑
kijt=0

(−1)kijt e(yijt+kijt)∑P
p=1 xijt,p βi,p I(

P

∑
p=1

xijt,pβi,p < 0)

+
eyijt ∑P

p=1 xijt,p βi,p

1 + e∑P
p=1 xijt,p βi,p

I(
P

∑
p=1

xijt,pβi,p = 0)

]
. (10)

As a result, the marginalized likelihood is:

P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ

=
∫

β

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

1 + eXT
ijt βi

N(β|Ω)dβ

=
∫

β

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

eyijtXT
ijt βi

1 + eXT
ijt βi

dPβi,p

P(Y|Ω) =
∫

β
P(Y|β)dPβi,p

where Pβi,p is the measure induced by βi,p on measurable space (Si,p, Fi,p).
When Miller et al. (2006) looked at this problem, the authors attempted to integrate

each βi,p individually for every potential value of i and p [36]. For a two-sided hetero-
geneity distribution, such as a normal heterogeneity distribution, this marginalization
would involve:
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P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ

=
∫

β

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

 ∞

∑
kijt=0

(−1)kijt e(yijt−1−kijt)∑P
p=1 xijt,p βi,p I(

P

∑
p=1

xijt,pβi,p > 0)

+
∞

∑
kijt=0

(−1)kijt e(yijt+kijt)∑P
p=1 xijt,p βi,p I(

P

∑
p=1

xijt,pβi,p < 0)

+
eyijt ∑P

p=1 xijt,p βi,p

1 + e∑P
p=1 xijt,p βi,p

I(
P

∑
p=1

xijt,pβi,p = 0)

]
·

P

∏
p=1

1√
2πσp

· e
−(βi,p−µp)2

2σ2
p dfii,p. (11)

As the range of βi,p is the entire real line, the limits of the integration space differ for the
first and second integrals depending on whether ∑P

p=1 xijt,pβi,p < 0 or ∑P
p=1 xijt,pβi,p > 0.

Miller et al. (2006) noted that integrating over both spaces would result in “numerous,
complicated subdivisions of the integration space.” These subdivisions, they argued, ren-
dered the integration “untenable” and precluded the derivation of “tractable closed-form
expansions.” As a result, the authors restricted their model to adhere to only one of the
above cases by requiring that XT

ijt be non-negative and stipulated that the density N(β|Ω)

being integrated over a probability distribution with positive support. Making the assump-
tion that N(β|Ω) was composed of independent gamma distributions g(βi,p|bp, np) with
parameters bp and np (i.e., N(β|Ω) = ∏P

p=1 g(βi,p|bp, np)), they derived the marginalized
likelihood as follows:

P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ

=
∫

β

I

∏
i=1

J

∏
j=1

Ni

∏
t=1

 ∞

∑
kijt=0

(−1)kijt e(yijt+kijt)∑P
p=1 xijt,p βi,p

P

∏
p=1

g(βi,p|bp, np)dfii,p


=

I

∏
i=1

∞

∑
ki11=0

· · ·
∞

∑
ki JNi

=0
(−1)∑J

j=1 ∑
Ni
t=1 kijt

P

∏
p=1

∫ ∞

βi,p=0
e−∑J

j=1 ∑
Ni
t=1(yijt+kijt)xijt,p βi,p

· 1
bpΓ(np)

(
βi,p

bp

)np−1

e−βi,p/bp dfii,p

=
I

∏
i=1

∞

∑
ki11=0

· · ·
∞

∑
ki JNi

=0
(−1)∑J

j=1 ∑
Ni
t=1 kijt

P

∏
p=1

 1

1 + bp ∑J
j=1 ∑Ni

t=1(yijt + kijt)xijt,p

np

Having made assumptions that the explanatory variables Xijt,p were restricted to the
set of non-negative integers, Miller et al. (2006) borrowed tools from analytic number theory
to rewrite the above equation in terms of solutions to a system of Diophantine equations,
which made estimating the model significantly more feasible from a computational perspec-
tive [37]. The interested reader is referred to Miller et al. (2006) for a complete discussion of
this methodology [36].

3.3. Bayesian Inference via Polynomial Expansions Using a Two-Sided Heterogeneity Distribution

Although the Miller et al. (2006) result is elegant mathematically, it is not particularly
useful to implement in practice as in most applications it is generally unrealistic to a priori
assume that the regression coefficients all have the same sign. However, for the case when
J = 1 and Ni = 1, a simple transformation of variables leads to very clean and tractable
integration, allowing us to integrate within distinct regions along the real line. Restricting J
and Ni in this manner is quite reasonable for many applied statistical problems including
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cross-sectional data analysis with a single category (such as the voter turnout application
looked at later in this study), longitudinal analysis of a single individual (such as the
baseball player hitting streak analysis conducted in Albright (1993) [15], or analysis where
the heterogeneity can be assumed across all observations of the data set (such as the terrorist
attack data analysis conducted in Kyung et al. (2011) or the data set used in the analysis of
medical outcomes in Wisner (1990) [2,14,15,36].

Specifically, if we make the assumption that pi = Prob(yi = 1) is the probability of
a particular outcome occurring (e.g., choosing to vote, living in poverty, occurrence of a
war, whether a citizen votes, decision to cosponsor legislation, etc.) for the ith individual
and again let p = 1, . . . , P represent a set of attributes describing the covariates, with
corresponding values xi,p such that XT

i = (xi,1, . . . , xi,P) and take the product across all
individuals i, the likelihood function is:

P(Y|β) =
I

∏
i=1

eyiXT
i βi

1 + eXT
i βi

, (12)

where βi = (βi,1, . . . , βi,P) and β are defined as before. Upon making these assumptions,
we can recall the marginalization presented in (11):

P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ

=
∫

β

I

∏
i=1

[
∞

∑
ki=0

(−1)ki e(yi−1−ki)∑P
p=1 xi,p βi,p I(

P

∑
p=1

xi,pβi,p > 0)

+
∞

∑
ki=0

(−1)ki e(yi+ki)∑P
p=1 xi,p βi,p I(

P

∑
p=1

xi,pβi,p < 0) +
eyi ∑P

p=1 xi,p βi,p

1 + e∑P
p=1 xi,p βi,p

I(
P

∑
p=1

xi,pβi,p = 0)

]

·
P

∏
p=1

1√
2πσp

e
−(βi,p−µp)2

2σ2
p dfii,p. (13)

In particular, since we are assuming that the βi,p follow independent normal dis-
tributions for p = 1, . . . , P (i.e., βi,p ∼ N(µp, σ2

p)) it follows that zi = ∑P
p=1 xi,pβi,p ∼

N(∑P
p=1 xi,pµp, ∑P

p=1 x2
i,pσ2

p). Therefore, if we define Pzi as the measure induced by zi on
measurable space (Ti, Gi) having density with respect to Lebesgue measure:

f (zi) =
1√

2π ∑P
p=1 x2

i,pσ2
p

e

−(zi−∑P
p=1 xi,p βi,p)

2

2 ∑P
p=1 x2

i,pσ2
p ,

then:

P(Y|Ω) =
∫

β
P(Y|β)N(β|Ω)dβ

=
∫

β

I

∏
i=1

eyiXT
i βi

1 + eXT
i βi

N(β|Ω)dβ

=
∫

β

I

∏
i=1

eyiXT
i βi

1 + eXT
i βi

dPβi,p

P(Y|Ω) =
∫

β
P(Y|β)dPβi,p .
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Applying our transformation we can see that [38]:

P(Y|Ω) =
∫

β
P(Y|β)dPβi,p

=
∫

TI

. . .
∫

T1

I

∏
i=1

P(yi|zi)dPzi

=
I

∏
i=1

∫
Ti

P(yi|zi)dPzi

=
I

∏
i=1

∫
zi

P(yi|zi)
1√

2π ∑P
p=1 x2

i,pσ2
p

e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi

P(Y|Ω) =
I

∏
i=1

Hi, (14)

where:

Hi =
∫ ∞

−∞

[
∞

∑
ki=0

(−1)ki e(yi−1−ki)zi I(zi > 0)

+
∞

∑
ki=0

(−1)ki e(yi+ki)zi I(zi < 0) +
eyizi

1 + ezi
I(zi = 0)

]

· 1√
2π ∑P

p=1 x2
i,pσ2

p

e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi.

We can decompose Hi into a sum of three integrals, Hi,1, Hi,2, and Hi,3 where Hi = Hi,1 +
Hi,2 + Hi,3.

Before we proceed, however, we present a simple integration lemma for integrating
an exponential against a normal distribution with mean µ and variance σ2, which involves
completing the square of the function.

Lemma 1 (Integrating an Exponential Against a Normal Distribution).

∫ ∞

c
ekx 1√

2πσ
e
−(x−µ)2

2σ2 dx = ekµ+ k2σ2
2 Φ

(
kσ2 − c + µ

σ

)
(15)

∫ c

−∞
ekx 1√

2πσ
e
−(x−µ)2

2σ2 dx = ekµ+ k2σ2
2 Φ

(
− kσ2 − c + µ

σ

)
(16)

where Φ(x) is the normal cumulative distribution function.
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Proof.∫ ∞

c
ekx 1√

2πσ
e
−(x−µ)2

2σ2 dx =
∫ ∞

c

1√
2πσ

ekx− (x−µ)2

2σ2 dx

=
∫ ∞

c

1√
2πσ

e
−1
2σ2 (x−µ)2+kxdx

=
∫ ∞

c

1√
2πσ

e
−1
2σ2 [[x−(σ

2k+µ)]2−(σ2k+µ)2+µ2]dx

=
1√
2πσ

e
−1
2σ2 [−(σ

2k+µ)2+µ2]
∫ ∞

c
e
−1
2σ2 [x−(σ

2k+µ)]2dx

= e
σ2k2

2 +kµ

[
1−Φ

(
c− (σ2k + µ)

σ

)]
∫ ∞

c
ekx 1√

2πσ
e
−(x−µ)2

2σ2 dx = ekµ+ k2σ2
2 Φ

(
kσ2 − c + µ

σ

)
. (17)

The computation of the second integral is quite similar. As a result of (Lemma 1),

Hi,1 =
∫ ∞

0

∞

∑
ki=0

(−1)ki e(yi−1−ki)zi
1√

2π ∑P
p=1 x2

i,pσ2
p

e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi

=
1√

2π ∑P
p=1 x2

i,pσ2
p

∞

∑
ki=0

(−1)ki

∫ ∞

0
e(yi−1−ki)zi e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi

Hi,1 =
∞

∑
ki=0

(−1)ki e
(yi−1−ki)

2 ∑P
p=1 x2

i,pσ2
p

2 +(yi−1−ki)∑P
p=1 xi,pµp

·Φ

 (yi − 1− ki)∑P
p=1 x2

i,pσ2
p + ∑P

p=1 xi,pµp√
∑P

p=1 x2
i,pσ2

p

. (18)

Hi,2 =
∫ 0

−∞

∞

∑
ki=0

(−1)ki e(yi+ki)zi
1√

2π ∑P
p=1 x2

i,pσ2
p

e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi

=
1√

2π ∑P
p=1 x2

i,pσ2
p

∞

∑
ki=0

(−1)ki

∫ 0

−∞
e(yi+ki)zi e

−(zi−∑P
p=1 xi,pµp)2

2 ∑P
p=1 x2

i,pσ2
p dzi

Hi,2 =
∞

∑
ki=0

(−1)ki e
((yi+ki))

2 ∑P
p=1 x2

i,pσ2
p

2 +(yi+ki)∑P
p=1 xi,pµp

·Φ

− (yi + ki)∑P
p=1 x2

i,pσ2
p + ∑P

p=1 xi,pµp√
∑P

p=1 x2
i,pσ2

p

. (19)

Hi,3 = 0 as it is an integral against a density on a set of Lebesgue measure zero. As a
result, as P(Y|Ω) = ∏I

i=1 Hi, we estimate our model via maximum likelihood estimation
by maximizing log P(Y|Ω) which is equivalent to:
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log P(Y|Ω) = log
I

∏
i=1

Hi

=
I

∑
i=1

log(Hi)

=
I

∑
i=1

log(Hi,1 + Hi,2), (20)

where Hi,1 and Hi,2 are defined as above. We state this result as a theorem as it is the main
result of this section.

Theorem 1 (Marginalized Logit Likelihood Assuming Independent Normal Prior Distri-
butions). The log marginalized likelihood of (12) assuming independent normal heterogeneity
distributions, based on a convergent series approximation to (3), is provided by:

log P(Y|Ω) =
I

∑
i=1

log(Hi,1 + Hi,2), (21)

where:

Hi,1 =
∞

∑
ki=0

(−1)ki e
(yi−1−ki)

2 ∑P
p=1 x2

i,pσ2
p

2 +(yi−1−ki)∑P
p=1 xi,pµp

·Φ

 (yi − 1− ki)∑P
p=1 x2

i,pσ2
p + ∑P

p=1 xi,pµp√
∑P

p=1 x2
i,pσ2

p

 (22)

Hi,2 =
∞

∑
ki=0

(−1)ki e
((yi+ki))

2 ∑P
p=1 x2

i,pσ2
p

2 +(yi+ki)∑P
p=1 xi,pµp

·Φ

− (yi + ki)∑P
p=1 x2

i,pσ2
p + ∑P

p=1 xi,pµp√
∑P

p=1 x2
i,pσ2

p

 (23)

Theorem 1 provides the marginalized likelihood, and we can estimate our param-
eters µp and σ2

p for p = 1, . . . , P by maximizing the above equation and compute asso-
ciated p-values to determine the statistical significance of the resulting estimates. This
marginalization reduces the parameter space from one of IP dimensions to 2P dimen-
sions, making model estimation on large data sets considerably more practical. Of course,
Equations (22) and (23) that form the two fundamental components of Equation (21) are
convergent series and in practice need to be truncated. In Section 4.2, we discuss a heuristic
for determining this truncation level.

As is the case with empirical Bayesian modeling, the approach presented here is inher-
ently more frequentist than Bayesian in nature as the model is estimated via the method of
maximum marginalized likelihood (MML) and p-values for associated coefficient estimates
are reported. Nevertheless, this empirical Bayesian approach is an approximation for fully
hierarchical Bayesian inferences and enables estimation for large data sets—including the
one presented in this study - that would otherwise not be feasible to estimate in real time.
Furthermore, analysis using both models would ultimately examine the same information
setting - namely estimates for lower dimensional parameters for the purpose of making
inferences regarding various sub-groups.
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4. Application: Individual-Level Heterogeneity and Voter Turnout

Having established the computational advantages of our approach, we now highlight
how these gains can aid important substantive applications. As we have underscored
already, the dramatic growth in the size and scope of datasets in political science has placed
increased importance on the computational efficiency of various methods. This importance
is compounded when estimated models with large numbers of parameters—particularly
those that seek to incorporate individual-level heterogeneity. Yet in spite of the theoretical
reasons to account for individual-heterogeneity, the computational expense associated with
doing so may deter researchers. In this section, we show that individual-level heterogeneity
is not only substantively consequential in practice, but that our estimation methodology
ameliorates the computational challenges associated with such heterogeneity.

4.1. Data

To demonstrate the substantive and methodological advantages of our approach,
we re-examine voter turnout data from the 2000, 2004, and 2008 presidential elections,
previously analyzed by [7]. Ghitza and Gelman (2013) use the data in a particularly high-
parameter application, MRP, leading them to explore a variety of combinations of variables
and groupings in an effort to generate models with strong capability for predicting future
voter-turnout numbers in various states.

The data for these analyses originally come from the CPS Post-Election Voting and
Registration Supplement (summarized in Table 1), and our dependent variable is intent
to vote in the specified presidential election. Explanatory variables include the election
year, state, ethnicity, income, age, sex, education, marital status, and the presence of
children in the survey participants’ households. Analysis consisted of 147,689 respondents
having complete data amongst the variables examined. Variables were benchmarked with
respect to the first variable in the Categories column. As Table 2 shows, incorporation of
interactions among variables in the dataset, similar to Ghitza and Gelman (2013), yielded a
total 546 explanatory variables in the analysis [7]. Since each normally distributed prior
distribution contains two parameters to estimate, our resulting model involved estimating
1092 variables.

Table 1. CPS Post-Election Voting and Registration Supplement.

Intent to Vote Percentage Ethnicity Percentage Income Percentage

Yes 71.60% White 80.35% $0–20k 11.60%
No 28.40% Black 8.10% $20–40k 23.10%

Latinx 6.79% $40–75k 29.40%
Other 4.76% $75–150k 22.10%

$150k+ 13.80%

Age Percentage Sex Percentage Education Percentage

18–29 10.80% Male 46.20% <HS 10.20%
30–44 33.30% Female 53.80% HS 32.00%
45–64 40.40% Some Coll 28.50%
65+ 15.50% Coll 19.00%

Post-Grad 10.3%

Marital Percentage Kids Percentage

Married 86.40% Kids 45.80%
Single 13.60% No Kids 54.20%
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Table 2. Variables in Regression Model.

Variable Categories Number of Variables After Benchmarking
First Variable

Main Effects Terms

Intercept Term 1 1

Election Year 2000, 2004, 2008 3 2

State 51 States (including District of Columbia) 51 50

Ethnicity White, Black, Latinx, Other 4 3

Income $0–20k, $20–40k, $40–75k, $75–150k, $150k+ 5 4

Age 18–29, 30–44, 45–64, 65+ 4 3

Sex Male, Female 2 1

Education <HS, HS, Some Coll, Coll, Post-Grad 5 4

Marital Status Married, Single 2 1

Kids Kids, No Kids 2 1

Interaction Terms

Variable Number of Interactions

Ethnicity × Income 4 × 5 = 20 20 19

State × Income 50 × 5 = 250 255 254

Ethnicity × State 4 × 50 = 200 204 203

Total number of terms 558 546

4.2. Truncation Levels

Equations (22) and (23) are convergent series that can be made arbitrarily close in prac-
tice upon truncating the series after an a priori specified number of terms. As higher-order
approximations provide greater accuracy at the expense of computational cost/time, how-
ever, there is a significant balancing act between these two factors in which the researcher
must engage. A key question therefore is the determination of a reasonable truncation level
for the series approximations. We developed a heuristic to do so by computing Equation (21)
under randomly chosen parameterizations for a variety of truncation levels as presented in
Figure 1. The heuristic bears a significant amount of similarity to the “elbow-method” used
to determine the optimal number of clusters in k-means cluster analysis [39].

As Figure 1 illustrates, however, the marginalized likelihood in Equation (21) for
estimation of the dataset discussed in Section 4.1 steadily increases after 25 terms but
stabilizes after 200 terms As a result, 200 terms is thus a reasonable and defensible truncation
level in terms of this application.
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Figure 1. Marginalized Likelihood Estimate Based on Various Truncation Levels of Series Approxi-
mation for Marginalized Likelihood in Equation (21).

4.3. Model Estimation and Results
4.3.1. Existing MCMC Methods

We initially attempted to answer the question about the factors influencing voter
turnout by estimating a hierarchical binomial logistic regression model in R via MCMC
methods using the R package bayesm [40] to obtain fully Bayesian inferences. Unfortunately,
due to the large number of explanatory variables and high dimensionality of the associated
parameter space as a result of imposing prior distributions on every survey respondent
(over 70 million parameters), we could not obtain even ten MCMC iterations over the
course in 48 hours of run time on Williams College’s High Performance Computing Cluster
(hereafter referred to as WHPCC), thus demonstrating the inability of existing MCMC
methods to be able to answer the question of interest.

4.3.2. Closed Form Bayesian Inferences Using Convergent Polynomial Approximations

As existing MCMC methods are incapable of answering our question of interest, we
drew upon our new MCMC-free approach to estimate the marginalized likelihood from
Equations (21)–(23). In particular, we utilized 64 cores and 128 GB of RAM on WHPCC [41]
to estimate our model via bootstrapping sub-samples of size 100,000 across 30 iterations
using the Benham et al. (2015) cross-entropy parallelized optimization routine [42]. We
truncated the series expansions depicted in Equations (21)–(23) and using the heuristic
presented in Section 4.2.

Regression coefficients largest in magnitude are presented in Figures 2 and 3.
Tables S10 and S11 from our supplemental material present statistically significant factors
µp and σp from Equations (21)–(23) influencing voter turnout based on the 2.5th, 50th, and
97.5th percentiles from this bootstrapping process. Table S10 contains the 2.5th, 50th, and
97.5th percentiles for statistically significant parameter estimates µp from the parameter
sample garnered via bootstrapping, estimated by standard smoothing techniques. Specif-
ically, if a particular percentile is based on smoothing the kth and k + 1st elements, then
the closest element to the estimated percentile is used as the basis for determining the
corresponding variance estimate. Table S11 contains the corresponding elements from
this bootstrapped sample with respect to Table S10. Figures 2 and 3 condense this infor-
mation, summarizing the main effects and interactions with the largest magnitudes from
the analysis.
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Figure 2. Selected Main Effects

Figure 3. Selected Interactions
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In terms of baseline associations, our results offer some interesting insights. For
example, Election Year 2008 was statistically significant, having a negative coefficient
estimate of −1.082. This estimate suggests, according to the CPS data, that there was
overall a lower propensity to turnout than the benchmark year 2000 as well as 2004—in
spite of the fact that 2008 is regarded as a high-turnout election. In fact, 2008 ultimately
had higher turnout than 2000 and 2004. However, as Ghitza and Gelman (2013) found,
increased turnout in the 2008 election appears to have been driven primarily by particular
racial minority groups. Black, Latinx, and other non-white voters saw a higher probability
of voter turnout with coefficients of 5.263, 1.684, and 1.218, respectively, with respect to
white voters. However, with respect to income, the only group that reached statistical
significance was the $20–40k income group, which had a coefficient of −3.053. Thus, while
some traditionally disadvantaged populations turned out in impressive numbers, others
actually had a lower probability of voting than others than other income groups including
the $0–20k benchmark.

Like Ghitza and Gelman (2013), we also recover considerable heterogeneity by state—
much of which not explained by traditional “battleground state” explanations. Arkansas,
Illinois, Maine, Michigan, Minnesota, and Wisconsin had the highest propensity of voter
turnout with coefficients ranging from 1.448 (Michigan) to 2.821 (Minnesota). Other states
were not statistically significant (within the 95% level). Additionally, age groups exhibit
considerable variation. Age groups from 30–44 and 45–64 have negative coefficients of
−6.586 and −2.447, respectively, while the group 65+ had a positive coefficient of 0.665
with respect to the under 30 age group.

Similar to Ghitza and Gelman (2013) —though in a fraction of the computation time
relative to MCMC—our analysis underscores the importance of including a wide variety of
interactions. Indeed, as Figure 3 indicates, variables such as race behave quite differently,
conditional on other factors. For example, white voters in the $20-40k income bracket had
a coefficient of −1.834, thus exhibiting a lower propensity to turnout than other groups,
while those in the $40–75 k bracket had a positive coefficient of 1.932 and thus had a
greater propensity to vote. Similar to white voters, Latinx and other non-white voters
earning $20–40k also had negative coefficients of −3.090 and −2.867, again suggesting
that these groups had a lower propensity to turnout. With regard to voter location, D.C.’s
and Maine’s $40–75 k income bracket, as well as the bracket exceeding $150k income
bracket of Mississippi, exhibited a high probability of turnout—while no other state-income
interactions reached significance. These estimates are consistent with what others have
expected of income to voter turnout ratios [43]. Finally, while black voters exhibited higher
turnout overall compared to other groups, some particular subsets turnout at especially
high rates. Black voters in Arizona, Michigan, Pennsylvania, South Dakota, and Virginia,
for example, exhibited considerable turnout rates. Likewise, Latinx voters in Arizona, New
Mexico, and Virginia, alongside other non-white voters from Alabama, Texas, and Utah,
saw a similarly turnout probability.

Beyond replicating findings from previous work, the computational advantages of
our approach enabled us to estimate unit-level heterogeneity, some of which is captured in
the variance parameters displayed in Figures 4 and 5. Indeed, whereas particular groups
and group intersections exhibited notably higher and lower levers of turnout, our results
also indicate that many of these groups and intersections displayed considerable variance
in their turnout rates. In other words, while some groups have high mean turnout, for
example, average turnout could be quite misleading for individuals within those groups
and subgroups.

Geographically, some states such as Arkansas, Maine, Michigan, and Minnesota exhib-
ited a high degree of variance, suggesting that there is a significant amount of heterogeneity
among voters in these states. This finding is important because small area estimation tech-
niques, such as MRP, rely upon national-level demographic trends to interpolate outcomes
of interest within geographic subunits. These results suggest that differential levels of
heterogeneity could complicate this process. Moreover, even within demographic groups
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themselves, particular groups exhibit considerable heterogeneity. In particular, those with
a high school education and those with some college education display a high degree of
variance. Similarly, middle-aged (Age 30–44 and 45–64 categories) appear quite heteroge-
neous in their behavior, again complicating their inclusion in predictive models used for
small area estimation.

Figure 4. Selected Variance Parameters, Main Effects.

Subunits and intersectionalities also present similar patterns of heterogeneity. For
example, African-Americans in particular states such as Michigan, Arizona, South Dakota,
and Pennsylvania exhibited rather high levels of heterogeneity in turnout, as did Latinx
Americans in New Mexico, Arizona, and Virginia. Other non-whites also vary considerably
by geographic units: such voters in Texas, Alabama, and Utah rank especially high in
their estimated variance parameters. Finally, our estimation procedure uncovered notable
heterogeneity among a variety of income-related subunits. For instance, low-income ($0–
20k) Latinx Americans and other non-black/Latinx non-whites displayed notable variance
in their turnout patterns. Likewise, lower-middle ($20–40k) and middle-income whites
displayed notable variances. Interactions between income and state also uncovered notable
heterogeneity on occasion, with high-income Mississippians exhibit large variance, along
with middle-income citizens in Maine and DC.
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Figure 5. Selected Variance Parameters, Interactions.

4.4. Discussion and Implications

Typically, incorporation of individual-level heterogeneity into an analysis of large
datasets such as the one used here in this study can be computationally infeasible under
standard MCMC methods. As we have demonstrated, however, our polynomial expansion
approach renders such models to indeed be estimated in real time.

Substantively, our results continue to affirm that black and young Latinx voters have
been key drivers of turnout in 21st Century presidential contests, while low income voters
continue to turn out much less frequently—even within high-turnout groups. From a policy
perspective, some have suggested that mandatory voter registration (MVR) could help
aid voter turnout [44]. However, in addition to concerns about election integrity that have
arisen in response to federal MVR proposals (e.g., von Spakovsky 2013 [45]), our results
also suggest that federal level policy may be poorly suited to the clear heterogeneity found
among groups within different states. That is, given how differently the same groups and
subgroups perform across state lines, single federal-level policy would almost surely be
poorly suited to address these differences. We believe that future applications may be able
to use our approach to further investigate these possibilities.

5. Conclusions and Future Research

High parameter models, particularly with large datasets, are becoming increasingly
common in statistical modeling. For example, the use of small-area estimation techniques,
such as MRP and Bayesian item response theory have generated a heightened interest in
the estimation of models with large numbers of parameters [46–52]. Although the inclusion
of such heterogeneity may not be feasible using existing MCMC methods, as we have
demonstrated in this paper, we offer an alternative approach via polynomial expansions
that offers insight regarding such heterogeneity amongst various groups groups and
subgroups as evident in Figures 2–5.
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From a statistical perspective, there are many potential avenues of future research
that this study should encourage. For example, in order to render the integration asso-
ciated with our polynomial expansions more feasible, we make the assumption in this
study that JNi = 1 in Equation (4). Future research can potentially look into weakening
this restriction, which would enable this model to be applicable to settings with repeated
measures. Additionally, a potential avenue of future research could be to explore other
methods of polynomial expansions and compare them to the approach using geometric
series expansions here. Furthermore, although we primarily concentrated on one particular
model (binary logistic regression) and one class of priors (the normal distribution), we
hope this study spurs research on closed-form Bayesian inferences for other models as well.
In particular, a positive feature of members of the exponential family is that each member
has a particular conjugate prior. It could be useful from a computational perspective to
use polynomial expansions to approximate posterior distributions within this family for a
choice of priors previously considered non-conjugate. Additionally, the binary logistic re-
gression model discussed here belongs to a larger class of generalized linear models (GLMs)
commonly called upon in applied research. A potential avenue of future research could
be to utilize polynomial expansions to allow researchers to make closed-form Bayesian
inferences based on other GLMs. Additionally, deriving a polynomial expansion approach
for the multinomial logistic regression model, a workhorse model in applied econometrics,
would also be a worthy endeavor of future research [13,53].

In sum, our methodology provides a series of both methodological and potential
substantive advantage that can improve statistical modeling in both political science, public
policy, as well as many other fields including where logistic regression is called upon
including medicine, marketing, and sports modeling [2,13,15,20]. We thus hope that this
approach provides yet another useful additional to the applied statistician’s toolbox.
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