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Abstract: We propose and demonstrate a new two-stage maximum likelihood estimator for param-
eters of a social relations structural equation model (SR-SEM) using estimated summary statistics
(Σ̂) as data, as well as uncertainty about Σ̂ to obtain robust inferential statistics. The SR-SEM is a
generalization of a traditional SEM for round-robin data, which have a dyadic network structure (i.e.,
each group member responds to or interacts with each other member). Our two-stage estimator is
developed using similar logic as previous two-stage estimators for SEM, developed for application
to multilevel data and multiple imputations of missing data. We demonstrate out estimator on a
publicly available data set from a 2018 publication about social mimicry. We employ Markov chain
Monte Carlo estimation of Σ̂ in Stage 1, implemented using the R package rstan. In Stage 2, the
posterior mean estimates of Σ̂ are used as input data to estimate SEM parameters with the R package
lavaan. The posterior covariance matrix of estimated Σ̂ is also calculated so that lavaan can use
it to calculate robust standard errors and test statistics. Results are compared to full-information
maximum likelihood (FIML) estimation of SR-SEM parameters using the R package srm. We discuss
how differences between estimators highlight the need for future research to establish best practices
under realistic conditions (e.g., how to specify empirical Bayes priors in Stage 1), as well as extensions
that would make 2-stage estimation particularly advantageous over single-stage FIML.

Keywords: structural equation model; social relations model; social network data; round-robin
design; maximum likelihood estimation; two-stage estimation; Markov chain Monte Carlo estimation

1. Introduction

Two-stage estimation is frequently applied in a variety of latent variable models.
For example, a structural equation model (SEM) has both measurement and structural
components (see Section 1.2 for details), and there is a long history of first using factor
analysis to estimate factor scores and subsequently treating the latter as data in a path
analysis (see [1] for an overview of such methods). The same approach is taken in item
response theory (IRT) by estimating plausible values of person parameters [2]. Individual
scores on categorical latent variables (i.e., latent class membership) can also be estimated
to use in subsequent structural analyses [3,4]. Two-stage estimation can be particularly
advantageous when estimating latent components of complexly structured variables, such
as multilevel data [5,6] and network data [7]. In this paper, we propose a two-stage
algorithm to estimate parameters of a social relations SEM (SR-SEM; [8,9]) for multivariate
dyadic network data. Our algorithm is inspired by similar ones proposed for estimating
multilevel SEM (ML-SEM) parameters [6] and for efficiently estimating SEM parameters
with multiply imputed data [10,11], both of which involve limited information analysis of
summary statistics (i.e., covariance matrices).

Our paper is structured as follows. Section 1.1 introduces dyadic network data and
the social relations model (SRM), including an overview of extensions and estimators in
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Section 1.1.2. Section 1.1.3 introduces multiple imputation, which is relevant for under-
standing how our Stage 1 results are prepared for Stage 2 estimation. We briefly introduce
SEM in Section 1.2, with some discussion about two-stage estimation approaches for mul-
tiply imputed data in Section 1.2.1 and for ML-SEM in Section 1.2.2. We then introduce
the SR-SEM in Section 1.2.3, which Nestler et al. [8,9] first proposed using single-stage
maximum likelihood estimation (MLE)—we refer to this as their full-information (FIML)
estimator. We describe our proposed two-stage MLE algorithm in Section 2 in the context of
an application to empirical data made publicly available on the Open Science Framework
(OSF; [12]) by Salazar Kämpf et al. [13]. Results of two-stage MLE and FIML are compared
in Section 3, with software syntax provided in the appendices and on our OSF project
(https://osf.io/2qs5w/). Section 4 discusses advantages and potential extensions of the
two-stage estimator, as well as necessary future research to validate the proposed method.

1.1. Social Relations Modeling

Dyadic variables are measured once for each member of a pair (e.g., friends, work
colleagues, romantic couples), and dyadic network data occur when each member in a
group provides data about each other member in the group (e.g., how much they like
each other person). Such data have a complex nesting structure, such that a bivariate
response vector y{ij} (e.g., person i’s liking of person j and vice versa) is dependent upon
outgoing and incoming random effects that are correlated within individuals. The SRM [14]
is a dyadic network model developed for (approximately) continuous data (e.g., random
effects and residuals are assumed to follow a Gaussian or “normal” distribution), and it is a
special case of Hoff’s [15,16] additive and multiplicative effects model for network data
(AMEN). Other related models include the latent interdependence model [17] and models
for traditional (i.e., dichotomous) social network data that indicate the presence/absence of
ties: p2 [18,19] and j2 [20]. We focus only on the SRM in this paper because other modeling
frameworks for social network data—such as the stochastic actor-oriented model [21] and
exponential random graph (or p∗) model [22–24]—deviate further from the SRM’s focus on
individuals and dyads.

The univariate SRM can be depicted as a random effects model [25,26] for the dyadic
vector yg{ij}, where the braces indicate that the ordering of members i ̸= j in group
g ∈ 1, . . . , G is arbitrary. Because each case i ̸= j ∈ 1, . . . , Ng in group g belongs to multiple
dyads dg ∈ 1, . . . , Dg, each bivariate dyadic observation is nested in the set of observations
in which case i is a member as well as in the set of observations in which case j is a member.
The SRM decomposes yg{ij} into case- and dyad-level components:

yg{ij} =

[
ygij
ygji

]
=

[
µg + Egi + Agj + Rgij
µg + Egj + Agi + Rgji

]
, (1)

where µg is the expected value of the observations (e.g., average amount of liking) in group
g. The subscript g can be dropped when modeling a single round-robin group/network, or
µ can be dropped altogether when data are modeled as (group-)mean centered. Egi and Agj
are case-level ego (outgoing) and alter (incoming) effects, respectively—for example, Egi
would represent how much person i likes others in general, and Agj would represent how
much person j is generally liked by others (i.e., likability). Each R is a dyad-level residual,
which captures any relationship-specific effects (e.g., how much i uniquely likes j beyond
what is expected from their case-level effects). More descriptive terms have been used for
Egi and Agj, such as actor and partner effects when yg{ij} are behavioral interactions (e.g.,
social mimicry; [13]) or perceiver and target effects when yg{ij} are interpersonal percep-
tions (e.g., of personality traits; [27]). However, case-level units of analysis might not be
people—the SRM can be applied to networks of countries, communities, or households [28].

https://osf.io/2qs5w/
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Each case’s vector of ego and alter effects is stored in a vector ugi, assumed bivariate
normally distributed:

ugi =

[
Egi
Agi

]
∼ N

([
0
0

]
, ΣEA =

[
σ2

E
σEA σ2

A

])
, (2)

where larger case-level variances σ2
E and σ2

A indicate greater heterogeneity of outgoing
or incoming effects, respectively. The correlation ρEA = σEA

σEσA
is referred to as generalized

reciprocity [27], which would be positive if (for example) those who have a propensity to
like people (less) are also generally (un)likable.

Each dyad’s pair of residuals is stored in a vector rg{ij}, also assumed bivariate nor-
mally distributed:

rg{ij} =

[
Rgij
Rgji

]
∼ N

([
0
0

]
, ΣR = σ2

R

[
1

ρR 1

])
, (3)

where the variance σ2
R is assumed equal for indistinguishable dyads (see ch. 8 of [29]).

Larger relationship variance indicates a greater degree to which (for example) relationship-
specific liking differs from what would be expected given person i’s general tendency to
like others and person j’s general tendency to be liked by others. The (residual) correlation
ρR between relationship effects is referred to as dyadic reciprocity [27], which would be
positive if person i particularly likes person j (i.e., more than would be expected given
person i’s general propensity for liking and person j’s general likability) while person j also
particularly likes person i (i.e., the liking is mutual).

The means in Equation (1) can be considered fixed effects (which is preferable when
modeling few round-robin groups) or random effects. The latter would entail assuming
they follow a normal distribution,

µg ∼ N (µ, σG), (4)

with grand mean µ and standard deviation σG. All (co)variances are generally assumed to
be invariant across round-robin groups.

1.1.1. Multivariate SRM

Bivariate SRM data have long been analyzed using ANOVA decomposition, but full
and restricted MLE were more recently proposed for multivariate SRM with several round-
robin variables [30]. When they are indicators of the same construct, modeling multiple
round-robin variables can allow for SRM effects to be disentangled from measurement
error [25,27]. When each round-robin variable represents a different construct, richer
research questions can be answered about correlations of SRM effects between variables.
We present a two-variable example based on the Salazar Kämpf et al. [13] data on social
mimicry and liking, about which we provide details in Section 2:

y1,gij
y1,gji
y2,gij
y2,gji

 =


µ1,g
µ1,g
µ2,g
µ2,g

+


E1,gi
A1,gi
E2,gi
A2,gi

+


A1,gj
E1,gj
A2,gj
E2,gj

+


R1,gij
R1,gji
R2,gij
R2,gji

, (5)

where group means for each variable remain equal within each dyad (see Equation (1)).
On average, there may be more liking within some round-robin groups than within

other groups; likewise, average mimicry may vary across groups. These group-level effects
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could be correlated, such that groups that exhibit more social mimicry tend to experience
more liking. This is captured by the covariance σ21,G between these variables:[

µ1,g
µ2,g

]
∼ N

(
µG =

[
µ1
µ2

]
, ΣG =

[
σ2

1,G
σ21,G σ2

2,G

])
. (6)

Within each round-robin group, people who engage in more social mimicry with
interaction partners (ego effect of Variable 1: E1) might also tend to like others more than
average (ego effect of Variable 2: E2) or they might be liked more by others (alter effect
of Variable 2: A2). These associations would be captured by case-level covariances (or
correlations, when standardized):

ugi =


E1,gi
A1,gi
E2,gi
A2,gi

 ∼ N
(

0
0
0
0

, ΣEA =


σ2

E1
σA1,E1 σ2

A1
σE2,E1 σE2,A1 σ2

E2
σA2,E1 σA2,A1 σA2,E2 σ2

A2


)

. (7)

Group- and case-level (co)variances are unconstrained. However, analogous dyad-
level correlations would require equality constraints [30], following similar logic as equal
residual variances σR in Equation (3): the order of members is arbitrary in an indistinguish-
able dyad. This yields intrapersonal and interpersonal dyadic correlations between vari-
ables:

rgi =


R1,gij
R1,gji
R2,gij
R2,gji

 ∼ N
(

0
0
0
0

, ΣR =


σ2

R1
ρR1 σ2

R1
σ2

R1
σ21,intra σ21,inter σ2

R2
σ21,inter σ21,intra ρR2 σ2

R2
σ2

R2


)

. (8)

For example, a positive intrapersonal correlation (ρ21,intra =
σ21,intra
σR1 σR2

) would indicate that

when person i especially likes person j, person i also especially mimics person j. Conversely,
a positive interpersonal correlation (ρ21,inter =

σ21,inter
σR1 σR2

) would indicate that when person i
especially mimics person j, person j especially likes person i.

1.1.2. SRM with Covariate Effects

The univariate SRM in Equation (1) has been extended by adding covariates, both
as predictors of random effects [7,28,31] and as auxiliary correlates [32]. Covariate effects
can be of substantive interest, but they can also alleviate bias in parameter estimates by
accounting for reasons why data went missing, thus justifying the missing-at-random
(MAR) assumption made by modern missing-data methods [33].

When modeling multiple round-robin groups, the group-level means can be modeled
as a function of group-level covariates (ξ):

µg = κ0 +
C

∑
c=1

κcξg,c + ζg, (9)

where C is the number of group-level covariates, κc is the effect of predictor ξc on group
means, and unexplained group differences are captured by the residuals ζg. The intercept κ0
will equal the grand mean only when all predictors are mean-centered. However, explaining
group-level variance is rarely the focus of research employing round-robin designs. In fact,
group-level variance is often negligible when people are randomly assigned to round-robin
groups, as in our real-data example (Section 2.1).
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When case-level covariates (x) predict ego and alter effects, the distributional assump-
tion in Equation (2) applies to their residuals ε and δ:[

Egi
Agi

]
=

[
∑P

p=1 βpxgi,p + εgi

∑P
p=1 αpxgi,p + δgi

]
, (10)

where P is the number of case-level predictors, βp is the effect of predictor xp on ego effects,
αp is the effect of predictor xp on alter effects, and unexplained individual differences are
captured by residuals εgi and δgi. For example, personality traits (x) such as openness to
experience and extraversion could be used to predict general liking (E) and likability (A),
respectively.

Likewise, dyad-level predictors q = 1, . . . , Q can be added to the Level 1 model:[
ygij
ygji

]
=

[
µg + Egi + Agj + ∑Q

q=1 γqwgij,q + ∑Q
q=1 λqwgji,q + Rgij

µg + Egj + Agi + ∑Q
q=1 γqwgji,q + ∑Q

q=1 λqwgij,q + Rgji

]
, (11)

where the intercept µg can be substituted to include group-level covariates, as in Equation (9).
The E and A terms in Equation (11) can also be substituted to incorporate predictors, as
in Equation (10). Dyad-level predictors can vary within a dyad (i.e., wgij ̸= wgji)—for
example, how attractive or agreeable each person thinks the other person is. However, pre-
dictors could also be constant within a dyad (wg{ij} = wgij = wgji)—for example, whether
a dyad contains same- or other-sex members, or how long the dyad members have been ac-
quainted. In the latter case, we cannot distinguish the intrapersonal from the interpersonal
effects in Equation (11) (γq = λq), so the predictor w{ij},q should only be included once.
However, even when a predictor W varies within a dyad with indistinguishable members,
intrapersonal (γ) and interpersonal (λ) effects are each constrained to equality across the
bivariate observations [30], just as residual variances σR are invariant in Equation (3).

Covariate effects have been estimated using MLE [26,34] and Markov chain Monte
Carlo (MCMC) estimation [15,31,33], the latter of which treats SRM’s random effects
[Egi, Agi]

′
as parameters to be estimated [31], similar to simpler hierarchical models with

random effects [35]. This approach is called data augmentation [36] and can be applied not
only to random effects but to other types of latent variable, such as factor scores in SEM [37],
person parameters in IRT [38], and latent responses in probit regression [39]. Missing
observations in partially observed variables can also be handled with data augmentation,
as Jorgensen et al. [33] demonstrated for the univariate SRM with incomplete data.

Two-stage estimation techniques have also been proposed, which allow SRM compo-
nents to enter models as predictors rather than being limited to outcomes as in Equation (10).
Stage 1 estimates of SRM effects were traditionally obtained using least-squares meth-
ods [40] but can also be obtained from mixed models [13,25] or SEM [41]. Treating estimates
of SRM effects as observed data yields an estimated covariate effect with underestimated
uncertainty (i.e., SE too small, confidence interval [CI] too narrow). Lüdtke et al. [7]
proposed using a modern missing-data technique to overcome this limitation: multiple
imputation. We introduce multiple imputation in the next section, which also discusses how
this method has been used for round-robin data.

1.1.3. Multiple Imputation of Plausible Values

To overcome limitations of single-imputation techniques, Rubin [42] proposed to
replace (“impute”) each missing value with a random sample of plausible estimates for
what values could have been observed. This was developed from a Bayesian framework,
following similar principles as data augmentation. However, rather than estimating param-
eters of the hypothesized analysis model, the goal is to save posterior samples of estimated
missing values, which are the multiple imputations that “complete” multiple copies of the
data set. Numerous algorithms are available to estimate distributions of missing values,
described in tutorial articles [43,44] and books [45–47] that also discuss the assumptions
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required for imputation models to yield unbiased estimates. Thus, rather than providing a
full treatment of multiple imputation here, we cover only the details that are relevant to the
scope of this article.

Analysis of multiple imputations can be roughly divided into three stages [45]. The
first stage involves specifying a model for the sampling distribution of observed and miss-
ing values, from which imputed values are sampled. This can be specified jointly for all
(or a subset of) incomplete variables (e.g., using a multivariate normal sampling distribu-
tion; [46]), or univariate imputation models can be specified for each incomplete variable
(i.e., a “fully conditional specification” with “chained equations”; [47]). Imputation models
can be relatively unrestricted or have constraints in line with hypothesized analysis models,
the former reducing bias but the latter increasing precision [48]. Once data have been im-
puted M times, Stage 2 involves fitting the hypothesized model(s) to each imputation—thus,
this method falls within the diverse family of two-stage estimation techniques.

A final Stage 3 involves pooling the M sets of results. Point and SE estimates are
pooled using “Rubin’s rules” [42]. Pooled point estimates ϑ̂ are simply an average of all
imputation-specific point estimates:

ϑ̂ =
1
M

M

∑
m=1

ϑ̂m. (12)

Pooling SE(ϑ) requires summing two sources of sampling variance: a within-imputation
component W and a between-imputation component B,

W =
1
M

M

∑
m=1

SE(ϑm)
2, (13)

B =
1

M − 1

M

∑
m=1

(ϑ̂m − ϑ̂)2, (14)

T = W +
(

1 +
1
M

)
B, (15)

where the total sampling variance T is the squared SE used for inference. The variance
components quantify two sources of uncertainty about point estimates, arising from distinct
aspects of sampling error. The first source of sampling variance (W) quantifies complete-
data uncertainty, which arises from the random process of sampling from a population,
thus introducing uncertainty even with complete data. The second source of sampling
variance (B) quantifies missing-data uncertainty, which arises from the random process
of measured variables being observed or missing. The pooled point and SE estimates can
be used to calculate pooled Wald-type statistics [49,50]; various methods have also been
proposed for pooled score [51] and likelihood-ratio test (LRT) [52,53] statistics, which are
asymptotically equivalent [54].

Mislevy et al. [2] proposed capitalizing on the multiple-imputation framework to
incorporate IRT person parameters as variables in standard regression-based analyses (i.e.,
two-stage estimation). Latent person parameters are sampled from the posterior (along
with estimated item parameters), and each posterior sample is treated as an imputation
of the unobserved person parameters. A regression model can be fitted to each imputa-
tion, and results are pooled across plausible-value samples so that inferences account for
uncertainty more appropriately than analyzing a single point estimate of each IRT person
parameter. This approach is also available to improve inferences based on factor-score
regression [55,56].

Lüdtke et al. [7] demonstrated how plausible values of SRM effects can be sampled
using MCMC and included in a person-level regression model. MCMC estimation typically
involves drawing several hundreds or thousands of samples from the posterior to draw
inferences about parameters, but only a few such posterior samples (spaced out or “thinned”
to avoid autocorrelation and minimize computational burden) would be used as multiple
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imputations. By embedding case-level SRM effects in a more complex multivariate system
of variables, the case-level model of an SR-SEM could feasibly be estimated using the
plausible-values approach ([7] p. 119). The approach we describe in Section 2 utilizes the
full posterior distribution of estimated summary statistics to improve stability relative to a
small posterior sample of person-level parameter estimates. The plausible-values approach
follows a similar two-stage estimation procedure (first estimating latent components, then
using them as data in a subsequent model), but it analyzes case-level data in Stage 2
estimation, whereas our limited-information approach analyzes summary statistics in Stage
2 estimation.

1.2. Structural Equation Modeling

We introduce SEM via the so-called “all-y” LISREL parameterization employed by
lavaan [57] and Mplus [58], which is composed of measurement and structural components.
In the measurement model, V observed “indicator” variables in the vector y are a linear
function of F ≤ V latent “factor” variables in the vector η, and the structural component
allows latent variables to be regressed on each other:

y = ν + Λη + ε, (16)

η = α + Bη + ζ. (17)

The measurement model in Equation (16) includes a vector of V intercepts ν; a V × F
matrix of factor loadings (linear regression slopes: Λ) relating indicators to latent variables;
and a vector of V indicator residuals ε. The structural model in Equation (17) includes a
vector of F latent-variable intercepts α; an F × F matrix of linear regression slopes relating
latent variables to each other (B, with diagonal constrained to zero); and a vector of F
residuals ζ. Indicator residuals are assumed to be uncorrelated with latent variables and
latent residuals, but each may covary among themselves and are assumed multivariate
normally distributed:

ε ∼ MVN (0, Θ) and ζ ∼ MVN (0, Ψ). (18)

Means and (co)variances of observed indicators are assumed to be structured as a
function of SEM parameters:

E(y) = µ(ϑ) = ν + Λ(I − B)−1α,

Var(y) = Σ(ϑ) = Λ(I − B)−1Ψ(I − B)−1′Λ
′
+ Θ,

(19)

with identity matrix I whose dimensions match B. SEM parameters to be estimated are
collected in a single vector ϑ, and sample estimates µ(ϑ̂) = µ̂ and Σ(ϑ̂) = Σ̂ of the model-
implied moments in Equation (19) are obtained by plugging in sample estimates of the
corresponding parameters. Various least-squares and ML estimators of ϑ̂ minimize the
overall discrepancy between observed summary statistics (ȳ and S) and corresponding
model-implied moments (µ̂ and Σ̂) [59]. Thus, under certain conditions (e.g., multivariate
normally distributed, no missing observations), SEM parameters can be estimated using
summary statistics as input rather than raw casewise data.

This section concludes by describing SEM for round-robin data (Section 1.2.3). How-
ever, first, there are two subsections that provide some context for how two-stage estimation
algorithms have been used to apply SEM to other complex data conditions. These algo-
rithms inspired the current proposal, described in Section 2.

1.2.1. Efficient SEM with Multiple Imputations

Fitting a specified SEM to multiple imputed data sets can become quite computation-
ally intensive for large, complex models. The ability to fit SEMs to summary statistics
motivated Cai and colleagues [10,11] to develop a less computationally intensive alterna-
tive. One can obtain pooled estimates of ȳ and S from multiple imputations by fitting a
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“saturated” model (unrestricted covariance matrix and mean vector), then averaging the
saturated-model estimates µ̂m and Σ̂m across imputations m = 1, . . . , M (i.e., Rubin’s rules).
The pooled estimates can then be used as input data to fit any hypothesized SEM(s) only
once, rather than M times. Although this would yield unbiased parameter estimates (given
satisfied distributional assumptions), there are two problems with this approach, for which
Cai and colleagues [10,11] proposed solutions.

The first problem with this approach is that the SEs of ϑ̂ would be underestimated
when relying on standard approaches that treat µ̂ and Σ̂ as observed summary statistics (ȳ
and S). The proposed solution [10] is to also apply Rubin’s rules to the (squared) SEs of
the estimated moments—or rather, to the entire asymptotic covariance matrix (ACOV) of
estimated parameters. The within-imputation component of the pooled ACOV is obtained
by averaging ACOVm across M imputations, and the between-imputation component
of the pooled ACOV is obtained by calculating (co)variances of point estimates across
imputations. The pooled ACOV can then be multiplied by the sample size N and used
as the “gamma” matrix (Γ = N × ACOV) in standard formulas for robust SEs (see Lee
and Cai, 2012 [10], p. 686, or Savalei, 2014 [60], Equation (14)). Computational formulas
for estimating Γ with (in)complete (non-)normal data Savalei and Rosseel (2022 [61], e.g.,
Equation (24) on p. 167), along with computational formulas for ACOV ([61] p. 168,
Equation (34) and Table 2).

The second problem with this approach (related to the first) is that a standard LRT
statistic of data–model fit would be overestimated. The proposed solution [10] is to calculate
a residual-based test statistic ([59] Equation (2.20a))

Tres = N × e
′
Γ−1e, (20)

where e = [µ̂, vech(Σ̂)]
′ − [ȳ, vech(S)]

′
is the vector of V∗ mean and covariance residuals,

V∗ = V(V+3)
2 is the number of sample means and (co)variances, and vech(.) is a half-

vectorizing function that yields nonredundant elements of a covariance matrix. Under
the H0, Tres is asymptotically χ2(d f ) distributed with d f equal to V∗ minus the number of
estimated SEM parameters in ϑ̂. Simulation studies [10,11] showed Tres maintained Type I
error rates close to nominal levels for this two-stage approach. Note that Tres utilizes the
same Γ matrix used to correct the SE (see Lee and Cai, 2012 [10], p. 686).

Lee and Cai’s [10] two-stage estimator was developed using MLE to obtain Stage 1
estimates. After introducing the SR-SEM in Section 1.2.3, we then describe in Section 2
how their two-stage estimator can be adapted to work with MCMC estimation in Stage 1.
However, first, we briefly present multilevel SEM (ML-SEM) to introduce the idea of using
SEM to model different levels of analysis.

1.2.2. Multilevel Structural Equation Model

When primary sampling units (e.g., persons i ∈ 1, . . . , Ng) are clustered within groups
g ∈ 1, . . . , G (e.g., students nested in schools), observed data yig will not be independent
observations because clustering introduces dependence among cases within the same group.
This violates the independence assumption of standard least-squares and ML estimators
of single-level data. The dependence in yig can be accounted for by disentangling the
between-cluster components (i.e., cluster means ȳg) and the within-cluster components (i.e.,
cluster-mean centered yig − ȳg). Optionally, the grand mean (ȳ) could be further partitioned
from cluster means:

yig = (yig − ȳg) + ȳg

= (yig − ȳg) + (ȳg − ȳ) + ȳ.
(21)

In the multivariate case, this generalizes to calculating cluster-specific mean vectors
(between-cluster components) to cluster-mean center the vector yig. The within-cluster
components of variables v = 1, . . . , V are distributed around a mean vector 0 with covari-
ance matrix SW , and the between-cluster components are distributed around grand mean
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vector µ with covariance matrix SB. The total covariance matrix ST of the composite vector
yig is the sum of these two orthogonal components:

ST = SW + SB. (22)

Structural equation models for clustered data were first introduced [62] by conduct-
ing the multivariate decomposition in Equation (21), calculating level-specific covariance
matrices in Equation (22), and fitting a level-specific SEM to the covariance matrix of its
corresponding level of analysis. Both levels can be modeled simultaneously by treating the
two level-specific covariance matrices as though they came from independent groups [63],
but tedious constraints must be specified to ensure the (log-)likelihood is correct. This is due
to the fact that SW and SB are not consistent estimators of their corresponding population
counterparts ΣW and ΣB (although SW would be a consistent estimator when all cluster
sizes Ng are equal; see Muthén, 1994 [63], p. 384 for details).

Analysis of casewise observations allows for less problematic full-information esti-
mators [64,65], although wide-format analysis of clusterwise observations [66–68] can be
applied when feasible (e.g., many small clusters, few variables). However, there are advan-
tages to fitting SEMs separately to each level of analysis, such as reduced computational
complexity and separately evaluating data–model correspondence at each level (see [69]
about the partially saturated approach to evaluating ML-SEM fit). Yuan and Bentler [6] pro-
posed consistent estimates of decomposed ΣW and ΣB, as well as their associated ACOVs,
which are used to obtain accurate SEs and a residual-based statistic based on Browne [59].
This two-stage approach to ML-SEM is conceptually similar to Cai and colleagues’ [10,11]
two-stage approach for SEM with missing data and thus is also analogous to our proposal
for round-robin data.

1.2.3. Social Relations Structural Equation Model

Round-robin data follow a more complex nesting structure than the two-level example
discussed in the previous section. Dyadic observations yij are cross-classified, nested under
the same cases in two ways: all dyads containing case i are nested under ego (actor or
perceiver) i, and all dyads containing case j are nested under alter (partner or target) j.
The multivariate SRM in Section 1.1.1 thus decomposes a covariance matrix of dyadic
observations Σy into case- and dyad-level components (and a group-level component, if
cases yg{ij} are additionally nested in multiple round-robin groups):

Σy = ΣG ⊗
[

1 1
1 1

]
+ ΣEA + ΣAE + ΣR, (23)

where a Kronecker product ⊗ is used to duplicate the elements of ΣG from Equation (6)
so the dimensions match ΣEA from Equation (7) and ΣR from Equation (8). The case-level
matrix ΣAE is a rearrangement of ΣEA, such that components are ordered [Alter, Ego, . . . ,
Alter, Ego] rather than [Ego, Alter, . . . , Ego, Alter]:

ΣAE =


σ2

A1
σE1,A1 σ2

E1
σA2,A1 σA2,E1 σ2

A2
σE2,A1 σE2,E1 σE2,A2 σ2

E2

 (24)

Thus, similar to specifying separate SEMs for each level of multilevel data [6], a distinct
SEM can be specified for each (group-, case-, or dyad-level) covariance matrix.

Only the group level contains mean-structure parameters (intercepts):

µg = ν + Λ(G)η
(G)
g + ε

(G)
g , (25)

η
(G)
g = α + B(G)η

(G)
g + ζ

(G)
g , (26)
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where µg contains the group components (Equation (6)); intercepts ν and α are defined

as they were for Equations (16) and (17); and the group-level latent variables in η
(G)
g ,

group-level residuals in ε
(G)
g and ζ

(G)
g , and group-level slopes in Λ(G) and B(G) are defined

analogously for group components as for single-level quantities in Equations (16) and (17).
Analogous distributional assumptions are also made about group-level residuals:

ε
(G)
g ∼ MVN (0, Θ(G)) and ζ

(G)
g ∼ MVN (0, Ψ(G)). (27)

Group-level model parameters (collected in vector ϑ(G)) imply a structure for the group-
level means and (co)variances in Equation (6):

µ(ϑ(G)) = ν + Λ(G)(I − B(G))−1α,

Σ(ϑ(G)) = Λ(G)(I − B(G))−1Ψ(G)(I − B(G))−1′Λ(G)′ + Θ(G),
(28)

where µ(ϑ(G)) and Σ(ϑ(G)) are the model-implied analogs to saturated-model parameters
µG and ΣG, respectively, in Equation (6).

Analogously, group g’s case-level components Egi and Agi of each variable are stored
in a vector ugi, arranged as in Equation (7). These components have their own measurement
and structural models:

ugi = Λ(u)η
(u)
gi + ε

(u)
gi , (29)

η
(u)
gi = B(u)η

(u)
gi + ζ

(u)
gi , (30)

where case-level common factors in η
(u)
gi are also expected to have ego and alter components

[8,9], as are case-level residuals in ε
(u)
gi and ζ

(u)
gi , which are distributed with case-level

covariance matrices:

ε
(u)
gi ∼ MVN (0, Θ(u)) and ζ

(u)
gi ∼ MVN (0, Ψ(u)). (31)

Case-level model parameters imply a structure for the case-level covariance matrix
(the model-implied analog to saturated-model parameter ΣEA in Equation (7)):

Σ(ϑ(u)) = Λ(u)(I − B(u))−1Ψ(u)(I − B(u))−1′Λ(u)′ + Θ(u). (32)

Finally, group g’s dyad-level (or “relationship”-level) components Rgij and Rgji for
each variable are stored in a vector rgd, arranged as in Equation (8). These components
have their own measurement and structural models:

rgd = Λ(r)η
(r)
gd + ε

(r)
gd , (33)

η
(r)
gd = B(r)η

(r)
gd + ζ

(r)
gd , (34)

where dyad-level common factors in η
(r)
gd follow the same pattern as dyad-level residuals in

ε
(r)
gd and ζ

(r)
gd , which are distributed with dyad-level covariance matrices:

ε
(r)
gd ∼ MVN (0, Θ(r)) and ζ

(r)
gd ∼ MVN (0, Ψ(r)). (35)

The dyad-level covariance matrices are subject to the same equality constraints depicted
in Equation (8); likewise, dyad-level slopes in Λ(r) and B(r) have equality constraints
consistent with indistinguishable dyads (see example in Section 2). These constraints on
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dyad-level model parameters therefore yield a model-implied structure for the dyad-level
covariance matrix that is analogous to the saturated-model parameter ΣR in Equation (8):

Σ(ϑ(r)) = Λ(r)(I − B(r))−1Ψ(r)(I − B(r))−1′Λ(r)′ + Θ(r). (36)

In the next section, we describe our proposed two-stage (limited-information) esti-
mator for the SR-SEM described in this section. However, first, we point out how our
SR-SEM formulation differs from the one first proposed by Nestler et al. [8], who proposed
a single-stage FIML estimator to obtain point and SE estimates. Our SR-SEM is formulated
to meet the needs of our data example, so it differs from their SR-SEM in at least two ways.

First, Nestler et al. [8] included effects of fixed exogenous covariates X on common
factors at case and dyad levels, which we exclude here for brevity and lack of relevance
to the data example. In principle, an SR-SEM could include exogenous-variable effects on
both indicators and common factors [70], and we speculate in Section 4 how our two-stage
estimator could be adapted for this extension.

Second, their model excluded a group level, which we include to demonstrate a
possible interest in modeling group-level (co)variances. When there is only one round-
robin group, the group-level covariance matrix ΣG = 0, and the mean structure could be
modeled at the case level (e.g., as means of ego or of alter effects, as Nestler et al. [8,9] chose
to represent means).

2. Materials and Methods

Our two-stage algorithm for estimating SR-SEM parameters was inspired by previous
two-stage SEM estimation algorithms, such as Cai and colleagues’ [10,11] method described
in Section 1.2.1 and the ML-SEM method of Yuan and Bentler [6] described in Section 1.2.2.
Both of these earlier two-stage estimators used a limited-information frequentist estimator
in Stage 2 (as we do), but they also used frequentist (e.g., ML or least-squares) estimators
in Stage 1. Our algorithm employs MCMC estimation for Stage 1, similar to the plausible-
values approach [7] or multiple imputation in general (see Section 1.1.3). Although MCMC
is typically used to draw inferences from a Bayesian perspective [15,31], we use MCMC sim-
ply to rely on its flexibility in capturing joint uncertainty of SRM-component (co)variances
among many variables. In principle, MLE could be used for Stage 1 estimation (e.g., by
fitting a saturated SR-SEM via the srm package [71]), a possibility we discuss in Section 4.

We show how our algorithm can be implemented using existing open-source software
packages in the R [72] environment, and we demonstrate the method using open-access
round-robin data [12,13]. We provide some relevant syntax in our Appendices, and all
syntax and data files are provided in this paper’s companion OSF project (https://osf.io/2
qs5w/).

2.1. Example Data

We begin by briefly describing the data [12], so that we can describe our algorithm
while providing the context of a concrete accompanying example. Salazar Kämpf et al. [13]
investigated the mediating role of social mimicry in the development of liking before and
after getting acquainted. German university students (N = 139) were assigned to 26 small
(Ng ∈ 4–6) same-sex groups of strangers. Preinteraction liking was measured on a 1–6 Likert
scale (higher scores indicated more liking) with 2 indicators (“I like this person” and “I would
like to get to know this person”). Within each group, students had a 5 min interaction with
each other group member, which was video-recorded so that three independent observers
could rate (on a 1–6 Likert scale) how much each participant mimicked their conversation
partner during the interaction. Postinteraction liking was measured by the same two indicators
as preinteraction liking, as well as by a third indicator (“I would like to become friends with
this person”).

We calculated composite scores to represent each construct: liking was the average
score across two (preinteraction) or three (postinteraction) indicators, with higher scores
indicating more liking. Likewise, the observed variable mimicry was the average score

https://osf.io/2qs5w/
https://osf.io/2qs5w/
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across the three raters, with higher scores indicating more social mimicry. Rather than
calculating composite scores for each construct, Salazar Kämpf et al. [13] used multivariate
SRM to disentangle relationship effects from dyad-level measurement error, so their path-
model results are not directly comparable to the path-model results we provide using FIML
or two-stage MLE. Although the SR-SEM opens the possibility of modeling these three
variables as common factors (each with 2–3 indicators), we opted to keep the example
application simpler by modeling composite scores.

Salazar Kämpf et al. [13] used univariate regression to estimate parameters of the
dyad-level model depicted in Figure 1 (comparable to their Figure 1 on p. 135). Note that
the paths among the lower three components are constrained to equality with the paths
among the upper three components, as implied by indistinguishable dyads. Residuals for
social mimicry are omitted from Figure 1 due to space constraints.

Liking
(Pre)
R1,gij

Liking
(Pre)
R1,gji

Social
Mimicry
R2,gij

Social
Mimicry
R2,gji

Liking
(Post)
R3,gij

Liking
(Post)
R3,gji

β
(r)
51,intra

β
(r)
51,intra

β
(r)
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β
(r)
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β
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β
(r)
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(r)
1,gij
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(r)
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1∗
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1∗

1∗

ψ
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1,1
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1,1

ψ
(r)
5,5
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(r)
5,5

ψ
(r)
2,1 ψ

(r)
4,3

ψ
(r)
6,5

Figure 1. Path diagram depicting hypothesized [13] dyad-level causal process. Equality constraints
consistent with indistinguishable dyads are reflected by using the same label for a pair of parameters.

Residuals for social mimicry (and their variance: ψ
(r)
3,3 = ψ

(r)
4,4) are omitted to save space.

We also fit an analogous path model at the case level, depicted in Figure 2. Salazar Kämpf
et al. [13] also estimated most of these paths in separate univariate regression models (pre-
sented in their online supplements [12]), but their report focused primarily on the dyad-level
results. Note that we do not specify equality constraints for this model, as we did for the dyad
level in Figure 1, because ego and alter effects are distinguishable. For the liking variables,
these are perceiver and target effects, respectively. For social mimicry (measured by behavioral
observation), these are actor and partner effects, respectively.

Salazar Kämpf et al. [13] did not have hypotheses about the group level of analysis,
and the SR-SEM of Nestler et al. [8] does not include a group-level component. Although
we can expect little group-level variance in their design due to the random assignment
of subjects to groups [13], we think it would be reasonable to hypothesize that groups
displaying more social mimicry would also elicit more postinteraction liking, on average,
across all interactions. For the sake of completeness, we additionally fit a group-level
path model, depicted in Figure 3. Note that there is only one component per variable (the
group average).
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Figure 2. Path diagram depicting case-level causal process. Residual variances for social mimicry

(ψ(u)
3,3 and ψ

(u)
4,4 ) are omitted to save space.
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Figure 3. Path diagram depicting group-level causal process.

2.2. Two-Stage Estimation of SR-SEM Parameters

Our two-stage method begins by estimating multivariate SRM parameters to obtain
point estimates of covariance matrices at each level of interest (group, case, dyad), as well
as estimates of their sampling (co)variances (i.e., ACOV). Stage 1 point estimates are then
treated as input data to estimate SR-SEM parameters in Stage 2.

2.2.1. Stage 1: Estimate Multivariate SRM Parameters

Whereas Nestler [30] proposed a Fisher-scoring algorithm to obtain ML estimates of
multivariate SRM parameters (see Equations (6)–(8)), Stage 1 of our two-stage method
utilizes MCMC estimation [15,31,33] by employing a modified Hamiltonian Monte Carlo
algorithm known as the No-U-Turn Sampler (NUTS) [73], available in the general Bayesian
modeling R package rstan [74,75]. Unlike other MCMC methods such as Gibbs sampling,
the NUTS simultaneously samples the entire vector of all unknown parameters from a
multidimensional parameter space. A practical advantage over Gibbs sampling is that
priors do not need to be conjugate, so researchers can specify prior distributions that are
intuitive to interpret.

The unknown parameters in Stage 1 included the round-robin variable means, the
level-specific random effects, and the SDs of—and correlations among—the random effects.
We used weakly informative priors to estimate the SRM distributional parameters (i.e., the
mean vector and level-specific covariance matrices). Given the scale of the observed data
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(1–6 Likert scale, median of possible values = 3.5), we specified priors for the round-robin
variable means as normal with unit variance, centered at µ = 3.5:

µG ∼ N (µ = 3.5, σ = 1). (37)

This prior reflects the belief that the mean is most likely to be in the range of 2.5–4.5 (68% of
probability mass) and is relatively unlikely (though not impossible) to be near the endpoints
of the scale. Viewing histograms of the round-robin variables easily confirms this is not
unreasonable for these data.

As advised by Gelman [76] and recommended by the Stan developers (who maintain a
web page with recommendations and further reading about specifying priors: https://gith
ub.com/stan-dev/stan/wiki/Prior-Choice-Recommendations#prior-for-scale-parameter
s-in-hierarchical-models, accessed on 27 January 2024), the SDs of level-specific random
effects were specified with Student’s td f=4 distributions, truncated below at zero (so SDs
could not be negative). The kurtosis ( 6

d f−4 ) is undefined due to division by 0 (thus ap-
proaches infinity in the limit), making it less restrictive than a truncated normal distribution
about values being much larger than the mean. Simulation research has shown that this
prior works well in variance-decomposition models [77], and it is the default prior for scale
parameters in the R package brms [78]. Stan provides location (µ) and scale (σ) parameters,
to center the t distribution at a different mean or to have greater variance. We selected
scaling parameters for each variance component to reflect our prior belief (based on most
empirical SRM research) that the majority of variance would be relationship-specific (i.e.,
at the dyad level). Given that the total variance of each round-robin variable was slightly
greater than 1 (min = 1.05, max = 1.144), a t distribution centered at 0.5 places a mode at
nearly 50% of the total variance, but a scaling parameter of 0.5 still allows for a high prior
probability that the relationship variance is as little as 0 or as large as 1 (which would be
nearly 100% of the observed variance):

σR ∼ t(d f = 4, µ = 0.5, σ = 0.5). (38)

Given that the groups were formed by random assignment, we expected very little group-
level variance, and so the prior mean of σG was specified as quite small:

σG ∼ t(d f = 4, µ = 0.05, σ = 0.5), (39)

whereas we expected the person-level effects to have larger variance components (thus,
higher prior means):

σE and σA ∼ t(d f = 4, µ = 0.25, σ = 0.5). (40)

Priors for all SDs were specified with scaling factors of σ = 0.5, making them only weakly
informative because no variance component was precluded from being as small as 0 or as
large as 1.

Priors for the group- and case-level correlation matrices (Σ∗, i.e., standardized covari-
ance matrices Σ) were specified to follow an LKJ distribution [79]:

Σ∗
G and Σ∗

EA ∼ LKJ(η = 2) (41)

A shape parameter η = 1 would imply a uniform distribution (i.e., all correlation matrices
are equally likely, with values spanning ±1), whereas higher values of η > 1 correspond to
distributions with a mode at the identity matrix (i.e., correlations of zero) and correlations
distributed symmetrically around zero. Thus, a value of η = 2 is close to a uniform
distribution but with a slightly higher probability of correlations being smaller than larger
in absolute value. This expectation conforms to most published SRM results, where large
correlations (r > 0.5) are much rarer than small-to-moderate correlations. However,

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations#prior-for-scale-parameters-in-hierarchical-models
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations#prior-for-scale-parameters-in-hierarchical-models
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations#prior-for-scale-parameters-in-hierarchical-models
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the “low” mode at the identity matrix is only weakly informative, so the posterior is
overwhelmingly influenced by the data.

The dyad-level correlation matrix has several equality constraints reflecting indis-
tinguishable dyads, whereas an LKJ prior’s only restriction is that the correlation matrix
is positive definite. Given V round-robin variables, the number of unique covariances
ΣG (=correlations in Σ∗

G) would be V(V−1)
2 and the number of unique covariances in

ΣEA would be 2V(2V−1)
2 . However, the number of unique covariances in ΣR would be

V + V(V − 1), consisting of V dyadic reciprocities (one per variable), V(V−1)
2 intrapersonal

correlations between variables, and V(V−1)
2 interpersonal correlations between variables

(e.g., Equation (8)). An LKJ prior would not allow for these equality constraints, so a prior
must be specified to sample each correlation separately, which are then scaled to covariances
and placed into their appropriate positions in Σ∗

R. To maintain the requirement that Σ∗
R is

positive definite, Lüdtke et al. [7] proposed placing constraints on the determinants of its
principle minors, as described by [80]. Although this was shown to be feasible for bivariate
models when using Gibbs sampling via WinBUGS [7,80], specifying such constraints for
multivariate SRMs with arbitrary V > 2 becomes infeasibly tedious. Luckily, the blavaan
package [81] has already demonstrated that the adaptive nature of Stan’s NUTS algorithm
tends to “learn” quickly during the warm-up samples to avoid non-positive-definite (NPD)
corners of the parameter space that lead to rejecting the sample.

Inspired by the priors used for correlations in the blavaan package [81], rescaled Beta
distributions were specified as priors for all correlations at the dyad level:

ρR, ρintra, and ρinter ∼ Beta−1,1(α = 1.5, β = 1.5). (42)

A Beta−1,1(.) distribution provides support on the {−1, 1} scale (rather than the usual {0, 1}
scale) by multiplying a sampled value by 2 then subtracting 1. A Beta prior with α = β = 1
corresponds to a perfectly uniform distribution, where larger shape parameters imply
sharper peaks, remaining symmetric as long as α = β (implying the highest prior density
at a correlation of 0). Our chosen shape parameters in Equation (42) were 1.5, yielding very
little density for extremely large absolute values of correlations. Specifically, the central
60% of probability density for a Beta−1,1(1.5, 1.5) distribution captures correlations of ±0.5,
and the central 90% captures correlations of ±0.8. One can visualize this distribution with
the R syntax: curve(dbeta((x+1)/2, 1.5, 1.5), from = −1, to = 1). Thus, similar
to the LKJ priors, the parameters of these Beta priors were specified such that there was
a “low” mode at correlations of zero but were similar enough to a uniform distribution
spanning ±1 that posterior distributions were overwhelmingly influenced by the data.

Although it is possible to sample combinations of correlations that yield NPD cor-
relation matrices, such samples are less likely given the slight prior restrictions on very
large correlation values. Nonetheless, NPD matrices were frequent enough during the
adaptation phase that the algorithm would fail before sampling. To avoid this, we chose
to randomly sample starting values from a smaller range—drawn from a U(−0.5, + 0.5)
distribution—rather than from Stan’s default U(−2, + 2) distribution, using the argument
init_r = 0.5 (see Appendix B).

Hyperpriors for random effects parameters at the group and case levels were ef-
fectively the covariance matrices implied by the estimated correlations and SDs (see
Equations (6) and (7), respectively). However, as the Stan syntax in Appendix A reveals,
we achieved greater stability and computational efficiency in two ways. First, we used
Stan’s Cholesky parameterization of the multinormal sampling function, which uses a
Cholesky decomposition of the correlation matrix that we calculated in our Stan syntax.
Second, we sampled random effects from multivariate standard-normal distributions (i.e.,
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with unit variance). The sampled random effects were then multiplied by their respective
SDs when calculating expected values ŷg{ij} for each dyadic observation:

ŷg{ij} =


ŷ1,gij
ŷ1,gji

...
ŷk,gij
ŷk,gji

 =


µ1,g
µ1,g

...
µk,g
µk,g

+


E1,gi
A1,gi

...
Ek,gi
Ak,gi

+


A1,gj
E1,gj

...
Ak,gj
Ek,gj

. (43)

Finally, each dyadic observation’s likelihood was specified as a multivariate normal
distribution with mean vector equal to the expected values in Equation (43):

yg{ij} ∼ MVN (µ = ŷg{ij}, ΣR) (44)

where ΣR is the dyad-level covariance matrix. As with the random effect hyperpriors,
our Stan syntax in Appendix A uses the Cholesky parameterization for computational
efficiency. Note that when the vector of observations yg{ij} is incomplete, the likelihood
in Equation (44) is also the prior for missing data that are sampled from the posterior (i.e.,
data augmentation; [31,33]).

Four chains of 5000 iterations—2500 burn-in and 2500 posterior samples—each were
used to estimate the joint posterior distribution of model parameters, yielding 10,000 poste-
rior samples for inference. Initial values for each Markov chain in Stage 1 were randomly
sampled from a uniform distribution. Convergence was diagnosed by inspecting traceplots
to verify adequate mixing. Effective posterior sample sizes were sufficiently large for
all parameters (range: 282–10,100), and all parameters had a sufficiently small potential
scale-reduction factor (PSRF [82] or R̂ ≤ 1.01). The multivariate PSRF [83] was 1.03, which
we deemed sufficiently small for the purposes of this demonstration. See Appendix B for R
syntax to fit the Stan model in Appendix A.

2.2.2. Prepare Stage 1 Results for Stage 2 Input

Following MCMC estimation in rstan, we calculated the covariance matrix implied
by the estimated correlations and SDs in each posterior sample (see Appendix B.1). Point
estimates were computed as the average of the estimated (co)variances across posterior
samples—i.e., expected a posteriori (EAP) estimates. This is analogous to Rubin’s rules for
pooled estimates across multiple imputations of missing data. The missing values in our
example are latent variables (i.e., random effects, which are missing for all sampling units),
and every posterior sample imputes (or “augments”) those missing values by sampling
them from the posterior. However, our interest is not in those plausible-value estimates
but in the summary statistics used as their hyperparameters. Thus, the Stage 1 output of
interest includes three level-specific covariance matrices between the SRM components
(and group-level means). Interpreting these multivariate SRM parameters might also be
of substantive interest, in which case uncertainty about estimates can be quantified by
computing credible intervals from the empirical posterior distribution.

Next, we prepare Stage 1 results for ML estimation of SR-SEM parameters in Stage 2
by adapting methods described in Section 1.2.1 for efficient SEM estimation with multiple
imputations. We must prepare point estimates (EAPs, as described above) of level-specific
summary statistics to use as input data. To obtain SEs and test statistics that account for the
uncertainty of the estimated summary statistics, we must calculate Γ = N × ACOV, as we
describe next.

When using multiple imputations of missing data, Section 1.1.3 explained that two
sources of uncertainty (complete- and missing-data sampling variance) must be pooled.
This is because imputed data sets are analyzed using complete-data statistical methods
after the incomplete data are imputed using a separate statistical model. The missing-
data component (B) then needs to be added to the complete-data component (W) of
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overall sampling variance. Using MCMC makes this unnecessary because the missing data
(random effects) are augmented during estimation of the parameters of interest, so the
imputation and analysis models are concurrent.

Therefore, an estimate of the ACOV matrix is obtained simply by computing the
posterior sampling (co)variances between the SRM mean and (co)variance parameters
estimated in Stage 1. The calculation is conducted by arranging a data matrix with SRM
parameters of interest in columns, and each row contains a sample from the posterior
distribution. We then use scalar multiplication to obtain Γ̂ by multiplying the level-specific
ACOV by that level’s number of observations. Appendix B.1 shows how the computation
can be conducted in R for the dyad-level SRM parameters, which in our example had
a dyad-level sample size of ∑ Dg = Nd = 309 observed interactions. Our OSF project
(https://osf.io/2qs5w/) provides R syntax for these calculations at the dyad, case, and
group levels.

2.2.3. Stage 2: Estimate SR-SEM Parameters

Estimation of the SR-SEM parameters described in Section 1.2.3 can proceed by passing
Stage 1 estimated summary statistics as input data to standard SEM software. We used the
R package lavaan [57] to separately specify and estimate a SEM for each level of analysis.
It is also possible to specify a multilevel SR-SEM for multiple levels simultaneously by
treating each level as an independent group in a multigroup SEM. We provide lavaan
syntax to specify a multilevel SR-SEM as a multigroup SEM in our OSF project (https:
//osf.io/2qs5w/). Obtaining the true likelihood of the data would require constraints
based on (average) network size, as suggested for ML-SEM estimation using “MuML” [63].
Determining the weights needed to apply such constraints lies beyond the scope of the
current work and is unnecessary given the use of a residual-based rather than likelihood-
ratio test statistic [10,11]) by minimizing the usual ML discrepancy function:

F̂ML = log |Σ̂0| − log |Σ̂1|+ trace(Σ̂1Σ̂−1
0 )− p

+ (µ̂1 − µ̂0)
′Σ̂−1

1 (µ̂1 − µ̂0),
(45)

where p is the number of (components of) variables being modeled; Σ̂1 is the saturated-
model Stage 1 estimate of a level-specific covariance matrix in Equations (6), (7), or (8)
(analogous to a sample covariance matrix S of observed variables in standard SEM); and
Σ̂0 = Σ(ϑ̂0) is a nested covariance matrix constrained as a function of estimated level-
specific model parameters ϑ̂ (see Equations (28), (32), and (36) for population formu-
lae). Analogous mean-structure parameters µ̂1 and µ̂0 = µ(ϑ̂0) in the last added term of
Equation (45) are only an option in the group-level model (Equation (28)). Note that the
discrepancy function in Equation (45) is applied to any level-specific summary statistics, so
it is not equivalent to the likelihood function in Ref. [8] (p. 877, Equation (19)), which is
defined for observed round-robin variables rather than for their latent components.

The lavaan syntax to specify the structural model for the relations between the SRM
components at the dyad level is presented in Appendix C. Syntax to specify SR-SEMs at
the group and case levels can be found in our OSF project (https://osf.io/2qs5w/). In
traditional SEM, there is no matrix of regression slopes among observed variables, only
among latent variables (i.e., B in Equation (17)). However, when an observed variable y is
regressed on another in lavaan model syntax, lavaan implicitly “promotes” the observed
variable to the latent space by treating it as a single-indicator factor (i.e., Λ = I, so each
λv,v = 1) without measurement error (i.e., Θ = 0, so each θv,v = 0). In srm syntax for FIML
(also provided in our OSF project: https://osf.io/2qs5w/), the single-indicator factors
must be specified explicitly to conduct a path analysis. In both lavaan and srm syntax,
equality constraints representing indistinguishability can be specified by using the same
label for multiple parameters (see Appendix C).

The Γ̂ matrix can be passed to the lavaan() argument NACOV= in order to obtain
corrected SEs for Stage 2 point estimates [10,11]; see Savalei [60] for more details. The

https://osf.io/2qs5w/
https://osf.io/2qs5w/
https://osf.io/2qs5w/
https://osf.io/2qs5w/
https://osf.io/2qs5w/
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same Γ̂ matrix is also used to calculate a residual-based test statistic [59] to test the null
hypothesis of equal Σ0 = Σ(ϑ) and saturated-model Σ1 matrices. The end of Appendix C
shows how to request χ2-based fit indices using the residual-based statistic, but we do not
report fit indices here. Further research is warranted to investigate the sampling behavior of
fit indices using this method. Other standard outputs are also available from lavaan, such
as standardized solutions to report effect sizes and correlation residuals to assist diagnosing
model misspecification.

3. Results

In this section, we report the Stage 1 and Stage 2 results for all three levels: dyad, case,
and group. For Stage 1, we present the EAP results, which we use as input for Stage 2
estimation, although it is also possible to use other posterior summaries—such as the mode
or maximum a posteriori (MAP) or the median (50th percentile) of the posterior distribution.
In each of the following subsections, we provide two tables. The first presents Stage-1 point
estimates: the (co)variances among the SRM components in the lower triangles (including
the diagonal) and the corresponding correlations in the upper triangles (italicized). The
second presents Stage-2 point and SE estimates, as well as standardized point estimates.
We interpret Stage 2 results for pedagogical purposes, even if a parameter estimate is not
statistically significant. We also compare our Stage 2 results to FIML [8] using the srm
package, presented in the right columns of the second table in each subsection.

3.1. Dyad-Level SR-SEM Results

Dyad-level Stage 1 (co)variances and correlations are presented in Table 1. Given
that the dyads were indistinguishable [13], covariances between the ij and ji components
are constrained to equality (see Section 1.1.1)—for example, the intrapersonal covariances
between preinteraction liking ij and mimicry ij (0.060) and the interpersonal covariances
between mimicry ij and postinteraction liking ji (0.102) in Table 1.

Table 1. Stage-1 covariance matrix among dyad-level SRM components.

SRM Component 1 2 3 4 5 6

1. Liking (pre) R1,ij 0.750 .110 .090 .030 .346 .102
2. Liking (pre) R1,ji 0.083 0.750 .030 .090 .102 .346
3. Social Mimicry R2,ij 0.060 0.020 0.608 .657 .108 .147
4. Social Mimicry R2,ji 0.020 0.060 0.399 0.608 .147 .108
5. Liking (post) R3,ij 0.267 0.079 0.075 0.102 0.793 .229
6. Liking (post) R3,ji 0.079 0.267 0.102 0.075 0.182 0.793

Note. EAP estimates of covariances provided in the lower triangle (including the diagonal), EAP estimates of
correlations (italicized) in the upper triangle.

Using the estimates in Table 1 as input data for Stage 2 resulted in a dyad-level
structural model wherein β

(r)
61,inter = β

(r)
52,inter = 0. The residual-based χ2(10) = 1.255,

p > .999, did not provide evidence against these constraints, so the hypothesis of exact
data–model fit could not be rejected. However, the test statistic reported in the summary()
output has too many d f because it does not account for equality constraints that follow
from analyzing indistinguishable dyads. Even if we were to estimate the two slopes that
were fixed to zero, we would still constrain those two slopes to equality (β̂(r)

61,inter = β̂
(r)
52,inter),

so our test statistic should really have only d f = 1.
The problem is that the test statistic is derived by comparing the covariance matrix

implied by estimates in Table 2 to estimates from a saturated model (in Table 1), in which
equality constraints for indistinguishable dyads should also be specified. That is, there
are only 12 unique parameter estimates in Table 1 (three variances, three dyadic reciproc-
ities, three interpersonal covariances, and three intrapersonal covariances). Appendix C
demonstrates how to appropriately specify a more constrained saturated model, whose
χ2 = 0 but has d f = 9 indistinguishability constraints (3 for variances, 3 for interpersonal
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covariances, and 3 for intrapersonal covariances). The fitted model’s test statistic is then
the difference between the naïve statistics of the null-hypothesized model (χ2

0) and of the
constrained saturated model (χ2

1):

∆χ2 = χ2
0 − χ2

1 = χ2
0 − 0 = χ2

0, (46)

which is the same as the fitted model’s χ2
0 because the saturated model fits perfectly

(χ2
1 = 0). However, the correct degrees of freedom are calculated as the difference between

the null-hypothesized model’s d f0 and saturated model’s d f1:

∆d f = d f0 − d f1 = 10 − 9 = 1, (47)

correctly reflecting the single (indistinguishable pair of) parameter(s) that were constrained
to zero. Appendix C shows how to obtain the model’s appropriate test statistic from lavaan,
which remains not statistically significant, χ2(1) = 1.255, p = .262.

Table 2. Dyad-level structural parameters using two-stage MLE and FIML.

Two-Stage MLE FIML

Parameter Estimate SE Standardized Estimate SE Standardized

Regression Slopes
β
(r)
31,intra

0.079 0.045 0.087 0.089 0.046 0.098

β
(r)
53,intra

−0.024 0.068 −0.021 −0.051 0.068 −0.043

β
(r)
51,intra

0.343 *** 0.050 0.335 0.274 *** 0.051 0.256

β
(r)
41,inter

0.019 0.044 0.021 0.020 0.046 0.022

β
(r)
63,inter

0.172 ** 0.065 0.151 0.151 ** 0.066 0.128
(Residual) Covariances

ψ
(r)
21,dyadic

0.083 0.060 0.110 0.044 0.051 .064

ψ
(r)
43,dyadic

0.397 *** 0.059 0.658 0.367 *** 0.051 .641

ψ
(r)
65,dyadic

0.130 ** 0.046 0.191 0.189 *** 0.053 .241

(Residual) Variances
ψ
(r)
11

0.750 *** 0.063 1.000 0.690 *** 0.050 1.000

ψ
(r)
33

0.602 *** 0.059 0.992 0.567 *** 0.051 0.990

ψ
(r)
55

0.683 *** 0.047 0.867 0.727 *** 0.053 0.924

Note. Estimates significantly different from 0 flagged at two-tailed significance levels: ** p < 0.01, *** p < 0.001.

The parameters of this model, whose estimates are presented in Table 2, consist of
intrapersonal and interpersonal regression slopes between SRM components of the three
round-robin variables. For instance, the intrapersonal regression of postinteraction liking
on preinteraction liking (β

(r)
51,intra) is interpreted as an autoregressive slope: controlling

for person i’s mimicry of person j and person j’s mimicry of person i during a 5 min
interaction (and given their person-level random effects), a 1-unit increase in person i’s
preinteraction liking of person j is associated with a 0.343-unit average increase in person i’s
postinteraction liking of person j. Likewise, the interpersonal regression of postinteraction
liking on social mimicry (β

(r)
63,inter) is interpreted as follows: controlling for person i’s

mimicry of person j during a 5 min interaction and person i’s preinteraction liking of person
j (and given their person-level random effects), a 1-unit increase in person j’s social mimicry
of person i during the 5 min interaction is associated with a 0.172-unit average increase in
person i’s postinteraction liking of person j.

The dyadic covariance of preinteraction liking (ψ(r)
21,dyadic) in Table 2 is the total covari-

ance between the ij and ji components because they are exogenous. The standardized
dyadic covariance is thus the dyadic reciprocity of preinteraction liking: person i’s liking
of person j prior to their 5 min interaction was correlated r = .110 with person j’s liking
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of person i prior to interacting (given their person-level random effects), which matches
the correlation in Table 1. However, the dyadic covariances of endogenous variables social
mimicry (ψ(r)

43,dyadic) and postinteraction liking (ψ(r)
65,dyadic) are residual covariances, so those

standardized estimates are interpreted as partial correlations. Similarly, the relationship
variance of preinteraction liking (ψ(r)

11 ) is the total variance of the ij and ji components,

whereas that of social mimicry (ψ(r)
33 ) and postinteraction liking (ψ(r)

55 ) are residual vari-
ances. Thus, the standardized residual variances of the endogenous SRM components are
interpreted as the proportion of unexplained variance (i.e., 1 − R2). Only about 0.8% of
variance in relationship-specific social mimicry was explained by their preinteraction liking,
but preinteraction liking and social mimicry explained approximately 13% of relationship-
specific postinteraction liking.

The parameter estimates of FIML and the two-stage estimator slightly differ from
one another, perhaps due to the different MLE algorithms applied by lavaan and srm—
i.e., lavaan maximizes the likelihood of observing a decomposed covariance matrix (for a
specific level of analysis) estimated at Stage 1 as input data, whereas srm directly maximizes
the likelihood of the raw round-robin data. However, both estimation approaches result in
the same conclusions about the statistical significance of relations between dyad-level SRM
components of the round-robin variables. Differences in dyad-level point and SE estimates
were not systematically higher or lower using two-stage MLE rather than FIML.

3.2. Case-Level SR-SEM Results

Stage 1 results for the case level are presented in Table 3. In line with most published
SRM results, the case-level (co)variances are smaller than those at the dyad level (compare
to Table 1), indicating that much of the variability in peoples’ liking and mimicry of others
is quite dependent on their specific interaction partner. Consistent with the case-level
SRM results of Salazar Kämpf et al. [13], differences in pre- and postinteraction liking were
driven much more by alter (target) effects, whereas social mimicry was driven much more
by ego (actor) effects.

Table 3. Stage 1 covariance matrix among case-level SRM components.

SRM Component 1 2 3 4 5 6

1. Liking (pre) E1,i 0.056 .263 −.005 .117 .553 .178
2. Liking (pre) A1,i 0.031 0.240 .121 −.039 −.046 .721
3. Social Mimicry E2,i −0.001 0.035 0.346 .500 .178 .312
4. Social Mimicry A2,i 0.007 −0.005 0.071 0.059 .203 .176
5. Liking (post) E3,i 0.026 −0.004 0.021 0.010 0.038 −.029
6. Liking (post) A3,i 0.023 0.196 0.102 0.024 −0.003 0.308

Note. EAP estimates of covariances provided in the lower triangle (including the diagonal), EAP estimates of
correlations (italicized) in the upper triangle.

The case-level covariance matrix in Table 3 was used as input data to estimate SR-SEM
parameters in Stage 2, using sample size N = ∑ Ng = 139. In the case-level SR-SEM, we
estimated the 10 unique ego–ego, alter–alter, ego–alter, and alter–ego regressions shown
in Figure 2, as well as six (residual) variances and three (residual) covariances. Two
regressions, β

(u)
61 and β

(u)
52 , were constrained to zero. The residual-based χ2(2) = 1.028,

p = .598 did not provide evidence against these constraints. Point and SE estimates
are presented in Table 4, along with standardized point estimates. Standardized slopes
are interpreted in units of each component’s SD, standardized (residual) covariances are
interpreted as (partial) correlations, and standardized residual variances are the proportion
of each component’s variance unexplained by its predictors (i.e., 1 − R2).
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Table 4. Case-level structural parameters using two-stage MLE and FIML.

Two-Stage MLE FIML

Parameter Estimate SE Standardized Estimate SE Standardized

Regression Slopes
β
(u)
31

−0.099 0.487 −0.040 −0.067 0.128 −0.133

β
(u)
53

0.049 0.076 0.149 1.003 *** 0.263 1.548

β
(u)
51

0.450 0.275 0.545 0.123 0.073 0.375

β
(u)
41

0.140 0.272 0.137 0.247 0.158 0.316

β
(u)
54

0.053 0.221 0.065 −0.217 0.129 −0.516

β
(u)
42

−0.037 0.102 −0.075 −0.359 0.454 −0.215

β
(u)
64

0.272 0.390 0.120 0.958 *** 0.163 0.910

β
(u)
62

0.785 *** 0.141 0.698 0.652 * 0.264 0.370

β
(u)
32

0.157 0.171 0.131 0.390 0.363 0.359

β
(u)
63

0.160 0.119 0.171 −0.191 0.305 −0.118
(Residual) Covariances

ψ
(u)
21

0.031 0.028 0.263 0.135 *** 0.038 .687

ψ
(u)
43

0.073 0.043 0.519 0.071 ** 0.031 .426

ψ
(u)
65

−0.005 0.016 −0.080 −0.044 ** 0.020 −.387
(Residual) Variances

ψ
(u)
11

0.056 0.040 1.000 0.421 *** 0.068 1.000

ψ
(u)
22

0.240 *** 0.052 1.000 0.092 ** 0.032 1.000

ψ
(u)
33

0.340 *** 0.071 0.984 0.099 ** 0.035 0.919

ψ
(u)
44

0.058 0.034 0.981 0.243 *** 0.052 0.947

ψ
(u)
55

0.025 0.017 0.660 −0.056 * 0.028 −1.222

ψ
(u)
66

0.129 ** 0.040 0.426 0.037 0.035 0.129

Note. Estimates significantly different from 0 flagged at two-tailed significance levels: * p < 0.05, ** p < 0.01,
*** p < 0.001.

These effects are interpreted similarly to linear regression effects, except that each
regression coefficient quantifies the relation between two ego or alter components of the
observed variables, not between the observed variables themselves. For example, the
regression of the alter effect of postinteraction liking on the alter effect of preinteraction
liking (β(u)

62 ) is interpreted as an autoregressive slope: controlling for an actor i’s mimicry
of others (E2,gi) and others’ mimicry of them (A2,gi) during a 5 min interaction, a 1-unit
increase in preinteraction liking of target i (A1,gi) is associated with a 0.785-unit average
increase in postinteraction liking of target i (A3,gi). The regression of the alter effect of

postinteraction liking on the ego effect of social mimicry (β
(u)
63 ) can be used to answer

a research question about whether engaging in more social mimicry in general (across
multiple partners) results in being liked more. The estimate β̂

(u)
63 = 0.160 implies that—

given how much others already liked person i prior to interaction (A1,gi) and how much
they were mimicked by others (A2,gi)—a 1-unit increase in person i’s mimicry of others
(E2,gi) is associated with a 0.160-unit average increase in how much others subsequently
liked them (A3,gi).

Similar to the dyad level, the generalized covariance between the ego and alter effects
of preinteraction liking (ψ(u)

21 ) is the total covariance between the ego and alter compo-
nents of the variable, so its standardized estimate (a correlation) is generalized reciprocity.
Likewise, the variance components of preinteraction liking (ψ(u)

11 and ψ
(u)
22 ) are the total

variances of the ego and alter components. The standardized Ψ̂∗(u) matrix provides partial
correlations among residuals for endogenous variables social mimicry and postinterac-
tion liking, which can be interpreted similarly to generalized reciprocity. For example,
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ψ
∗(u)
43 = .519 indicates a strong partial correlation between person i’s mimicry of others and

others’ mimicry of them during a 5 min interaction, given preinteraction liking. As with
dyad-level results, standardized residual variances indicate that little variance in social
mimicry was explained by preinteraction liking (both R2 ≈ 2%), whereas R2 was quite
high for both components of postinteraction liking (R2 = 34% for ego effect, approximately
57% for alter effect).

The FIML results differ from those of two-stage MLE, at times leading to conflicting de-
cisions regarding statistical significance and dissimilar standardized effect sizes. Sometimes
the estimates were of opposite sign, but only for estimates that could not be statistically
distinguished from zero. FIML yielded a significant negative residual variance for the ego
component of postinteraction liking (ψ(u)

55 = −0.056), perhaps due to this parameter being
nearly zero in the population. In fact, a normal theory CI around the positive two-stage
estimate also includes small negative values.

3.3. Group-Level SR-SEM Results

Table 5 displays the group-level Stage 1 (co)variances and correlations of the dyadic
variables, as well as the mean vector in the right column. Because liking was measured both
before and after the 5 min interaction, it is interesting to note that liking seemed to increase
after the interaction; however, the postinteraction composite included a third indicator
(see Section 2.1), weakening the confidence in such a conclusion. As we expected, there
was little group-level variance to extract from the variables (<1% of liking variance, 8% of
mimicry variance) due to participants being randomly assigned to round-robin groups by
Salazar Kämpf et al. [13]. In practice, it would be questionable whether group-level results
should be interpreted, but we provide interpretations below for the pedagogical value of
demonstrating the proposed SR-SEM.

Table 5. Stage 1 means and covariance matrix among group-level SRM components.

SRM Component 1 2 3 µ

1. Liking (pre) µ1,g 0.010 .216 .295 3.598
2. Social mimicry µ2,g 0.007 0.087 .329 2.968
3. Liking (post) µ3,g 0.003 0.009 0.008 3.652

Note. EAP estimates of covariances provided in the lower triangle (including the diagonal), EAP estimates of
correlations (italicized) in the upper triangle.

Stage 2 estimates are presented in Table 6. Estimates for FIML are unavailable, as srm
does not provide group-level results. Note also that the model in Figure 3 is fully saturated,
so no test of data–model fit is reported. We interpret regression slopes below, although
none were significantly different from 0, which is no surprise given the small sample size
at this level (G = 26 groups).

The group-level regression of postinteraction liking on preinteraction liking (β
(G)
31 )

indicates that when controlling for mimicry during a 5-min interaction, a 1-unit increase
in average preinteraction liking among members of group g is generally associated with
a 0.210-unit increase in their average postinteraction liking. Similarly, the group-level
regression of postinteraction liking on social mimicry (β

(G)
32 ) is interpreted as follows:

controlling for the average preinteraction liking within a group g, a 1-unit increase in
average mimicry during a 5-min interaction leads to a 0.086-unit increase in average
postinteraction liking within that group. As in dyad- and case-level results, standardized
residual-variance estimates indicate that R2 was higher for postinteraction liking (16.1%)
than for social mimicry (4.7%).
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Table 6. Group-level structural parameters using two-stage MLE.

Parameter Estimate SE Standardized

Regression Slopes
β
(G)
21

0.623 1.180 0.216

β
(G)
32

0.086 0.155 0.278

β
(G)
31

0.210 0.493 0.235
Intercepts

ν1 3.598 *** 0.065 35.152
ν2 0.728 4.246 2.463
ν3 2.644 1.859 29.004

(Residual) Variances
ψ
(G)
11

0.010 0.014 1.000

ψ
(G)
22

0.083 0.067 0.953

ψ
(G)
33

0.007 0.009 0.839

Note. Estimates significantly different from 0 flagged at two-tailed significance levels: *** p < 0.001.

4. Discussion

We proposed and demonstrated a two-stage estimation procedure for SR-SEM param-
eters. We adapted the method from similar proposals for estimating SEM parameters with
multiply imputed data [10,11] and for estimating ML-SEM parameters from level-specific
summary statistics [6]. We used the open-source software Stan [75] and R [72] packages
rstan [74] and lavaan [57], with syntax provided in the Appendices and in our OSF project
(https://osf.io/2qs5w/).

We also compared results with FIML estimation implemented in the srm package.
Some differences were apparent, particularly at the case level, whose estimates are more
variable due to less information (fewer people than dyads). The second author’s mas-
ter’s thesis (available in a subdirectory of "Related preprints" in our OSF project: https:
//osf.io/2qs5w/) was a Monte Carlo simulation study that provided some preliminary
evidence that neither estimator provides accurate case-level results for all parameters under
these conditions. A reviewer also inquired about the possibility that results could differ
because we modeled group-level effects, unlike the FIML estimator. In a subdirectory
"noGroupsAnalysis" in our OSF project (https://osf.io/2qs5w/), we provide syntax files
that exclude the group-level model at both stages, fitting those models to variables that
were centered on the round-robin group means. Although results did show substantial
differences in a few parameters (e.g., correlations differing greatly in magnitude, even
switching signs), the parameters which were estimated with enough precision to be dis-
tinguishable from zero did not differ substantially. Furthermore, omitting the group-level
model did not make Stage 2 results more similar to FIML. Nonetheless, this reveals the need
for future simulation studies to investigate under what conditions the group-level model
can influence results at other levels of analysis, despite those levels being orthogonal.

Below, we discuss some advantages of two-stage estimation over FIML, which derive
from the flexibility of Stage 1 estimation and the availability of standard SEM software
features in Stage 2. We also discuss some limitations of the two-stage approach and gaps in
knowledge that need to be addressed before the two-stage approach can be applied with
any confidence in the results.

4.1. Advantages and Limitations

Both single-stage FIML estimation and Stage 1 MCMC estimation become compu-
tationally intensive as the number of modeled variables increases, requiring greater esti-
mation time than traditional least-squares estimators of round-robin effects. As the first
SR-SEM developers demonstrated [8,9], the rewards for patience with greater computation
time of FIML are less bias and greater CI coverage in small samples, as well as a simplified
computational procedure to prepare fitting complex multivariate models. Regarding the
limited-information SR-SEM estimator presented here, only Stage 1 MCMC estimation is

https://osf.io/2qs5w/
https://osf.io/2qs5w/
https://osf.io/2qs5w/
https://osf.io/2qs5w/
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computationally intensive, whereas Stage 2 estimation is quite fast for any subsequent
structural model(s) a researcher might be interested in fitting. In contrast, FIML would be
computationally intensive for each structural model of interest, so a potential advantage
of two-stage estimation is reduced computation time for researchers interested in fitting
several SR-SEMs to the same data. An important next step for future simulation research
will be to compare the quality of estimates provided by FIML and two-stage MLE.

In principle, numerous estimators could be used in Stage 1 to obtain summary statistics
of SRM components. The limiting factor is whether one can calculate Γ̂, which is necessary
to adjust SEs and test statistics in Stage 2. If one is working with (approximately) normally
distributed data, then single-stage FIML could be used for Stage 1 estimation by fitting
a saturated SR-SEM via the srm package [71]), which also provides the ACOV in the
$vcov element of the object returned by the srm() function. Although there might be little
advantage to using a two-stage estimator when FIML is already available from the same
software, one might be interested in fitting a SEM to only a single level of analysis. Whereas
FIML requires fitting a model to both the case and dyad levels of analysis, we demonstrated
that Stage 2 parameters can be estimated one level at a time (including the group level, if
that is of interest). This means the fit of each level’s model can be evaluated separately,
without the complication of saturating the model of other levels of analysis, as has been
recommended to evaluate ML-SEMs estimated with FIML [69]. Furthermore, estimating
an unrestricted covariance matrix at each level in Stage 1 could prevent propagation of
bias due to misspecification of either level’s model in Stage 2—a potential advantage over
single-stage FIML.

We used MCMC estimation of SRM summary statistics, which has some advantages
over using MLE in Stage 1. The MLE available from srm assumes multivariate normality,
without any robust corrections for non-normality that most standard SEM software pack-
ages provide [57,58]. Although our example Stan syntax (see Appendix A and our OSF
project: https://osf.io/2qs5w/) only demonstrates using a multivariate normal likelihood,
it is possible to instead specify a more appropriate distribution that captures the excess
kurtosis that affects Type I error rates of normal theory test statistics in SEM [59]. For
example, the Stan software has implemented a multivariate t distribution (find details in
the Stan Functions Reference: https://mc-stan.org/docs/functions-reference/multivariate-
student-t-distribution.html (accessed on 27 January 2024)), which can be used in place of
a multivariate normal likelihood, so excess kurtosis can be modeled (or even estimated)
via its degrees-of-freedom parameter. Doing so could yield more accurate estimates of the
summary statistics’ sampling variability, reflected by the posterior covariance matrix used
to estimate Γ. Using Γ̂ to adjust SEs and tests in Stage 2 could be sufficient to make them
robust to non-normality, but future simulation research would be required to confirm this
speculation.

In practice, round-robin variables might not be completely observed within a network.
For example, a group member might not provide any responses (e.g., if a student was
absent when data were collected from a classroom), preventing estimation of an ego effect.
Yet responses could still be provided about the absent student, enabling estimation of their
alter effect. Or within some dyads, there might only be information from one partner, due
either to selecting a subset of peers who are friends [33] or to randomly assigning a subset
of alters to each ego [32]. Incomplete data can be accommodated by the FIML estimator
available in the srm package, but the MAR assumption would only be met when the SR-
SEM includes all variables involved in the missing-data mechanism. Multiple imputation
does not necessitate the analysis model becoming more complex because the imputation
model in Stage 1 can incorporate such additional auxiliary variables. Similarly, the Stage 1
MCMC estimation we described could use data augmentation to accommodate incomplete
data, functioning as an imputation model.

Two-stage estimation also facilitates the open-science practice of providing data with
a published article for readers to reproduce analyses. Dyadic data have unique security
concerns, given that participants could not only identify their own data but then use that

https://osf.io/2qs5w/
https://mc-stan.org/docs/functions-reference/multivariate-student-t-distribution.html
https://mc-stan.org/docs/functions-reference/multivariate-student-t-distribution.html
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information to identify a partner’s data [84]. Stage 2 SR-SEM parameters are estimated
using only summary statistics and their ACOV, which can be shared without breaching the
security of participant data.

A general advantage of MCMC estimation is the ability to incorporate existing knowl-
edge by specifying informative prior distributions for parameters. Diffuse priors generally
yield biased point estimates with small samples [85], and small round-robin groups are
common in SRM applications (including our example data). Although we strove to spec-
ify weakly informative priors in Section 1.1.1, if they were too diffuse for these data, we
could then expect inaccurate Stage 1 results to yield inaccurate Stage 2 estimates (garbage
in, garbage out). We provide some preliminary simulation evidence in our OSF project
(https://osf.io/2qs5w/) that confirmed this suspicion as well as revealed bias in case-level
FIML estimates. Although the length of this paper prevents us from including an extensive
simulation study to validate our proof of concept, we are currently investigating various
methods of improving accuracy by incorporating empirical information into more “thought-
ful priors” [86] or empirical Bayes priors. Despite introducing some statistical bias when
the prior locations are inaccurate, informative priors also make estimates more precise, so
biased estimates might be preferable if the overall mean-squared error is minimized [48,87].
Our goal is to reveal how the accuracy–precision trade-off [5] can be improved under
small-sample conditions common in SRM research, and we will link the OSF project for
this paper with those new OSF projects as they become available so readers will be able to
find that new information.

Finally, the methods to correct SEs and test statistics are expected to work asymp-
totically, but in the case of multiple imputation, simulation studies have shown poorer
performance in smaller samples [10,11]. Future simulation studies are needed to establish
under which sample-size conditions (group size and number of groups) these methods can
be expected to yield nominal Type I error rates in practice with round-robin data.

4.2. Extensions

The ML estimator available in the srm package does not accommodate case-level
covariates, although Ref. [8] (p. 884, Footnote 2) mentions a “tedious procedure” to trick
the software into estimating such case-level effects. Researchers are often interested in
modeling case-level SRM components as predictors or outcomes [7,40], and even dyad-level
covariates might be constant within a dyad rather than asymmetric [33,88]. The two-stage
approach described here could be easily extended to accommodate level-specific covariates,
including group-level variables, by expanding the level-specific correlation matrices and
vectors of SDs to include such variables. Of course, this would require them to follow the
same multivariate (normal or t) distribution as the SRM components.

For predictors that follow arbitrary distributions, their effects on round-robin com-
ponents could instead be estimated in Stage 1 [7], yielding estimated summary statis-
tics of their residuals. If lavaan were updated to accept a residual covariance matrix as
data—along with exogenous-variable summary statistics and their estimated effects on
endogenous variables—these could in principle be passed to lavaan as data, using the
conditional.x=TRUE specification for fixed exogenous covariates [70].

Social and behavior scientists frequently measure variables using binary or ordinal
(e.g., Likert) response scales, the latter of which can approximate a continuum with many
(e.g., at least 5–7) response categories [89–91]. Having fewer response categories places
limits on how large correlations can be, motivating the development of two-stage estimation
that assumes that discrete observed responses are merely discretizations of latent normal
responses [92], although that makes the normality assumption more difficult to test and
impossible to correct for [93]. For ordinal or binary round-robin variables, the latent-
response assumption could be applied during Stage 1 estimation of SRM summary statistics
by incorporating a threshold model, similar to item factor analysis [94]. The summary
statistics analyzed in Stage 2 would then be polychoric correlations and standardized
thresholds [11].

https://osf.io/2qs5w/
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5. Conclusions

Two-stage estimation of SR-SEM parameters is a promising development for re-
searchers using round-robin data to answer research questions about complex interpersonal
processes. Simulation studies are needed to validate its performance and establish best
programming practices. Until such research is conducted, none of the details of the method
presented here can be recommended as best practice; rather, this is merely a proof of
concept. However, future research is justified by the flexibility of Stage 1 SRM estimation
and the wealth of output available following Stage 2 SEM estimation.
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Abbreviations
The following abbreviations are used in this manuscript:

ACOV Asymptotic (sampling) covariance matrix
AMEN Additive and multiplicative effects model for network data
CI Confidence interval
EAP Expected a posteriori
(FI)ML(E) (Full-information) maximum likelihood (estimation)
IRT Item response theory
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
ML-SEM Multilevel structural equation model
NACOV N times the asymptotic covariance matrix (Γ)
NUTS No-U-Turn Sampler
OSF Open Science Framework
PSRF Potential scale-reduction factor
SD Standard deviation
SE Standard error
SEM Structural equation model
SRM Social relations model
SR-SEM Social relations structural equation model

Appendix A. Stan Syntax Specifying a Multivariate Social Relations Model

data {
// sample sizes
int <lower=0> Nd; // number of dyads (Level 1)
int <lower=0> Np; // number of cases (Level 2, cross -classified)
int <lower=0> Ng; // number of groups (Level 3)

https://osf.io/b4nvf/
https://osf.io/2qs5w/
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// number of observed measures (half the number of columns)
int <lower=0> Kd2; // number of round -robin variables
// observed data
matrix[Nd, 2*Kd2] Yd2; // observed round -robin variables
// ID variables in dyad -level data set
int IDp[Nd, 2]; // case -level IDs (cross -classified)
int IDg[Nd]; // group -level IDs

}

parameters {
// means
vector[Kd2] Mvec; // round -robin variables
// SDs
vector <lower=0>[ Kd2 ] s_rr; // round -robin residuals
vector <lower =0>[2*Kd2] S_p; // case -level (AP) effects
vector <lower=0>[ Kd2 ] S_g; // group -level (GG) effects

// Cholesky factor of correlation matrices for random effects
cholesky_factor_corr[ Kd2 ] chol_g; // group -level (GG)
cholesky_factor_corr[2*Kd2] chol_p; // case -level (AP)

// correlations among round -robin residuals
// - dyadic reciprocity (within variable) on diagonal
// - intrapersonal correlations (between variable , within case) below diagonal
// - interpersonal correlations (between variable , between case) above diagonal
matrix <lower=0,upper=1>[Kd2 , Kd2] r_d2;

// random effects to sample on unit scale
matrix[Np, 2*Kd2] AP; // matrix of all ego and all alter effects
matrix[Ng, Kd2] GG; // group -level random effects

}

transformed parameters {
// expected values , given random effects
matrix[Nd, 2*Kd2] Yd2hat; // dyad -level \hat{y}s
// combined dyad -level SDs and correlations
vector [2*Kd2] S_d;
matrix [2*Kd2 , 2*Kd2] Rd2;
// cholesky decomposition of dyad -level correlation matrix
matrix [2*Kd2 , 2*Kd2] chol_d;

// combine correlations among round -robin variables
{

int idx1; // arbitrary iterators
int idx2;
int idp1;
int idp2;

for (k in 1:Kd2) {
idx1 = k*2 - 1;
idx2 = k*2;

// within round -robin variable
S_d[idx1] = s_rr[k]; // equal relationship SDs
S_d[idx2] = s_rr[k];
Rd2[idx1 , idx1] = 1; // diagonal = 1
Rd2[idx2 , idx2] = 1;
Rd2[idx1 , idx2] = -1 + 2*r_d2[k,k]; // equal dyadic reciprocity
Rd2[idx2 , idx1] = -1 + 2*r_d2[k,k];

// between round -robin variables
if (k < Kd2) { for (kk in (k+1): Kd2) {

idp1 = kk*2 - 1;
idp2 = kk*2;

Rd2[idx1 , idp1] = -1 + 2*r_d2[kk, k ]; // within case (intra = BELOW)
Rd2[idx2 , idp2] = -1 + 2*r_d2[kk, k ];
Rd2[idp1 , idx1] = -1 + 2*r_d2[kk, k ];
Rd2[idp2 , idx2] = -1 + 2*r_d2[kk, k ];
Rd2[idx1 , idp2] = -1 + 2*r_d2[k , kk]; // between case (inter = ABOVE)
Rd2[idp2 , idx1] = -1 + 2*r_d2[k , kk];
Rd2[idx2 , idp1] = -1 + 2*r_d2[k , kk];
Rd2[idp1 , idx2] = -1 + 2*r_d2[k , kk];

}}

}

// end block combining dyad -level correlation matrix
}
// cholesky decompositions for model{} block
chol_d = diag_pre_multiply(S_d, cholesky_decompose(Rd2 ));
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// calculate and/or combine expected values
{

int idx1; // arbitrary iterators
int idx2;

for (k in 1:Kd2) {
idx1 = k*2 - 1; // ego effect for k^th measure
idx2 = k*2; // alter effect for k^th measure

for (d in 1:Nd) {
// expected values of round -robin variables , given random effects
Yd2hat[d, idx1] = Mvec[k] + (S_g[k]*GG[ IDg[d], k]) +

S_p[idx1]*AP[ IDp[d,1], idx1] + S_p[idx2]*AP[ IDp[d,2], idx2];
Yd2hat[d, idx2] = Mvec[k] + (S_g[k]*GG[ IDg[d], k]) +

S_p[idx1]*AP[ IDp[d,2], idx1] + S_p[idx2]*AP[ IDp[d,1], idx2];
}

}
}

}

model {
// priors for means and SDs , based on empirical ranges
for (k in 1:Kd2) {

// means
Mvec[k] ~ normal (3.5, 1); // 1-6 Likert scale , variances approx. 1
// residual/dyadic SDs
s_rr[k] ~ student_t(4, 0.50, 0.5) T[0, ];
// ego effect SDs
S_p[2*k - 1] ~ student_t(4, 0.25, 0.5) T[0, ];
// alter effect SDs
S_p[2*k] ~ student_t(4, 0.25, 0.5) T[0, ];
// group effect SDs
S_g[k] ~ student_t(4, 0.05, 0.5) T[0, ];

}

// priors for correlations
chol_g ~ lkj_corr_cholesky (2);
chol_p ~ lkj_corr_cholesky (2);
for (k in 1:Kd2) {

// dyadic correlations (priors on diagonal)
r_d2[k,k] ~ beta (1.5, 1.5);
// between -variable correlations
if (k < Kd2) { for (kk in (k+1): Kd2) {

r_d2[kk , k ] ~ beta (1.5, 1.5); // intra = BELOW
r_d2[k , kk] ~ beta (1.5, 1.5); // inter = ABOVE

}}
}

// priors for random effects
for (n in 1:Np) AP[n,] ~ multi_normal_cholesky(rep_row_vector(0, 2*Kd2), chol_p);
for (n in 1:Ng) GG[n,] ~ multi_normal_cholesky(rep_row_vector(0, Kd2), chol_g);

// likelihoods for observed data
for (n in 1:Nd) Yd2[n,] ~ multi_normal_cholesky(Yd2hat[n,], chol_d);

}

generated quantities{
matrix[ Nd, 2*Kd2] Yd2e; // residuals (relationship effects + error)
matrix [2*Kd2 , 2*Kd2] Rp; // case -level correlation matrix
matrix[ Kd2 , Kd2 ] Rg; // group -level correlation matrix
// % variance at group , case , and dyad levels
matrix[Kd2 , 4] Rsq;

// calculate % of each round -robin variance due to each random effect
{

matrix[Kd2 , 4] vars; // group , ego , alter , and relationship variances
vector[Kd2] totals; // sum of variance components

for (k in 1:Kd2) {
vars[k,1] = square(S_g[k]); // group
vars[k,2] = square(S_p[2*k - 1]); // ego
vars[k,3] = square(S_p[2*k]); // alter
vars[k,4] = square(s_rr[k]); // relationship

totals[k] = sum(vars[k, ]);
Rsq[k,] = vars[k,] ./ totals[k];

}
// end R-squared block
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}

// calculate residuals to return as relationship effects
Yd2e = Yd2 - Yd2hat;

// calculate case -level correlation matrix
Rp = multiply_lower_tri_self_transpose(chol_p);
// calculate group -level correlation matrix
Rg = multiply_lower_tri_self_transpose(chol_g);

}

Appendix B. R Syntax to Fit Multivariate Social Relations Model to Data

library(rstan)
rstan_options(auto_write = TRUE)

## known quantities to pass to Stan 's data{} block
knowns <- list(Nd = nrow(dat), # number of dyads (Level 1)

Np = length(caseIDs), # number of cases (Level 2)
Ng = length(unique(dat$Group)), # number of groups (Level 3)
Kd2 = 3, # number of round -robin variables
## round -robin data in wide format
## (1 row per dyad , 2 columns per round -robin variable)
Yd2 = as.matrix(dat[,c("preLike_ij","preLike_ji",

"mimicry_ij","mimicry_ji",
"postLike_ij","postLike_ji")]),

## case -level IDs per dyad
IDp = as.matrix(dat[,c("ID_i","ID_j")]),
IDg = array(dat$Group )) # group ID per dyad

## unknown quantities to be sampled in Stan 's parameters {} block , or saved
## from Stan 's transformed parameters {} or generated quantities {} blocks.

mu <- "Mvec" # mean vector of round -robin variables
sigma <- c("s_rr","S_p","S_g") # SDs of round -robin variable components
corr <- c("Rd2","Rp","Rg") # correlations among round -robin components
derived <- c("Rsq") # proportion of variance account for by each component
unknowns <- c(mu, sigma , corr , derived)

## fit model

stage1 <- stan(file = "AppendixA.stan", data = knowns , pars = unknowns ,
seed = 3141593 , chains = 4, cores = 4,
iter = 3000, ## default warmup = iter/2 = 1500 in this case
init_r = .5) # to prevent nonpositive definite starting values

Appendix B.1. R Syntax to Prepare Stage 1 Dyad-Level Results for Stage 2 Analysis

## round -robin variable names
vn <- c("preLike","mimicry","postLike")
## names of dyad -level components
vnD <- paste(rep(vn, each = 2), c("ij","ji"), sep = "_")

## stack posterior samples of estimated summary statistics
RdVec <- do.call(rbind , As.mcmc.list(stage1 , pars = "Rd2"))
# head(RdVec)
SdVec <- do.call(rbind , As.mcmc.list(stage1 , pars = "s_rr"))
# head(SdVec)

## store correlations in a matrix (per posterior sample)
RdList <- apply(RdVec , MARGIN = 1, FUN = function(x) {

Rd2 <- matrix(0, nrow = length(vnD), ncol = length(vnD),
dimnames = list(vnD , vnD))

for (i in names(x)) eval(parse(text = paste(i, "<-", x[i]) ))
Rd2

}, simplify = FALSE)
# RdList [1:2]

## store SDs in a diagonal matrix (per posterior sample)
SdList <- apply(SdVec , MARGIN = 1, FUN = function(x) {

s_rr <- numeric(length(vnD)/2) # equality constraints
for (i in names(x)) eval(parse(text = paste(i, "<-", x[i]) ))
Sd <- diag(rep(s_rr, each = 2)) # repeat equal variances
dimnames(Sd) <- list(vnD , vnD)
Sd

}, simplify = FALSE)
# SdList [1:2]

## scale correlations to covariance matrices
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dSigmaList <- mapply(function(R, S) S %*% R %*% S,
R = RdList , S = SdList , SIMPLIFY = FALSE)

# dSigmaList [1:2]

## posterior mean of estimated (co)variances
SigmaD <- Reduce("+", dSigmaList) / length(dSigmaList)
class(SigmaD) <- c("lavaan.matrix.symmetric","matrix")
SigmaD
cov2cor(SigmaD) # posterior mean of estimated correlations

## vectorize all (co)variances per posterior sample
ACOV.list.D <- lapply(dSigmaList , function(S) {

## lavaan expects this order:
lavaan ::lav_matrix_vech(S, diagonal = TRUE) # lower.tri covariances

})
# ACOV.list.D[[1]]
## posterior (co)variability of all (co)variances ,
## multiplied by 309 subjects (i.e., an estimate of the "Gamma" matrix)
NACOV.d <- 309 * cov(do.call(rbind , ACOV.list.D))
# check dimensions: nrow(NACOV.d) == length(vnD) * (length(vnD) + 1L) / 2L

Appendix C. R Syntax to Fit the Social Relations Structural Equation Model

library(lavaan)

## specify dyad -level path model

path.d <- '
## Intra Effects (ij)

mimicry_ij ~ intra_a*preLike_ij
postLike_ij ~ intra_b*mimicry_ij + intra_c*preLike_ij

## Intra Effects (ji)
mimicry_ji ~ intra_a*preLike_ji
postLike_ji ~ intra_b*mimicry_ji + intra_c*preLike_ji

## i-to-j Effects
mimicry_ji ~ inter_a*preLike_ij
postLike_ji ~ inter_b*mimicry_ij

## j-to-i Effects
mimicry_ij ~ inter_a*preLike_ji
postLike_ij ~ inter_b*mimicry_ji

## (residual) covariances
preLike_ij ~~ preLike_ji
mimicry_ij ~~ mimicry_ji
postLike_ij ~~ postLike_ji

## equal variances
preLike_ij ~~ var_x*preLike_ij
preLike_ji ~~ var_x*preLike_ji
mimicry_ij ~~ var_m*mimicry_ij
mimicry_ji ~~ var_m*mimicry_ji
postLike_ij ~~ var_y*postLike_ij
postLike_ji ~~ var_y*postLike_ji

## hypothesized indirect effect
ind := intra_a*inter_b

'
fit.d <- sem(path.d, sample.cov = SigmaD , sample.nobs = 309,

h1 = FALSE , baseline = FALSE ,
NACOV = NACOV.d, sample.cov.rescale = FALSE , fixed.x = FALSE ,
se = "robust.sem", test = "Browne.residual.adf")

## CANNOT TRUST model -fit test statistics in summary () output (wrong df)

## to test model fit , specify a "saturated" model with equality constraints
## reflecting round -robin design
sat.mod.d <- ' ## equal variances

preLike_ij ~~ var_x*preLike_ij
preLike_ji ~~ var_x*preLike_ji
mimicry_ij ~~ var_m*mimicry_ij
mimicry_ji ~~ var_m*mimicry_ji
postLike_ij ~~ var_y*postLike_ij
postLike_ji ~~ var_y*postLike_ji

## dyadic reciprocity
preLike_ij ~~ rec_x*preLike_ji
mimicry_ij ~~ rec_m*mimicry_ji
postLike_ij ~~ rec_y*postLike_ji

## equal intrapersonal covariances
preLike_ij ~~ intra_xm*mimicry_ij + intra_xy*postLike_ij
mimicry_ij ~~ intra_my*postLike_ij
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preLike_ji ~~ intra_xm*mimicry_ji + intra_xy*postLike_ji
mimicry_ji ~~ intra_my*postLike_ji

## equal interpersonal covariances
preLike_ij ~~ inter_xm*mimicry_ji + inter_xy*postLike_ji
mimicry_ij ~~ inter_my*postLike_ji
preLike_ji ~~ inter_xm*mimicry_ij + inter_xy*postLike_ij
mimicry_ji ~~ inter_my*postLike_ij

'
sat.fit.d <- lavaan(sat.mod.d, sample.cov = SigmaD , sample.nobs = 309,

h1 = FALSE , baseline = FALSE ,
NACOV = NACOV.d, sample.cov.rescale = FALSE ,
se = "robust.sem", test = "Browne.residual.adf")

## store model inside lavaan object , where they will override the default
## saturated model when running lavTestLRT ()
fit.d@external$h1 <- sat.fit.d

## Now lavTestLRT () calculates the residual -based test with correct df and p value
lavTestLRT(fit.d, type = "Browne.residual.adf")

## The tests in the summary () still have the WRONG degrees of freedom.
## ONLY interpret parameter estimates (and their test statistics ).
summary(fit.d, std = TRUE , rsquare = TRUE)
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