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Abstract: We examined the dynamic linkages among money market interest rates in the so-called
“BRICS” countries (Brazil, Russia, India, China, and South Africa) by using weekly data of the
overnight, one-, three-, and six- months, as well as of one year, Treasury bills rates covering the period
from January 2005 to August 2019. A long-run relationship among interest rates was established
by employing the Vector Error Correction modeling (VECM), which revealed the validation of the
Expectation Hypothesis Theory (EH) of the term structure of interest rates, taking into account
long-run deviations from equilibrium and inherent nonlinearities. We unveiled short-run dynamic
adjustments for the term structure of the BRICS, subject to regime switches. We then used Markov
Switching Vector Error Correction models (MS-VECM) to forecast them dynamically during an
out-of-sample period of May 2016 through August 2019. The MSIH-VECM forecasts were found to
be superior to the VECM approaches. The novelty of our paper is mainly due to the exploration of
the possibility of parameter instability as a crucial factor, which might explain the rejection of the
restricted version of the cointegration space, and on the dynamic out-of-sample forecasts of the term
structure over a more recent time span in order to assess further the usefulness of our nonlinear
MS-VECM characterization of the term structure, capturing the effects of the global and domestic
financial crisis.
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1. Introduction

Forecasting money market interest rates is always a crucial issue for economists and policy
makers. Additionally, the term structure of interest rates is of utmost importance for the transmission
of monetary policy. The expectations hypothesis (henceforth EH) represents the most influential
theoretical explanation for term structure relations indicating that the long-term rate is determined
purely by current and future expected short-term rates. Therefore, “Interest rate dynamics” have
implications for various market participants and understanding their interrelations becomes essential
not only for economists and monetary policy makers but also for risk management practitioners.
In addition, understanding the EH of the term structure of interest rates is a core issue for Treasury
managers in order to perform active sovereign debt management, since the maturity structure of
public debt affects the government budget. Recently, domestic term structure is influenced mostly
by external term structures and monetary policies due to the liberalization of international financial
markets Beechey et al. [1], and this may be the case in BRICS. Thus, this paper tries to investigate the
expectations hypothesis of the term structure of interest rates in BRICS countries.

The BRICS countries label refers to a select group of five large, developing countries (Brazil,
Russia, India, China, and South Africa). The five BRICS countries are distinguished from a host of
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other promising emerging markets by their demographic and economic potential to rank among the
world’s largest and most influential economies in the 21st century (and by having a reasonable chance
of realizing that potential). Together, the five BRICS countries comprise more than 2.8 billion people or
42.6% of the global population and nearly half of the world’s foreign exchange reserves. In addition,
BRICS countries have seen 10 years of rapid expansion in trade and economic growth. They currently
account for nearly a quarter of the world economy and contributed more than half of global economic
growth in 2016. Furthermore, BRICS have set up a development bank which is now known as the
New Development Bank (NDB) where the different countries intend to address the group’s economic
challenges with combined resources. Countries in the BRICS group have either undergone or are
undergoing structural changes in their monetary policy frameworks [2]. The way in which interest
rates in the different countries correlate is, to a certain extent, affected by structural changes.

The purpose of this study was to be the first of its kind to identify whether the EH of the term
structure of interest rates holds in BRICS countries, to explore the possibility of parameter instability as
a crucial factor which might explain the rejection of the restricted version of the cointegration space,
and to assess further the usefulness of nonlinear characterization of the term structure of interest rates,
over a more recent time span covering the period between January 2005 and August 2019 covering the
global financial crisis started in 2008, the Brazil political crisis in 2014–2016, the China stock market
bubble in 2015, and the Russian oil recession crisis in 2014.

Our study was motivated by previous works reported in the literature on the presence of regime
shifts (e.g., Reference [3,4]), as well as by the relative forecasting success of the nonlinear MS-VECM
models of the term structure of interest rates (e.g., Reference [5]). The research was also prompted
by the concept that there are economic reasons for believing that allowing for regime shifts and
asymmetries can provide potentially important insights into the behavior of the entire yield curve.
Business cycle expansions and contractions may have important effects on expectations of inflation,
monetary policy, and nominal interest rates, so that regime shifts may generate significant impacts
both on the short-term interest rate and on the entire term structure.

Following Reference [5], we analyze the term structure dynamics of the interest rates of BRICS
countries under five different maturities, by utilizing data of weekly frequency between 2005 and 2019.
There are several important findings which stem from our exhaustive econometric estimation approach.
Firstly, we robustly estimate the rank of the cointegration space for the system of the five rates. Results
show that there are exactly four cointegrating relationships between the five rates for India and South
Africa and three cointegrating vectors for Brazil, China and Russia. Secondly, we impose independent
linear and homogeneous restrictions which are implied by the fulfilment of the EH. We impose various
sets of restrictions implemented upon a sub-section of the estimated cointegration space. In this
partially identified cointegration space, we are able to show that part of the restrictions from the EH
cannot be rejected. More specifically, for India and South Africa, the estimated VECM model identified
a one-to-one long-run relationship between (i) overnight and 1-month Treasury bill, (ii) overnight
and 3-months bill, (iii) overnight and 6-months Treasury bill and (vi) overnight and 1-year bill whilst
for the Brazil, China, and Russia the VECM identified a one-to-one long-run relationship between
the (i) overnight and 1-month Treasury bill, (ii) overnight and 3-months bill, and the (iii) overnight
and 6-months Treasury bill. Thirdly, we explore the possibility of parameter instability as a crucial
factor which might explain the rejection of the restricted version of the cointegration space; to that
end, we apply the recursive tests of Hansen and Johansen [6,7], which show that the dimension of
the cointegration space is sample independent and the estimated coefficients exhibit instabilities in
recursive estimations during Global financial crisis started in 2008. Fourthly, we show that, while a
long run equilibrium relationship between the five different maturities can be established, consistently
with the expectations theory of the term structure, the linear vector error correction models are rejected
when tested against regime-switching vector error correction models. Fifthly, we employ a Markov
switching vector error correction approach to analyze the dynamic relationship between interest rates
for the different maturities of each country, implementing the robust estimation techniques introduced
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by [8]. Eventually, we are able to fully identify and characterize the dynamic relationships between the
interest rates of various maturities for each country. Finally, we constructed dynamic out-of-sample
forecasts of the term structure covering the period between May 2016 and August 2019 using the
MSIAH(2)-VECM(p) model estimated, in order to assess further the usefulness of our nonlinear VECM
characterization of the term structure.

Our study contributes to the literature in several ways. Firstly, to the best of our knowledge, none
of the studies which have investigated the EH of the term structure of interest rates in BRICS countries
have explored the possibility of parameter instability as a crucial factor which might explain the
rejection of the restricted version of the cointegration space. Secondly, we extend the aforementioned
studies by examining the term structure of interest rates over a more recent time span covering the
period between January 2005 and August 2019 covering the global financial crisis started in 2008,
the Brazil political crisis in 2014–2016, the China stock market bubble in 2015, and the Russian oil
recession crisis in 2014. Thirdly, in order to assess further the usefulness of our nonlinear MS-VECM
characterization of the term structure, dynamic out-of-sample forecasts of the term structure were
constructed, over a more recent time span covering the period between May 2016 and August 2019,
using the MSIAH(2)-VECM(p). Performing this analysis for the recent data is important to capture the
effects of the aforementioned crisis above.

The study is organized as follows: In the next section, we discuss the related studies. In Section 3,
we present the theories of term structure and the related statistical estimation issues. We also thoroughly
present the Markov switching theory and the econometric approaches applied in extending the current
framework towards incorporating vector error correction modeling. In Section 4, we present the data
set, we conduct our exhaustive empirical analysis based on all estimated models, and we explicitly
report the results from the estimated Markov switching vector error correction approach in an attempt
to detect and explain the inherent nonlinearities and observed parameter instabilities. Moreover,
we present the constructed dynamic out-of-sample forecasts of the term structure and the comparison
of the forecasts produced by the MSIAH-VECM (p) to the forecasts generated by the VECM models
comprising the same set of variables, as well as the forecasts generated by the term structure VECMs.
In Section 5, we discuss the results and how they can be interpreted in perspective of previous studies
and of the working hypotheses, along with future research directions. The final section summarizes
and concludes our findings, including possible limitations of the study.

2. Literature Review

Ever since Fisher [9] postulated the Expectation Hypothesis (EH) of the term structure of interest
rates, this appealing theory has been at the center of attention. Early studies investigated the relation
of the EH with the term structure of bond yields. Fama and Bliss [10] and Campbell and Shiller [11],
among others, show that expected excess returns on long-term bonds (term premia) do vary over time;
moreover, it is possible to predict excess returns on bonds using observables, such as the forward
rate or the term spread. Reference [12] presents the strongest evidence in support of the expectations
hypothesis. He finds not only that the spread has statistically significant predictive power for excess
returns on five year bonds but also that his data cannot reject the expectations theory.

Over the years, studies on the Expectations Hypothesis (EH) of term structure of interest rates
have been conducted using various methodologies to test whether EH would hold or not. Campbell
and Clarida [13] investigated the predictive ability and the co-movement of the risk premia in the term
structure of money market interest rates in Europe, revealing that the term structure on European
currencies revealed common factors with those of other non-European currencies. One year later,
Campbell and Shiller [14] analyze the cointegrating interrelations between interest rates as implied by
the expectations model of the term structure. References [15–18], studied the long run dynamics of the
term structure of interest rates, focusing mostly on its cointegrating properties and therefore on building
correction models. More recently, Clarida et al. [4] investigated the term structure of bond yields
under a nonlinear framework using a nonlinear multivariate Vector Error Correction (VECM) model
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incorporating asymmetries in the error correction mechanism. They also studied the forecastability of
the model they proposed against some linear benchmark models. Bekiros et al. [5] analyzed money
market dynamics under a long-run equilibrium framework where commonly-monitored spreads
serve as error correction terms, derived from a structural model incorporating autocorrelated risk
premia, interest rate smoothing, and monetary policy feedback. They investigated the power of
the expectations hypothesis theory of interest rates taking into account long-run deviations from
equilibrium and inherent nonlinearities. They revealed short-run dynamic adjustments for the term
structure of the USA, Germany, and the UK, which are subject to regime switches (The characteristics
of the time series (mean and variance) stay the same during the whole time period under consideration
but that is usually not the case. A time series can change behavior completely from one period to
the next due to some structural changes. For example, a bond yield series can change its behavior
drastically from trending to volatile after a macroeconomic shock. Regime shift models address this
gap in basic time series modelling by segregating the time series into different “states”. These models
are also widely known as state-space models in time series literature. There are three types of models
that are popularly used: Threshold models, Predictive models and Markov switching autoregressive
models. Markov Switching Autoregressive Models assume the regime to be a ‘hidden state’ in which
probability and characteristics are estimated using maximum likelihood estimation [19]). Moreover,
they investigated the dynamic out-of-sample forecasts of the term structure to assess the effectiveness
of nonlinear Markov Switching Vector Error Correction (MS-VECM) modeling in capturing the
after-effects of the global crisis. Their results suggested that regime shifts in the mean and variance
of the term structure may be intertwined with changes in fundamentals that play a role in driving
interest rate regimes, in particular business cycle and inflation fluctuations.

BRICS countries are also in the core of the research interesting in testing the EH of the term
structure. More specifically, Shelile [20] employed the Generalized Method Moments technique to
investigate the predictive ability of the term structure of interest rates in five different periods of
time, using data from South Africa spanning from 1970 to 2004. These five periods refer to the five
different monetary policy frameworks that S. Africa has experienced. The researcher reveal that in the
highly regulated period, the term structure of interest rates poorly predicted real economic activity
while in the periods where interest rates were deregulated, the term structure was a better predictor
of real economic activity. More specifically, results show that term structure of interest rates have
better forecastability the period from 2000 to 2004 when the financial markets are deregulated in
South Africa due to the different monetary policy framework followed by monetary policy makers.
Shivam and Jayadev [21] assessed the operational efficiency of the Indian money market and examined
its structure by testing the validity of the EH. Their results provide evidence that validates the EH
in the Indian money market; implying that money market participants are able to predict changes in
rates while choosing between various money market instruments. Beechey et al. [1] used cointegration
methods to test the EH of the term structure of interest rates in fourteen developed and developing
countries. In the majority of the countries, they showed a co-integrating relationship between long and
short interest rates, supporting the EH. However, they did not find evidence of the EH in emerging
economies, which were India and South Africa in this case. According to Reference [1], the likely
reason for the absence of the EH in both countries is structural change. Interest rates in South Africa
were accompanied by strong inflows of foreign capital and the shift to inflation targeting in 2000,
and all of these changes are related to the decline in long term interest rates. The decline in long term
interest rate over the life of the shorter term bond runs counter to the EH, which insists that shorter
term interest rates tend to rise over the life of the longer term interest rates [14]. Thus, the ability of
the term structure to anticipate future movements in short term rates depends on the level and the
volatility of the term premia. Shareef and Shijin [22] tried to analyze the implication of the expectation
hypothesis for the Indian and USA term structure. Using Vector Autoregressive (VAR) estimates,
they tried to test the dynamic interdependence of interest rates vis-à-vis FX fluctuations. They found
evidence in line with the existence of the EH, yet only in case of the emerging market. Consequently,
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the spread between the long and short rate of India is influenced by short-term rates and past values of
the Indian spread.

3. Methodology

3.1. Cointegration Analysis

Hendry and Juselius [23,24] investigated the properties of economic time series, such as random
walks, which contained a unit root in their dynamics. They showed that, when data were non-stationary
purely due to unit roots (integrated once, denoted I(1)), they could be brought back to stationarity by
the linear transformation of differencing, as in yt − yt−1 = ∆yt. For example, if the data generation
process were the simplest random walk with an independent (IN) error having mean zero and constant
variance σ2

e ,
yt = yt−1 + et where et ∼ IN

(
0, σ2

e

)
(1)

Subtracting yt−1 from both sides would deliver ∆yt ~ IN(0, σ2
e ) which is certainly stationary.

Such an analysis generalizes to (say) twice-integrated series, which are I(2), so must become I(0) after
differencing them twice.

It is natural to enquire if other than linear transformations differencing will also induce stationarity.
The answer is ‘possibly’, but unlike differencing, there is no guarantee that the outcome must be I(0):
cointegration analysis is designed to find linear combinations of variables that also remove unit roots.

Specifically, we assume that the data generating process of the I(1) stochastic variables is a
Gaussian vector autoregressive model of finite order p, VAR(p), which can be expressed in a vector
error-correction model (VECM) form as:

∆yt = ν(st) + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt (2)

In this specification y, is a (nx1) vector of endogenous variables, v(st) is (the K-dimensional column
vector of regime-dependent intercept terms, and ε is a (nx1) multivariate random error which is
identically and independently distributed. In addition, Γi = −

∑p
j=i+1 Πj, where Π′is are the matrices

on the autoregressive part of the AR representation. The rank tests for cointegration involve the
estimation of the rank, r, of Π since this is equal to the number of cointegrating vectors. If 0 < r < n,
then there are r stationary linear combinations of the elements of y, and n − r non-stationary common
stochastic trends. In this case, there exist (nxr) matrices α and β such that:

Π = αβ′ (3)

where α is the adjustment coefficients matrix, and β is the matrix of the cointegration vectors.
An equally important issue, along with the existence of at least one cointegration vector is the

issue of the stability of such a relationship through time. Hansen and Johansen [6,7] have suggested
methods for the evaluation of parameter constancy in cointegrated VAR models, formally using
estimates obtained from the Johansen FIML recursive estimation technique. Specifically, three tests
have been constructed under two VAR representations; By reestimating all parameters in each step
and by reestimating only the long-run parameters α and β and concentrating out the short-term
dynamics using the full sample estimates of the parameters. The models are referred to as the “X-form”
and “R-form”, respectively (The usefulness of these two different representation forms stems from
comparison implications. More specifically, major differences between the “X-form” and “R-form” plots
may signal problems with the short-run parameters). The first test, called the Rank Test, gives a sequence
of trace statistics obtained from the recursive estimation of the model, scaled by the corresponding
critical values, and we accept the null hypothesis that the chosen rank is maintained if it takes values
greater than one, regardless of the sub-period it has been estimated for. The second test deals with the



Forecasting 2020, 2 107

null hypothesis of constancy of the cointegration space for a given cointegration rank. Hansen and
Johansen [6] proposed a likelihood ratio test that is constructed by comparing the likelihood function
from each recursive sub-sample with the likelihood function from the full sample. The third test
examines the constancy of the individual elements of the cointegrating vectors β, and it exploits
the fact that there is a unique relationship between the eigenvalues and the cointegrating vectors.
Therefore, when the cointegrating vectors have undergone a structural change, this will be reflected in
the estimated eigenvalues. Hansen and Johansen [6,7] derived the asymptotic distribution, as well as
the asymptotic variance, of the estimated eigenvalues.

3.2. Asymmetric Markov Switching Equilibrium-Correction Modeling

Regime-switching modeling characterizes non-linear data generating processes as being piecewise
linear by restricting the processes to be linear in each regime, where the regime may be unobservable,
and only a discrete number of regimes are feasible. The procedure extends Hamilton [24],
who investigated the properties of regime switching econometric models in a univariate context.
Krolzig [8] extended this framework to multivariate vector error correction models. Consider the
MS-VAR process in its most general for:

yt = ν(st) + Π1yt−1 + . . .+ Πkyt−k + εt, t = 1, 2, . . . , T (4)

where yt is an n dimensional time series vector observed at time t, and T is the sample size. v is
the vector of intercepts, Π1, , , Πp are the matrices containing the autoregressive parameters, and εt

is a white noise vector process such that εt|st ∼ NID(0, Σ(st)). The regime generating process is
assumed to be an ergodic Markov chain with a finite number of states st ∈ [1, . . . , M] governed by
transition probabilities pi j = Pr(st+1 = j/st = i) and

∑M
j=1 pi j = 1 for all i, j ∈ {1, . . . , M}. The MS-VAR

setting also allows for a variety of specifications. In Equation (7), the intercept term is assumed to
vary with each state aside from the other parameters. Intercept switch specification is used in cases
where the transition to the mean of the other state is assumed to follow a smooth path. An alternative
representation is obtained by allowing the mean to vary with the state. This specification is useful in
cases where a one-time jump is assumed in the mean after a change in regime.

This type of MS(M)-VAR(p) model, which allows for regime shifts, both in the intercept, variance
and covariance matrix, is the Markov switching intercept heteroskedastic VAR noted as MSIH-VAR
by Krolzig [8]. The VEC representation of the MSIH-VAR(p) model, or MSIH-VECM(p-1) can be
written as:

∆yt = ν(st) + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt (5)

where Π = −
(
I −Π1 − . . .−Πp

)
and Γi = −

(
Π j+1 + Π j+2 + . . .+ Πp

)
for j = 1, 2, . . . , p− 1

Given that Π is not full rank, it can be written as the product of two rectangular matrices α

and β of order n × r such that Π = aβ′. The vector β is the cointegrating vector and the vector α is
the factor-loading (or speed of adjustment) vector. Hence, r is the number of cointegrating vectors.
Therefore, MSIH-VECM in Equation (5) can be written as

∆yt = ν(st) + αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + εt (6)

As indicated by Clarida et al. [4] the asymmetric adjustment in interest rates, can be modeled
within this framework. To capture the asymmetries in the data they write the above MSIH-VECM
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model by allowing differing speeds of adjustment to equilibrium depending on whether interest rates
are above or below equilibrium, i.e., whether the β′yt−1 is negative or positive. Then,

∆yt = ν(st) + Ψtα
+β′yt−1 + (It −Ψt)α

−β′yt−1 +

p−1∑
i=1

Γi∆yt−i + εt (7)

where It is an r× r identity matrix, and Ψt is a r× r diagonal matrix whose j-th diagonal at time t takes the
value of unity or zero according to whether the lagged j-th deviation from the equilibrium, i.e., the j-th
element of β′yt−1 is positive or negative, respectively. The model in Equation (7) is termed as MSIH
Asymmetric VECM. The specifications in Equations (6)–(7) do not allow regime dependent behavior
either for the speed of adjustment nor for the autoregressive coefficients (or short-run parameters).
We can enrich the models considered by Clarida et al. [4] by allowing both types of regime switching.
Firstly, we rewrite MSIH-VECM in Equation (6) as:

∆yt = ν(st) + α(st)β
′yt−1 +

p−1∑
i=1

Γi(st)∆yt−i + εt (8)

This model can be noted as Markov-switching-intercept-autoregressive-heteroskedastic VECM
(MSIAH-VECM). In this model, we retain the usual assumptions in the literature by supposing that,
whereas the long-run parameters contained in the cointegration vector β is regime-invariant, the speed
of adjustment coefficients of vector α are regime-dependent. Then, considering an asymmetric behavior
defined in Equation (7), we conclude to the following MSIAH Asymmetric VECM

∆yt = ν(st) + Ψtα
+(st)β

′yt−1 + (I −Ψt)α
−(st)β

′yt−1 +

p−1∑
i=1

Γi(st)∆yt−i + εt (9)

The estimation of the MSIAH-VECM models in Equations (7)–(9) can be carried out in three steps
as suggested by Krolzig [8], and as applied by References [4,25–27]. The cointegration tests and the
estimation of the parameters of the long-run relations can be achieved by the maximum likelihood
(ML) approach within the context of VECMs, as outlined in References [17,28]. In the second step,
the long-run parameter matrix β is estimated and is embedded in the above MS-VECM. The remaining
parameters are estimated by using the expectation maximization algorithm of Reference [8].

3.3. Forecastability Testing

The statistical significance of the difference in forecast performance is tested with the statistic
proposed by Reference [29]. Taking the pair of squared forecast errors from the two competing models
e2

0,t, e2
i,t), t = 1, . . . . . . , n., the null hypothesis of equality of expected forecast performance is given by

E
(
e2

0,t, e2
i,t

)
= 0 (10)

Defining dt =
(
e2

0,t, e2
i,t

)
, t = 1, . . . ,n, the test is based on the sample mean

d = n−1
∑n

t=1
dt (11)

As the sequence of forecast errors follows a moving average process of order (h − 1), i.e.,
implies that h-step-ahead forecast errors are serially correlated up to order h − 1, the variance of d is
asymptotically given

V
(
d
)
≈ n−1

[
γ0 + 2

∑h−1

k=1
γκ

]
, (12)
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where γκ is the k-th autocovariance of dt. The Diebold-Mariano test statistic is then

DM =
[
V̂
(
d
)]−1/2

d with DM ∼ N(0, 1). (13)

The test statistic is calculated for the 6-month and 12-month forecast horizon.

4. Data and Empirical Results

4.1. Data and Preliminary Analysis

We utilize a data set of weekly observations of the overnight and 1-, 3-, and 6- months, as well
as of one year Treasury bills rates for Brazil, Russia, India, China, and South Africa, the so-called
BRICS, spanning the period from January 2005 to August 2019 (Figure 1). In our empirical work,
we carried out our estimations over the period January 2005 to May 2016, reserving the remaining
data for out-of-sample forecasting tests (We used May 2016 as a break date following the results
produced by Bai, J. and P. Perron [30] structural break point analysis. Results are available upon
request). The descriptive statistics are presented in Table A1. Results show that skewness and kurtosis
exhibit in all cases, with large standard deviations, especially in case of Brazil and Russia rates.
The Dornik–Hansen test for all five countries is statistically significant, thereby indicating that the bond
yield distributions are not normal, for all maturities. The series present nonlinear dependence due to
clustering effects or conditional heteroscedasticity, as shown by the results of the ARCH LM-statistic
and White’s test, while the Durbin Watson statistic lies between 1.5 and 2.5, implying no autocorrelation.
Next, we test for evidence of unit root behavior in each of the interest rates by calculating the standard
Augmented Dickey-Fuller (ADF), Phillips-Perron, and Elliot, Rothenberg, and Stock point optimal
(ERS) test statistics. In each case the number of lags was chosen such that no residual autocorrelation
was evident in the regressions (Dickey and Fuller [31] showed that under the null hypothesis of a
unit root, this statistic does not follow the conventional Student’s t-distribution, and they derive
asymptotic results and simulate critical values for various test and sample sizes. More recently,
MacKinnon [32] implemented a much larger set of simulations than those tabulated by Dickey and
Fuller. In addition, he estimated response surfaces for the simulation results, permitting the calculation
of Dickey-Fuller critical values and p-values for arbitrary sample sizes. The simple Dickey-Fuller
unit root test described above is valid only if the series is an AR(1) process. In the presence of higher
order lags, the assumption of white noise disturbances et is violated. The Augmented Dickey-Fuller
(ADF) test constructs a parametric correction for higher-order correlation by assuming that each series
follows an AR(p) process and adding p lagged difference terms of the dependent variable to the
right-hand side of the test regression. Moreover, while the assumption that the series follows an
autoregressive (AR) process may seem restrictive, Said and Dickey [33] demonstrated that the ADF test
is asymptotically valid in the presence of a moving average (MA) component, provided that sufficient
lagged difference terms are included in the test regression. An alternative (nonparametric) method of
controlling for serial correlation when testing for a unit root was proposed by Reference [34]. The PP
method estimates the non-augmented DF test and modifies the t-ratio so that serial correlation does
not affect the asymptotic distribution of the test statistic. The ERS point optimal test is based on the
quasi-differencing regression. The critical values for the ERS test statistic are computed by interpolating
the simulation results provided by Reference [35]). As shown in Table A2, we were unable to reject the
unit root null hypothesis at all nominal levels of significance. Moreover, differencing the series did
appear to induce stationarity in all cases. Hence, each of the examined time series is a realization from
an integrated stochastic process of order one, which suggests that testing for cointegration between the
five interest rates is the logical next step.
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Figure 1. Treasury bills interest rates for BRICS countries. Note: O/N, 1M, 3M, 6M, 1Y denote the
overnight and one-, three-, six- months and one year Treasury bills rates for Brazil, Russia, India, China,
and South Africa, spanning the period from January 2005 to August 2019.

We use the Johansen maximum likelihood procedure under a VAR specification for
yt = [i0,t , i4,t, i13,t, i26,t, i52,t]′ and an unrestricted constant term (We allowed for a maximum lag
length of 24 and chose for each country the appropriate lag length on the basis of conventional
information criteria [36]. More specifically we chose 6 lags for the China, Russia, and India and
4 lags for Brazil and S. Africa. We have also tested for a restricted constant term, with no statistically
significant results at the 5% significance level). On the basis of the Johansen likelihood test statistic for
the cointegrating rank as reported in Table A3 (see Appendix B) for India and South Africa, we could
not reject the hypothesis of four independent cointegrating vectors against the alternative of five at the
5% significant level, whilst, for the Brazil, China, and Russia, we could not reject the hypothesis of three
independent cointegrating vectors against the alternative of four at 5% significant level. We conclude
that there are exactly four cointegrating relationships between the five rates for India and South Africa
and three cointegrating vectors for the Brazil, China, and Russia.
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In parallel with the existence of at least one cointegration vector, we test the issue of the stability
of such a relationship over time. Following Reference [6,7], we try to evaluate the parameter constancy
in the cointegrated VAR models, formally using estimates obtained from the Johansen FIML technique.
Our cointegration results are robust to the presence of structural breaks in the cointegrating rank,
as allowed for in the Hansen-Johansen procedure. Figures A1–A4 (see Appendix A) present the results
by the tests for the structural stability of our estimated cointegrating systems. In Figures A1 and A2
(see Appendix A), the trace test under the “X-representation” shows that a cointegration space of four
vectors for India and South Africa and a cointegration space of three vectors for the Brazil, China,
and Russia is established from the beginning of the recursive exercise and remains the same up until
2010. As expected, this is not the case with the “R-representation” since the short-run parameters are not
allowed to change. The test for the constancy of the cointegration space is equally adequate. As shown
in Figures A3 and A4 (see Appendix A), the graphs are scaled by the 5% critical value and therefore the
null of stability is rejected if the test value exceeds the value of one. In the case of Brazil, we observe
that the values of the test statistic remain below the value of one from the beginning of the recursive
exercise and remain the same up to the end. Contrary to Brazil, for India and South Africa, we observe
that the values of the test statistic exceed the value of one from 2009 to 2012, while, for Russia and
China, the values of the test statistic exceed the value of one from the beginning of the exercise until
2010. In general, all plots show very clearly a break, for several months, around the global financial
crisis period of 2008–2012.

Following Reference [16,17,37], we test the exclusion of the variables in the long-run relations.
When analyzing the cointegrated VAR model sometimes, only a subset of variables is needed in the
cointegration space. Specifically, in Table 1 results shown that there is no evidence to exclude any
variable for India and South Africa at four cointegrating relations and for the Brazil, China, and Russia
at three cointegrating relationships.

Table 1. Variable exclusion test.

r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

Brazil
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 4.827
[0.005]

102.055
[0.000]

113.737
[0.000]

66.856
[0.000]

40.459
[0.000]

Russia
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 61.223
[0.000]

32.425
[0.000]

41.400
[0.000]

50.983
[0.000]

90.654
[0.000]

India
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

4 4 9.488 59.244
[0.000]

36.306
[0.000]

70.259
[0.000]

91.937
[0.025]

57.097
[0.044]

China
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 35.110
[0.000]

31.790
[0.002]

17.331
[0.001]

7.192
[0.036]

3.202
[0.002]

South Africa
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

4 4 9.488 457.514
[0.000]

93.462
[0.000]

81.136
[0.000]

65.032
[0.000]

79.297
[0.000]

Notes: The p-values are in brackets.

Furthermore, we test the weak exogeneity for the Long-Run parameters (Weak exogeneity is a
hypothesis about the rows of αwhen the parameters of interest are the long-run parameters α and β.
We tested the weak exogeneity for the Long-Run parameters following the hypothesis testing proposed
by Reference [28], imposing zero-rows on the matrix of the Long-Run parameters estimated by the
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VECM models). By conditioning on weakly exogenous variables, the rest of the system is likely to
“behave” more robustly, statistically speaking. Results in Table 2 show that, for China and Russia for
three cointegrating vector relations, the 6M T-bill and the 1Y T-bill can each be considered weakly
exogenous at the 5% significance level.

Table 2. Weak exogeneity testing.

r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

Brazil
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 17.069
[0.001]

49.069
[0.000]

48.079
[0.000]

17.883
[0.000]

7.307
[0.000]

Russia
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 14.690
[0.000]

5.719
[0.006]

7.399
[0.040]

6.610
[0.085]

46.299
[0.085]

India
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

4 4 9.488 39.865
[0.000]

25.515
[0.000]

16.506
[0.002]

90.039
[0.000]

11.469
[0.022]

China
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

3 3 7.815 40.839
[0.000]

19.305
[0.002]

6.484
[0.003]

8.240
[0.061]

4.553
[0.208]

South Africa
r DGF 5% C.V. i0,t i4,t i13,t i26,t i52,t

4 4 9.488 458.202
[0.000]

124.129
[0.000]

117.759
[0.000]

90.208
[0.000]

27.627
[0.000]

Notes: The p-values are in brackets.

Following References [38,39], we test the over-identifying restrictions on the β matrix of the
cointegrating coefficients. Results in Table 3 suggest that the departure from the over identifying
restrictions are not statistically significant at conventional test sizes. More specifically, for India and
South Africa, the estimated VECM identified a one-to-one long-run relationship between (i) overnight
and 1-month Treasury bill, (ii) the overnight and the 3-months bill, (iii) the overnight and the 6-months
Treasury bill, and (vi) the overnight and the 1-year bill, whilst, for Brazil, China, and Russia, the VECM
identified a one-to-one long-run relationship between the (i) overnight and 1-month Treasury bill,
(ii) the overnight and the 3-months bill, and the (iii) the overnight and the 6-months Treasury bill.

Table 3. Long-run structure restrictions.

Vector Brazil Russia India

Vector 1 3M T-bill–1M T-bill 1 Year T-bill–1M T-bill 1M T-bill–Overnight T-bill
Vector 2 6M T-bill–1M T-bill 1 Year T-bill–3M T-bill 3M T-bill–Overnight T-bill
Vector 3 1 Year T-bill–1M T-bill 1 Year T-bill–6M T-bill 6M T-bill–Overnight T-bill
Vector 4 1 Year T-bill–Overnight T-bill

Bartletts Correction Test CHISQR(6) = 1.560
[0.955]

CHISQR(6) 8.941
[0.177] CHISQR(4) 2.833 [0.586]

China South Africa

Vector 1 1M T-bill–Overnight
T-bill

1M T-bill–Overnight
T-bill

Vector 2 3M T-bill–Overnight
T-bill

3M T-bill–Overnight
T-bill

Vector 3 6M T-bill–Overnight
T-bill

6M T-bill–Overnight
T-bill

Vector 4 1 Year T-bill–Overnight
T-bill

Bartletts Correction Test CHISQR(6) = 3.051
[0.802]

CHISQR(4) = 6.695
[0.153]

Notes: The number in brackets denote the p-value for x2(g) under the null, where g is the number of restrictions; the
imposing restriction is rejected for p-values < 0.05.
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4.2. MSIAH-VECM Estimation Results

Taking into account the results unveiled above, we then try to investigate their short-run
time-varying adjustments. Subsequently, we wish to distinguish whether the sign of the shock causes
a different adjustment speed toward the equilibrium state. Many times, it is reported that negative
shocks might take longer to adjust than positive shocks. In Table 4, we test our VECM modeling
specifications against their corresponding asymmetric VECM and nonlinear MS-VECM alternatives,
assuming the presence of nonlinearity, as considered in Reference [4].

Table 4. Linearity testing.

Countries LR p-Value

Brazil 7222.0 <0.01
Russia 6077.5 <0.01
India 9914.1 <0.01
China 16,099.0 <0.01

South Africa 16,594.0 <0.01

Notes: LR is a likelihood ratio test of the symmetrical null hypothesis, i.e., the restricted model tested is the
symmetric linear VECM (p) vs. the alternative VECM(p), which allows for asymmetric equilibrium correction.
The test is constructed as 2(lnL*/lnL), where L* and L represent the unconstrained and constrained maximum
likelihood, respectively. The test statistic is asymptotically distributed as x2(g) under the null hypothesis, with g
number of restrictions.

Next, we apply the “bottom-up” procedure designed to detect Markovian shifts in order to
select the most adequate and robust characterization of a two-regime pth-order MS-VECM set-up
for the BRICS countries (Essentially, the bottom-up approach comprises starting with a simple but
statistically reliable Markov-switching model by restricting the effects of regime shifts on a limited
number of parameters, and then checking the model against alternatives; for a technical discussion,
see Reference [8]). We not only test the hypothesis of no regime switching in the intercept but also in
the variance-covariance matrix, as well as the autoregressive parameters using the LR tests suggested
by Reference [8]. The results in Table 5 indicate a strong rejection of the null of no regime dependence
in the intercept (LR1) and in the variance-covariance matrix (LR2). Therefore, an MS-VECM allows for
shifts in both the intercept and the variance-covariance matrix; hence, an MSIH(2)-VECM(p) can be
considered the most appropriate econometric model.

After testing for regime-conditional intercept and homoskedasticity, we attempt to robustly select
the most parsimonious MSIH-VECM specification that represents the dynamic relationship between
the interest rates examined. Firstly, we consider a maximum lag length of 12 for the VAR in levels
and a maximum lag length of 11 in the VECM formulation and test the null of an MSIH(2)-VECM(1)
vis-à-vis an alternative MSIAH(2)-VECM(p), as it can be seen by the inspection of the (LR3) tests.

Overall, we are able to reject this null at standard significance levels in all cases. For each of the
five countries, we use an asymmetric MSIAH-VECM with two regimes, which was found to provide
with an accurate characterization of the dynamics of the term structure. The MS-VECM formulation
captures a regime shift related to the Global financial crisis in 2010, for the five countries, as shown in
Figures A5–A9 (see Appendix A). The results provide regime classification information expressed by
the smoothed probabilities of being in the high and/or low volatility regime. The regime shifts occur
in the intercept, in the variance-covariance matrix and in the autoregressive parameters. For each
of the countries considered, the regime with a higher variance corresponds to periods wherein the
average interest rate at each maturity is relatively high; this is also reflected by the fact that the
high-variance regime exhibits estimated intercept terms greater than the intercept in the low-variance
regime accordingly. Thus, the two regimes may be seen as reflecting a higher mean and variance for
the investigated interest rates in one regime and - on average - lower and less volatile fluctuations
for the rates’ series in the other regime. The identification of the regimes, also in accordance with the
stylized facts, can be rationalized in light of a change in the monetary-fiscal policy mix from fiscally-led
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to monetary-led. In particular, under Regime 0 (low-volatility regime) probably the higher deficits lead
to a higher average inflation, whilst the real interest rates remained low as the monetary authority did
not respond aggressively to inflation. Hence, Regime 0 could be associated with a fiscally-led policy
and Regime 1 with a monetary-led one, respectively.

Table 5. Bottom-up process.

Restricted Model Unrestricted Model LRs

Brazil

648.983 740.566 LR1
1.339 *

740.566 973.677 LR2
1.509 *

973.677 1344.121 LR3
2.093 *

Russia

546.908 780.733 LR1
1.784 *

780.733 937.404 LR2
1.900 *

937.404 1067.357 LR3
2.037 *

India

786.245 984.914 LR1
1.786 *

984.914 1136.978 LR2
1.948 *

1136.978 1432.405 LR3
2.065 *

China

2836.182 4222.057 LR1
1.240 *

4222.057 4365.062 LR2
1.767 *

4365.062 4892.870 LR3
1.985 *

South Africa

2988.157 3800.397 LR1
1.585 *

3800.397 7260.960 LR2
1.732 *

7260.960 7278.7834 LR3
1.916 *

Notes: The LR1, LR2, and LR3 are the test statistics and the p-values of the null hypothesis of no regime-dependent
intercept, no regime-dependent variance-covariance matrix, and of MSIH(2)-VECM(1) vs. MSIH(2)-VECM(p),
respectively. Each of LR1, LR2, and LR3 is constructed as 2(lnL∗/lnL), where the L∗ and L represent the unconstrained
and constrained maximum likelihood, respectively. These test statistics are asymptotically distributed as x2(g),
where g the number of restrictions; * denotes statistical significance at 5% level.

Next, Table 6 displays the estimates for the probability of staying in a regime and the estimated
duration for each of the examined countries. The standard deviations in the first regime are substantially
smaller than those of the second one for the three countries; hence, we can call Regime 1 the low-volatility
regime, whilst Regime 2 the high-volatility state. Judging by those estimates, for Brazil, we find a
96.7% probability that a low volatility regime will be followed by a similar one with an estimated
duration of 23.85 months, while the corresponding probability for the high volatility period is 40%
with an estimated duration of 1.66 months. For Russia, there is a 93.5% probability that a low volatility
state follows a previous same regime with a duration of 15.38 months and a 79.7% persistence in the
high volatility regime with an estimated duration of 4.95 months. For India, there is a 90% probability
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that a low volatility state follows a previous same regime with a duration of 10.5 months and a 70%
persistence in the high volatility regime with an estimated duration of 3 months. For China, there is an
85% probability that a low volatility state follows a previous same regime with duration of 6.7 months
and a 95% persistence in the high volatility regime with an estimated duration of 3.34 months. Lastly,
for the South Africa, we find a 97.6% probability that a low volatility regime will be followed by a
similar one lasting 41.46 months, while the corresponding probability for the high volatility period is
5% with an estimated duration of nearly 1.06 months.

Table 6. Markov-switching-intercept-autoregressive-heteroskedastic (MSIAH)(2)-VECM(p) results
for BRICS.

Transition
Probabilities Regime 1 Regime 2 Duration Regime 1 Regime 2

Brazil MSIAH(2)-VECM(2)
Regime 1 0.957 0.599 Duration 23.25 1.66
Regime 2 0.042 0.400

Russia MSIAH(2)-VECM(1)
Regime 1 0.935 0.202 Duration 15.38 4.95
Regime 2 0.064 0.797

India MSIAH(2)-VECM(1)
Regime 1 0.905 0.329 Duration 10.52 3.039
Regime 2 0.094 0.700

China MSIAH(2)-VECM(1)
Regime 1 0.851 0.299 Duration 6.711 3.344
Regime 2 0.148 0.949

South Africa We define MSIAH(2)-VECM(1)
Regime 1 0.976 0.942 Duration 41.66 1.061
Regime 2 0.023 0.057

Notes: “BRICS” countries label refers to a select group of five large, developing countries (Brazil, Russia, India,
China, and South Africa). The “Duration” incorporates the expected length of each regime calculated as 1/(1-P(1,1)
for the 1st regime and 1/P(1,2) for the 2nd regime.

4.3. Forecasting the Term Structure of Interest Rates with the MSIAH-VECM

Trying to assess further the usefulness of our nonlinear VECM characterization of the term
structure, we constructed dynamic out-of-sample forecasts of the term structure using the VECM(p)
and MSIAH(2)-VECM(p), which are estimated and described in the previous sections. More specifically,
we performed forecasting exercises for May 2016 to August 2019 with forecast horizons 6 and 12 months
ahead. The out-of-sample forecasts for a given horizon were constructed recursively, conditional only
on information up to the date of the forecast and with successive re-estimation as the date on which
forecasts are conditioned moves through the data set. Forecast accuracy is evaluated computing the
DM-statistic to investigate the statistical significance of the differential predictability between VECMs
and MSIAH(2)-VECMs in a pairwise fashion. The predictability results are reported in Table 7.

Starting with Brazil, we observe that the D-M test shows a statistically significant differential
predictability between the VECMs and the MSIAH(2)-VECM’s pairs. MSIAH(2)-VECM’s have better
predictive ability from VECMs for the majority of interest rates, with exceptions for the 6-month T-bills
and 1-year Treasury bill for 6 and 12 months forecasting horizon. For Russia, the D-M results show
that MSIAH(2)-VECM’s have better predictive ability from VECMs for the majority of interest rates,
with exceptions for the 6-month T-bills and 1-year Treasury bill for 6 months forecasting horizon,
while, for the 12 months, forecasting horizon D-M results show that MSIAH(2)-VECM’s have better
predictive ability from VECMs only for overnight T-bills. For India, the D-M results show that
MSIAH(2)-VECM’s outperformed VECMs for overnight and 1-year Treasury bills for both forecasting
horizons. For China, the D-M results show that MSIAH(2)-VECM’s have better predictive ability
from VECMs for overnight and 3-month Treasury bills for 6 months forecasting horizon while for
the 12 months forecasting horizon D-M results show that MSIAH(2)-VECM’s have better predictive
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ability from VECMs only for overnight T-bills. Finally, for the South Africa rates, the results show
that nonlinear MSIAH(2)-VECMs outrank the linear VECM models. The D-M test results show that
MSIAH(2)-VECM models outperform the linear VECM models for the overnight, 3-month and 1-year
Treasury bill forecasts for 6 months forecasting horizon while for the 12 months forecasting horizon
D-M results show that MSIAH(2)-VECM’s have better predictive ability from VECMs for overnight
and 1-month T-bills.

Table 7. Forecasting accuracy-Diebold-Marianno tests.

Hours VECMs
MSIAH(2)-VECMs i0,t Country i13,t i26,t i52,t

h
Brazil

i0,t i4,t i13,t i52,t i26,t

6
VECM(6) 0.002 0.001 0.001 0.302 0.435

MSIAH(2)-VECM(2) 0.998 0.999 0.999 0.798 0.565

12
VECM(6) 0.045 0.099 0.036 0.399 0.306

MSIAH(2)-VECM(2) 0.955 0.901 0.974 0.701 0.693
Russia

i0,t i4,t i13,t i26,t i52,t

6
VECM(7) 0.002 0.002 0.010 0.120 0.366

MSIAH(2)-VECM(1) 0.998 0.998 0.990 0.880 0.634

12
VECM(7) 0.069 0.110 0.211 0.412 0.485

MSIAH(2)-VECM(1) 0.931 0.890 0.789 0.598 0.515
India

i0,t i4,t i13,t i26,t i52,t

6
VECM(6) 0.002 0.120 0.170 0.112 0.019

MSIAH(2)-VECM(1) 0.998 0.880 0.830 0.887 0.981

12
VECM(6) 0.095 0.110 0.190 0.340 0.078

MSIAH(2)-VECM(1) 0.905 0.790 0.710 0.660 0.922
China

i0,t i4,t i13,t i26,t i52,t

6
VECM(6) 0.056 0.455 0.030 0.337 0.445

MSIAH(2)-VECM(1) 0.944 0.545 0.970 0.663 0.555

12
VECM(6) 0.090 0.499 0.111 0.401 0.501

MSIAH(2)-VECM(1) 0.910 0.501 0.889 0.599 0.499
South Africa

i0,t i4,t i13,t i26,t i52,t

6
VECM(1) 0.010 0.011 0.101 0.289 0.089

MSIAH(2)-VECM(1) 0.990 0.989 0.899 0.711 0.901

12
VECM(1) 0.049 0.070 0.211 0.301 0.112

MSIAH(2)-VECM(1) 0.951 0.930 0.789 0.699 0.888

Notes: D–M represents p-values of the Diebold-Mariano forecasting accuracy tests. P-values will (by construction)
always add up to one. Null hypothesis of the first line indicates that VECM(p) and MSIAH(2)-VECM(p) have the
same forecasting ability with the alternative that MSIAH(2)-VECM(p) has better forecasting ability than VECM(p).
Flipping the sign gives the test statistic in the second line, where, under the null hypothesis, VECM(p) and
MSIAH(2)-VECM(p) have the same forecasting ability, while the alternative indicates that VECM(p) has better
forecasting ability than MSIAH(2)-VECM(p). Small p-values (<0.05 or <0.10) indicate that the forecasts on the line
will be rejected in favor of the other, at 5% or 10% statistical significance level.

Overall, these results suggest that using a nonlinear MSIAH-VECM framework for the term
structure of interest rates, we can generate satisfactory out-of-sample forecasts of the term structure.
The gain from using a nonlinear MSIH-VECM rather than a linear VECM may be relatively small
at short forecasting horizons; however, this gain generally increases with the forecast horizon and
becomes very substantial indeed at the 12 months forecasting horizon, especially in case of Brazil.

5. Discussion and Future Research Directions

The Expectation Hypothesis of the term structure of interest rates has been at the core of
macroeconomics and finance research. Several studies on the EH of term structure of interest rates
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have been conducted using various methodologies to test whether EH would hold or not (e.g.,
References [13–15]). Furthermore, many researchers have investigated the power of the expectations
hypothesis theory of interest rates taking into account long-run deviations from equilibrium and
inherent nonlinearities [4,16]. More recently, there are studies which have investigated the dynamic
out-of-sample forecasts of the term structure to assess the effectiveness of nonlinear MS-VECM
modeling (e.g., Reference [5]). Additionally to the above, BRICS countries are also in the core of the
research interesting we discuss. To the best of our knowledge, there is a limited number of studies in
testing the EH of the term structure of interest rates in BRICS countries (e.g., References [1,20,22]).

The aim of this paper was to identify whether the expectations hypothesis of the term structure of
interest rates holds in BRICS countries and to explore the possibility of parameter instability as a crucial
factor which might explain the rejection of the restricted version of the cointegration space, as well as
to assess further the usefulness of nonlinear characterization of the term structure of interest rates.

Our study is different from the studies already conducted in three respects. To the best of our
knowledge, none of these studies have explored the possibility of parameter instability as a crucial
factor which might explain the rejection of the restricted version of the cointegration space for BRICS
countries. Secondly, we extend previous studies by examining the term structure of BRICS’s bond
rates over a more recent time span covering the period from January 2005 to August 2019, comparing
BRICS economies. Thirdly, in order to assess further the usefulness of our nonlinear MS-VECM
characterization of the term structure, dynamic out-of-sample forecasts of the term structure were
constructed, over a more recent time span covering the period between May 2016 and August 2019,
using the MSIAH(2)-VECM(p). Performing this analysis for the recent data is important to capture the
effects of the global and domestic financial crisis in BRICS economies.

The empirical findings assessed in our paper offer invaluable information for economists, central
banks, and monetary policy makers, as well as contribute significantly to the existing literature.
In general, the interest rate series of the majority of the short term maturities appear to move together
in line with the prediction of the Expectations Hypothesis theory. More specifically, our exhaustive
cointegration empirical analysis produced the following results: Firstly, for India and South Africa,
the estimated VECM identified a one-to-one long-run relationship between (i) overnight and 1-month
Treasury bill, (ii) the overnight and the 3-months bill, (iii) the overnight and the 6-months Treasury bill,
and (vi) the overnight and the 1-year bill, whilst, for the Brazil, China, and Russia, the VECM identified a
one-to-one long-run relationship between the (i) overnight and 1-month Treasury bill, (ii) the overnight
and the 3-months bill, and the (iii) the overnight and the 6-months Treasury bill. Secondly, after the
application of parameter stability testing we were able to show that our cointegration results are sample
independent. However, the estimated coefficients exhibit some instabilities during the global financial
crisis period from 2008 to 2012. Thirdly, aside from the long-run equilibrium, we revealed short-run
dynamic adjustments for the term structure. Specifically, relying on advanced econometric approaches,
we allowed for the underlying market linkages to be subject to regime shifts under a Markov Switching
VECM framework. Thereby, we found strong evidence of nonlinearity for monthly Brazil, Russia, India,
China, and South Africa interest rates. We then used Markov Switching VECM framework to forecast
dynamically out of sample the term structure of interest rates, over the period May 2016 through
August 2019. The forecasting results were extremely interesting. The MSIAH-VECMs’ forecasts were
found to be superior to the forecasts obtained from the linear VECM models, comprising the same
set of variables, at a range of forecasting horizons up to 12 months ahead, using standard forecasting
accuracy criteria and on the basis of standard tests of significance. Moreover, the gain from using an
MSIH-VECM rather than a linear VECM generally increases with the forecast horizon and becomes
very substantial indeed at the 12 months forecasting horizon, especially in case of Brazil.

The validation of the EHT for the majority of the BRICS bond yields, the possibility of parameter
instability as a crucial factor which might explain the rejection of the restricted version of the
cointegration space, and the usefulness of nonlinear characterization of the term structure of interest
rates have many possible implications. More specifically, entrepreneurs, economists, and investors
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could make the appropriate decisions by using long-term rates, typically from government bonds,
to forecast the rate for short-term bonds. Furthermore, central banks and policy makers could perform
an active sovereign debt management adjusting their monetary and fiscal policies, since the maturity
structure of public debt affects the government budget.

In terms of future work, there are several directions that can be pursued in order to improve upon
this work. More types of nonlinear models, such as Transition Autoregressive Models (TAR) and the
Smooth Transition Autoregressive Family Models (e.g., ESTAR, LSTAR, TSTAR, and GBELL-STAR),
should be used as benchmarks models in order to investigate their forecastability. Additional
machine learning techniques, such as neural networks or evolutionary programming algorithms (e.g.,
Reference [40]), could be included in order to investigate a more comprehensive evaluation of the
forecasting technique for the usefulness of the of nonlinear characterization of the term structure of
bond yields. Finally, the examination of the linkages between the term structure of interest rates and
the macroeconomic factors is also a crucial issue for future research.

6. Conclusions and Limitations

In this paper, we investigated the power of the Expectation Hypothesis, taking into account
cointegration effects as long-run deviations from equilibrium, regime switches, and inherent
nonlinearities, utilizing monthly data of i0,t, i4,t, i13,t, i26,t, i52,t interest rates for Brazil, Russia,
India, China, and South Africa, the so-called BRICS countries, over the period 1 January 2005 through
31 August 2019.

Overall, we provided a conclusive result with respect to the nonlinear adjustment properties of the
term structure of interest rates. The shifts in mean and variance of the term structure of interest rates
may be intimately related to changes in the sort of economic fundamentals one would expect to play a
role in driving interest rate regimes, in particular the state of the business cycle and fluctuations in
inflation. Moreover, using a MSIAH-VECM framework for the term structure of interest rates, we can
generate satisfactory out-of-sample forecasts of the term structure.

As with all research studies, this work also has limitations that should be taken into account
when generalizing its findings. One limitation stems from the nature of the Expectation Hypothesis
Theory. A common problem with using the expectations theory is that it sometimes overestimates
future short-term rates, making it easy for investors to end up with an inaccurate prediction of a
bond’s yield curve [41]. Another limitation of the Expectations Hypothesis theory is that many
macroeconomics factors impact short- and long-term bond rates. However, long-term yields might not
be as impacted because many other factors impact long-term yields including inflation and economic
growth expectations. As a result, the expectations theory does not take into account the outside forces
and fundamental macroeconomic factors that drive interest rates and ultimately bond yields. Finally,
the limited data availability of the government interest rates for BRICS countries before 2000 is also a
crucial limitation. This is a serious problem which makes extremely difficult the testing of the interest
rate dynamics in a wider approach, as well, as may occur weaknesses in the forecastability of linear
estimation techniques.
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Figure A1. Trace Test Statistics. Note: “X-representation” denotes that all parameters of the cointegrated
VAR system are re-estimated during the recursions, while under the “R-representation”, only the
long-run parameters are re-estimated. The graphs are scaled by the 5% critical value and we accept the
null hypothesis that the chosen rank is maintained if it takes values greater than one, regardless of the
sub-period it has been estimated for.
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Figure A2. Trace Test Statistics. Note: “X-representation” denotes that all parameters of the cointegrated
VAR system are re-estimated during the recursions, while under the “R-representation”, only the
long-run parameters are re-estimated. The graphs are scaled by the 5% critical value and we accept the
null hypothesis that the chosen rank is maintained if it takes values greater than one, regardless of the
sub-period it has been estimated for.
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Figure A3. Recursively estimated Parameter Constancy “Known- beta Test”. Note: “X-representation”
denotes that all parameters of the cointegrated VAR system are re-estimated during the recursions,
while under the “R-representation”, only the long-run parameters are re-estimated. The graphs are
scaled by the 5% critical value and therefore the null of parameter stability is rejected if the test value
exceeds the value of one.
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Figure A4. Recursively estimated Parameter Constancy “Known-beta Test”. Note: “X-representation”
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scaled by the 5% critical value and therefore the null of parameter stability is rejected if the test value
exceeds the value of one.
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Figure A5. Brazil Regime-switching modeling: Msiah (2)-Vecm (2). Note: Regime 1 denotes the
high-volatility regime, whilst Regime 0 the low-volatility one [8,25].
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Appendix B

Table A1. Descriptive Statistics.

Brazil Russia India China South Africa
Descriptive

Stats
i0,t i4,t i13,t i26,t i52,t i0,t i4,t i13,t i26,t i52,t i0,t i4,t i13,t i26,t i52,t i0,t i4,t i13,t i26,t i52,t i0,t i4,t i13,t i26,t i52,t

Min 6.400 2.538 3.055 3.519 3.930 1.450 2.730 3.730 0.000 4.350 0.25 3.550 3.100 0.01 3.500 0.800 1.013 1.204 1.465 1.850 −0.001 4.930 5.063 5.213 5.350
Max 19.76 17.11 17.14 17.67 15.09 25.00 29.15 29.92 30.31 30.00 50.0 14.62 11.30 12.00 10.15 8.528 9.698 6.389 5.510 5.255 11.70 12.20 12.57 13.14 13.94

Mean 11.80 9.112 9.044 9.143 9.458 7.199 7.831 1.997 8.357 8.939 6.61 7.470 7.051 7.172 7.202 2.391 3.620 3.763 3.773 3.919 6.750 7.066 7.223 7.553 7.937
Std. Dev. 3.156 2.866 2.750 2.708 2.574 3.348 4.032 4.191 4.405 3.968 2.58 2.584 1.613 1.568 1.370 0.992 1.337 1.189 1.077 0.994 1.871 1.878 1.886 1.843 1.853
Skewness 0.647 −0.229 −0.16 −0.18 −0.34 1.002 1.680 1.888 1.732 2.601 0.54 0.006 −0.122 −0.091 −0.06 1.961 0.546 −0.32 −0.51 −0.52 0.106 0.107 0.152 0.163 0.162
Kurtosis 0.226 −0.531 −0.51 −0.72 −0.71 2.080 3.976 4.755 4.085 8.485 −1.73 −1.798 −1.781 −1.669 −1.61 8.736 1.125 −0.68 −0.81 −0.99 −1.305 −1.272 −1.17 −1.09 −1.03

D-W 2.013 2.482 2.399 2.093 2.472 2.305 1.943 1.914 1.864 2.415 2.23 2.203 1.816 1.952 1.769 2.165 2.052 1.988 1.816 1.859 2.456 1.696 1.527 1.684 1.836
Jarque-Bera 50.06 11.36 8.607 15.06 21.49 199.8 769.3 1046.7 736.7 2873 26.2 25.98 27.98 24.43 22.62 2308 61.98 22.26 42.94 53.07 24.03 36.34 24.49 24.16 22.12

N-Test 93.75 172.7 93.36 93.18 79.38 84.99 110.3 50.93 43.27 38.80 64.6 104.5 136.4 130.9 65.68 94.57 182.6 98.37 93.29 79.45 85.28 110.3 51.00 42.84 39.21
H-Test 13.966 20.650 32.844 21.777 29.112 12.115 21.670 37.888 21.605 21.540 1.414 40.563 45.796 21.416 16.938 14.466 22.660 33.854 21.605 29.005 12.476 21.670 37.798 21.575 21.4
ARCH

Test 4.111 13.111 12.201 11.001 7.233 3.998 13.271 12.381 10.503 7.121 9.785 6.313 4.190 4.962 3.472 4.134 13.271 12.381 10.503 7.121 4.445 12.998 12.477 9.990 8.967

Notes: Italics types, Bold types indicate p-values < 10% and < 5%, respectively; D-W denotes the Durbin-Watson statistic for testing first-order autocorrelation. N-Test denotes the
Normality test by Dornik & Hansen, while the H-Test is the Heteroscedasticity test of White. The ARCH-Test is the Autoregressive Conditional Heteroscedasticity by Engle. The diagnostics
were produced using the reduced-form residuals.
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Table A2. Unit Root testing.

Maturity Brazil Russia India China South Africa

Levels
ADF PP ERS ADF PP ERS ADF PP ERS ADF PP ERS ADF PP ERS

i0,t −3.285 −1.257 −3.630 −2.026 −1.960 −1.418 −2.635 −2.529 −2.426 −2.529 −2.551 −2.414 −1.266 −1.311 −1.118
i4,t −1.393 −4.334 −1.733 −2.716 −2.655 −1.453 −2.624 −1.967 −2.555 −2.502 −2.563 −2.488 −1.749 −1.389 −1.651
i13,t −1.556 −2.060 −1.345 −2.779 −2.727 −1.384 −1.798 −1.912 −1.797 −2.369 −2.187 −2.352 −1.754 −1.310 −1.612
i26,t −1.411 −2.272 −1.583 −2.754 −2.638 −1.387 −1.991 −1.987 −1.996 −2.533 −1.929 −2.522 −1.917 −1.298 −1.772
i52,t −1.200 −1.454 −1.432 −2.645 −2.640 −1.354 −2.060 −1.924 −2.064 −2.462 −1.862 −2.451 −1.835 −1.410 −1.698

1st Differences
∆i0,t −3.098 −27.810 −3.120 −7.727 −6.006 −3.178 −11.10 −11.10 −10.99 −9.870 −41.896 −9.190 −6.54 −6.110 −3.007
∆i4,t −9.611 −45.255 −5.494 −6.136 −6.112 −3.136 −7.492 −7.492 −7.486 −8.756 −31.082 −8.757 −6.12 −6.003 −3.212
∆i13,t −8.705 −33.799 −6.231 −6.036 −6.038 −3.129 −7.233 −7.233 −7.164 −5.790 −14.044 −5.797 −6.14 −5.998 −3.066
∆i26,t −6.959 −46.783 −5.747 −5.728 −5.732 −3.008 −7.720 −7.720 −7.274 −4.921 −13.985 −4.922 −5.25 −5.811 −2.993
∆i52,t −7.078 −32.248 −4.826 −6.425 −6.399 −3.027 −6.203 −6.203 −6.030 −4.859 −14.652 −4.857 −6.38 −6.276 −3.001

Notes: The results comprise the Augmented Dickey-Fuller, Phillips-Perron, and Elliot, Rothenberg, and Stock test statistics for the null of a unit-root process; the symbols i0,t, i4,t, i13,t, i26,t,
i52,t represent the overnight, one-month, three-month, six-month, and one-year Eurorates, respectively and ∆ is the first-difference operator. The critical values at 1% (5%) significance level
for ADF is –3.446 (–2.867) (MacKinnon [32]) for a maximum lag- length of 12 for each country; for the PP test it is –3.46 (–2.87) while for the ERS it is –3.28 (–2.23). Italics types, bold types
denote no unit root at 10% and 5% significance level, respectively.
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Table A3. Johansen trace statistics.

p-r r Eigenvalue Trace Trace* Frac95 p-Value p-Value*

Brazil

p-r r Eigenvalue Trace Trace* Frac95 p-value p-value*
5 0 0.266 272.75 267.499 69.611 0 0
4 1 0.184 140.926 138.661 47.707 0 0
3 2 0.092 54.361 53.463 29.804 0 0
2 3 0.028 13.104 12.507 15.408 0.111 0.135
1 4 0.003 1.199 1.078 3.841 0.273 0.299

Russia
p-r r Eigenvalue Trace Trace* Frac95 p-value p-value*
5 0 0.254 221.657 221.657 69.611 0 0
4 1 0.088 86.058 86.058 47.707 0 0
3 2 0.062 43.344 43.344 29.804 0.001 0.001
2 3 0.021 13.537 13.537 15.408 0.096 0.096
1 4 0.008 3.684 3.684 3.841 0.055 0.055

India
p-r r Eigenvalue Trace Trace* Frac95 p-value p-value*
5 0 0.198 210.137 210.137 69.611 0 0
4 1 0.119 110.528 110.528 47.707 0 0
3 2 0.068 53.356 53.356 29.804 0 0
2 3 0.039 21.395 21.395 15.408 0.005 0.005
1 4 0.007 3.236 3.236 3.841 0.072 0.072

China
p-r r Eigenvalue Trace Trace* Frac95 p-value p-value*
5 0 0.108 130.117 130.117 69.611 0 0
4 1 0.083 75.803 75.803 47.707 0 0
3 2 0.042 34.389 34.389 29.804 0.013 0.013
2 3 0.02 14.123 14.123 15.408 0.079 0.079
1 4 0.009 4.538 4.538 3.841 0.09 0.09

South Africa
p-r r Eigenvalue Trace Trace* Frac95 p-value p-value*
5 0 0.485 711.716 709.264 69.61 0 0
4 1 0.199 250.462 249.79 47.707 0 0
3 2 0.081 96.568 96.382 29.804 0 0
2 3 0.05 37.733 37.689 15.408 0 0
1 4 0.003 2.291 2.29 3.841 0.13 0.13

Notes: p-r is the number of unit roots, r is the number of the cointegrating vectors, the Eigenvalue depicts the
estimated eigenvalues, and Trace symbolizes the trace test statistic. The Trace* is the small sample corrected trace
test statistic at the 95% significance level. The Frac95 represents the 5% critical value for the test of H(r) against
H(r-1), and the p-value the approximate p-value using the uncorrected test statistic with Γ-distribution; the p-value*
is the approximate score using the corrected test statistic.
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