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Abstract: The increasing penetration of non-programmable renewable energy sources (RES) is
enforcing the need for accurate power production forecasts. In the category of hydroelectric plants,
Run of the River (RoR) plants belong to the class of non-programmable RES. Data-driven models are
nowadays the most widely adopted methodologies in hydropower forecast. Among all, the Artificial
Neural Network (ANN) proved to be highly successful in production forecast. Widely adopted
and equally important for hydropower generation forecast is the HYdrological Predictions for the
Environment (HYPE), a semi-distributed hydrological Rainfall–Runoff model. A novel hybrid
method, providing HYPE sub-basins flow computation as input to an ANN, is here introduced
and tested both with and without the adoption of a decomposition approach. In the former case,
two ANNs are trained to forecast the trend and the residual of the production, respectively, to be
then summed up to the previously extracted seasonality component and get the power forecast.
These results have been compared to those obtained from the adoption of a ANN with rainfalls
in input, again with and without decomposition approach. The methods have been assessed
by forecasting the Run-of-the-River hydroelectric power plant energy for the year 2017. Besides,
the forecasts of 15 power plants output have been fairly compared in order to identify the most
accurate forecasting technique. The here proposed hybrid method (HYPE and ANN) has shown to
be the most accurate in all the considered study cases.

Keywords: hydropower production forecast; Artificial Neural Networks; run of the river
hydroelectric plants; seasonal decomposition; HYPE model; RES generation

1. Introduction

In a context of increasing penetration of renewable energy plants, accurate and reliable energy
forecasts of wind/solar/hydro power and electric loads are required by diverse types of end users
(e.g., utilities, TSOs, energy traders, producers), to be implemented for different time horizons,
depending on the specific application, to significantly improve their profitability [1]. Hydropower is
the largest source of renewable electricity in the world, generating 16.4% of the world’s electricity
production and providing 71% of renewable energy delivered to the grid, for a total capacity of
1200 GW installed power in 2016 [2].
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Hydroelectric plants can be divided in three main categories: Storage Hydro Plants (SHPs),
Pumped Storage Plants (PSPs), and Run-of-the-River Plants (RoR). SHPs store water in a reservoir,
typically by means of a dam, and water can be released when is needed to generate power. PSPs exploit
a lower and an upper reservoir to pump or release water when it is more economically convenient; it is
designed to balance peak loads and it is a net consumer of energy [3]. RoR plants have small storage
capacity, typically few hours; these plants lie along a river course and hence are those more influenced
by climate variability and river flow changes. Forecasting activity in power generation aims to predict
non-programmable energy sources; non-programmable energy production plants comprises those
power plants whose generation is affected by the variability of natural resources throughout hours of
the day and seasons: therefore, hydroelectric production forecast concerns RoR hydropower and not
storage or pumped-storage plants.

Hydrological models are widely adopted for hydropower generation forecast as they provide
effective methods to describe complex water cycle processes [4]. Among them, the HYPE model is one
of the many hydrological models today adopted. Other existing models are the HBV [5] or SWAT [6],
and many others [7,8]. The Hydrologiska Byrans Vattenbalansavdelning (HBV) model is a conceptual
model of catchment hydrology which simulates discharge using rainfall, temperature, and estimates
of potential evaporation. The HBV model [5] has been applied in numerous studies, e.g., to compute
hydrological forecasts, for the computation of design floods, or for climate change studies. The Soil
and Water Assessment Tool (SWAT) is a conceptual, continuous time model that was developed in the
early 1990s to assist water resource managers in assessing the impact of management and climate on
water supplies and non-point source pollution in watersheds and large river basins. The model SWAT
is meanwhile used in many countries all over the world. The HYPE model, that will be described in
deep at the beginning of Section 2.3, has been selected among the pool of existing hydrological model
due to its suitability for continental or multi-basins analysis [9].

Data-driven models are nowadays the most widely adopted models in hydropower forecast [10].
Stochastic models such as ARIMA [11,12] or Persistence [13] are extensively used; in particular,
the persistence model can be applied to RoR plants, which typically have high autocorrelation with the
preceding day. Machine learning (ML) models are increasingly applied to hydrological forecast and
have addressed and solved many issues in hydrological modeling [14]. In particular, Artificial Neural
Network (ANN) is widely adopted [15–17] due to its strong adaptability and learning ability [18],
resulting as one of the most successful ML methods. In [19], it is shown the superiority of ANN in
respect of other ML techniques in hydroelectric forecasting, while in [19] it is compared the deployment
of ANNs and persistence model, proving again a higher accuracy when neural networks are employed.
ANN basically consists of a number of neurons grouped in different layers, which receive the input
from all the neurons in the preceding layer [15]. An artificial neuron is formed by n channels in input,
each one having a weight that represents the connection force through the corresponding channel [20].
The output layer represents the variable to predict; during the training process a certain number
of input and output samples are evaluated from the network, which modifies weights in order to
minimize the overall error committed. Once the network is trained it is possible to provide the input
data to the network, which will return the forecast of the output variable.

Further research for forecast improvement is conducted in the field of hybrid (blended) methods.
These models have been introduced to solve the weaknesses of individual methods and to enhance
their strengths and accuracy [21]. Hybrid models blend two or more techniques in various
steps in order to deliver a single forecast. Generally hybrid methods perform better than single
techniques [22]. Diverse ensemble methods have been developed in last decades for hydropower
production. In [23], for example, a hybrid of ANN technique with Bat Algorithm is investigated,
while in [24] a least squares support vector regression ensemble learning approach is proposed. In [25],
instead, proposes a data-driven blended model, named CEREF, based on the combination of empirical
mode decomposition, radial basis function neural networks, and external forces variable, for hydro
stream-flow forecast.
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Hydropower plants, and in particular Run of the River plants, show a seasonality pattern in their
production time series [26]. Therefore, a decomposition approach is often investigated to overcome the
difficulties in forecasting hydropower production, applying a so called “decomposition and ensemble”
approach [24], separating the different components of the time series to forecast them individually and
to subsequently recompose the series to get the final prediction. In [27], it is shown how an ensemble
empirical mode decomposition, hybridized with an ARIMA approach, allows to improve the ARIMA
forecast performance. The authors of [28] analyze the effect of detrending and deseasonalization on
neural network performance, highlighting how ANN finds it difficult to manage different components
of the data simultaneously and the beneficial effect of time series preprocessing. In [29], alternative
seasonality extraction approaches to the classical moving average decomposition to be coupled with
simple forecasting techniques are proposed. Further analysis on decomposition approaches are
proposed in [24,30].

In the present paper, a new hybrid method for hydropower production forecast is introduced.
The proposed approach leverages on the ensemble of a HYPE model, that relates weather forecasts to
rivers flow, with an ANN. Additionally, the model is validated considering a decomposition of the time
series in three main components: trend, seasonality, and residual. As a benchmark, it is considered
the ANN, with the whole time series in input. Intermediate combination are also evaluated (ANN
with time series decomposition and hybrid method) to highlight the contributions of the two proposed
approaches.

The paper is outlined as follows. Section 2 presents the available dataset and the method
developed to analyze it and improve the power generation forecast. Section 3 reports the results
obtained from the implementation of the proposed method, in comparison to a traditional ANN
forecast, and discusses the results while Section 4 sums up the work performed.

2. Materials and Methods

The here presented work aims at evaluating the forecasting performance of the proposed hybrid
method, composed by a HYPE hydrological model and a ANN method. The model is applied on
the power production time series decomposed in trend, residual and seasonality. This approach
(Hybrid plus Decomposition) is then compared to three benchmark models: Hybrid, ANN, and ANN
plus decomposition.

This section is structured as follows. At first, the available dataset for the proposed method
validation is presented and described. In the second part, the error metrics adopted to evaluate the
performance of the investigated methods are discussed. Finally, in the last subsection the novel hybrid
method for RoR hydroelectric production forecast is detailed.

2.1. Available Dataset

The dataset adopted to validate the proposed method is referred to Slovenia and consists of two
parts: flow data and measured electric hydropower production in the period from January 2010 to
December 2017.

Slovenia is modeled dividing it into 86 different sub-basins. The conditions and geographic
features of each sub-basin are exploited by the HYPE model to return the inflow of the drainage
basin (an area of land where precipitation collects and drains off into a common outlet, such as river,
bay, or other body of water). In our specific case, just precipitations data are provided to the HYPE
model, since rain is the main driver in hydropower generation. It has been collected rainfall daily
data, measured in [mm], of three Slovenian meteorological stations. Climate data are taken from the
“Copernicus Era5” meteorological database and are of public domain. For each sub-basin, geographical
data are provided and a basin map based on sequentiality of sub-basins has been drawn: in particular
three groups have been identified, and these groups of points represents the river-basin of the three
main Slovenian watercourses: River 1, River 2, and River 3, represented in Figure 1.



Forecasting 2020, 2 413

Figure 1. Sub-basins divided by river.

The second part of the dataset is made by the hydroelectric energy produced [MWh] from 2010 to
2017 and Hydro-States, that informs about the status of each plant (working or not). The final purpose
of the analysis is to predict the electric production of hydroelectric power plants, and specifically
of big power plants (rated power Pel > 20 MW). The dataset is cleaned by discarding those plants
characterized by zero-production for a period greater than the 10% of the total number of samples:
three plants have been excluded, for a total of 15 RoR remaining plants, distributed on three rivers:
3 plants on River 1, 5 on River 2, and 7 on River 3. The preprocessing performed on the dataset aimed
at testing the proposed method on a significant set of data, with few missing values, to evaluate its
performance. The null power production observed in a plant could be due to human regulation rather
than a lack of minimal flow in the river, uncoupling in this way the production from the Rainfall/CSB
flow forecast. These cases are unpredictable by the algorithm, since they do not derive from a physical
process and we have therefore decided to exclude them.

Data are converted on daily basis to have the same time-step of flow data. To validate the
proposed method, all the available plants have been studied.

2.2. Performance Measurement

In the present work a series of indicator has been defined to evaluate the goodness of the
prediction, in order to address different issues. Among the existing performance metrics, we selected
the normalized Mean Absolute Error (1) (nMAE [31]) to evaluate the overall performance:
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1
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at each time point. In addition, two metrics have been introduced. The Nash–Sutcliffe Efficiency Index
E f (2) is commonly used to assess the performance of rainfall runoff models [32]; it varies in the range
(−∞, 1], where the unity is obtained in case of perfect forecast. The latter metric considered is the
MASE (Mean Absolute Scaled error) (3), which is little influenced by the outliers [22]:
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2.3. HYPE model and hybrid forecast method

The Hydrological Predictions for the Environment (HYPE) model, is a dynamic, semi-distributed,
and process-based model leveraging on well-known hydrological and nutrient transport concepts.
It can be used for both small and large scale assessments of water resources and water quality developed
at the Swedish Meteorological and Hydrological Institute during the period 2005–2007 [33]. In the
HYPE model applications, which simulates water flows [34–36], the model domain may be divided
into sub-basins, that can either be independent or connected by rivers and a regional groundwater
flow, as exemplified in Figure 2.

Figure 2. Hype schematic model.

The model receives as input climate variables, rainfall, and ambient temperature among the most
important, and returns the sub-basins’ water flow with a daily time step as output. An overview
of the typical input data for the HYPE model is provided in [33], while in [37] a review of those
input parameters that majorly influence performances of the model is presented. The HYPE model
is particularly appropriate to simulate ungauged catchments, it is made on simple conceptual and
empirical equations, and represents one of the best options for large-scale continental or multi-basins
simulations [9]. Therefore, HYPE model was selected to compose the here presented hybrid method.

In Figure 3, the adopted method and the process required to train the hybrid network is displayed.
The yellow parallelogram highlights the input/output datasets obtained, while the light blue rectangles
highlights the processes performed. At first, it is conducted an analysis to identify the most suitable
inputs to be fed into the neural network. A correlation analysis is therefore performed, to select
the highly Correlated Sub-Basins (CSB) to the considered plant. The rainfall forecast associated to
the identified sub-basins is then fed into the HYPE model, that provides the CSB outflow forecast.
In parallel to this analysis, a decomposition of the production time series of the considered plant
is performed, identifying the Trend, Seasonality*, and Residual components. The second term will
be then used in the forecast process (Figure 4). Trend and residual components, together with the
considered plant past production and the CSB flow forecast, are exploited to perform at first the
hyperparameter optimization for the Trend and Residual ANN sizing, respectively, and then for the
network training itself.

Once the proper network structure is identified, the forecast will be performed, according
to the scheme reported in Figure 4. The CSB flow forecast and the real production of the past
six days are exploited to get the trend forecast. This forecast is then fed, together with the previous
inputs, into the residual ANN, to get the residual forecast. The obtained production components are
then summed up to the seasonality profile to get the production forecast. The obtained results are
compared to those coming from the adoption of the ANN (without decomposition), which receives
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as input the same elements of the HYPE model, i.e., the input weather data from national databases.
Additional configurations are considered: Hybrid and ANN with decomposition, to highlight the
contributions of decomposition and hybrid network, respectively.

Start

Rivers flow,
plants production

Correlation analysis

CSB rainfall
forecast

HYPE

CSB flow
forecast

TS decomposition

Trend

Seasonality*

Residual

Trend ANN
hyper-parameter

optimization

Residual ANN
hyper-parameter

optimization

Trend ANN training Residual ANN training

Stop

Figure 3. Hybrid ANN training flow chart; CSB stands for Correlated Sub-Basins.
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CSB rainfall
forecast

Real production
past 6 daysSeasonality*

HYPE

CSB flow
forecast

Trend forecast Residual forecast

Production forecast

Stop

Figure 4. Hybrid ANN forecast flow chart; CSB stands for Correlated Sub-Basins.

Analyzing the process in detail, at first an analysis on correlation factors is conducted, in order to
establish the input–output connection and to identify the proper input layer to feed the ANN. The aim
is to understand how the energy production is linked with the discharge flow rate of all basins, in order
to find groups of sub-basins which are more relevant for the production; when these groups of basins
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are estimated, their data values will be exploited to feed a neural network, by exploiting just the highly
correlated sub-basins.

ρxy =
∑n

i=1 (xi − x̄)(yi − ȳ)√
∑n

i=1 (xi − x̄)2 ∑n
i=1 (yi − ȳ)2

(4)

The correlation coefficient (4), ρ, measures the strength of the linear relationship between
two variables x and y. When the value of ρ is near zero, it indicates the absence of a linear relationship.
Generally, we consider the correlation between two variables to be strong when 0.8 ≤ ρ ≤ 1,
weak when 0 ≤ ρ ≤ 0.5, and moderate otherwise [38]. The analysis allowed to associate at each
power plant a list of sub-basins that majorly contribute, from the correlation point of view, to the
hydroelectric generation and to identify the most correlated plants. In particular, it emerges that plants
on River 3 have a high correlation with very few sub-basins, which largely correspond to those basins
contributing to River 3 from sequentiality point of view. Instead, plants on River 1 and River 2 are
both highly correlated to many more sub-basins, and especially they have many correlated sub-basins
in common, which do not correspond to those identified from the sequentiality logic.

A decomposition procedure is then introduced to separate the different contributions of the
series. Decomposition is used in time series analysis to describe the trend and seasonal factors
in a time series. One of the main objectives for a decomposition is to estimate seasonal effects
that can be used to create and present seasonally adjusted values [39]. One of the strengths of the
ANNs is their ability to infer nonlinear relationships between the input and the output [40], as ANN
leverage on a nonlinear activation function, therefore a simple correlation analysis and moving average
decomposition approach [41] has been adopted, reported in (5).

Observed = Trend + Seasonality + Residuals (5)

The trend is detected by applying an asymmetrical moving average, with a moving window
referred to the past “N” days, thus a methodology that allows to find the best number of past days
to apply the moving average is investigated. A statistical approach exploiting confidence interval is
adopted. In particular, an adaptive confidence band is implemented, where the band is time-variant
and it is computed on the basis of the “N” past days. The objective is to find what is the number
such that the 90% of the real data are contained in the confidence band and which of these numbers
guarantee the smaller band. At first, it is extracted the trend, applying the mean of the N past samples,
for each day D of the dataset, where Observed is the real production dataset and D is the number of
samples (from 1 to 366) (6). Subsequently it is computed the error, defined as the difference between
the real production and the extracted trend, evaluated from the preceding N days to the day D (7).
Finally, on the basis of the standard deviation σ of the error, proportional to the error committed in
the past N days, it is found the confidence band amplitude. C is a multiplicative factor to guarantee
the inclusion of 90% of real data in the confidence band (8). For the sake of simplicity the value of “N”
preceding days varies from 3 to 8.

TrendD,N =
∑D

k=D−N+1 Observedk

N
(6)

ErrorD,N = [ObservedD−N+1 − TrendD−N+1, ..., ..., ObservedD − TrendD] (7)

BandD = C · σD =

√
ErrorD,N − ErrorD,N

N
(8)

The number of samples to be included in the moving average has been set equal to 6 days,
according to the sensitivity analysis led (Figure 5).
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Figure 5. Sensitivity analysis to select the number of days for the moving average computation.

The difference between the starting (Observedi) time series and the new trend function (Trendi) is
called Ripple (9) and it contains the sum of the seasonal and residuals components.

Ripplei = Observedi − Trendi = Seasonalityi + Residuali (9)

The ripple dataset is then divided in many subsets as the amplitude of the window moving
average, 7 in our case (6 previous days plus the day to be forecast), forming 7 datasets containing the
ripple component of every day of the week along the whole dataset, as exemplified in (10).

RippleMonday = [Ripplei, Ripplei+W , . . . , Ripplei+D·W ] (10)

To obtain the seasonal component, the arithmetic mean of each Ripple subset is performed (11).
The seasonality dataset is made by 7 terms repeated periodically, being the average value of the
deviation between the real production and the trend.

SeasMonday =
1
D

D

∑
k=1

RippleMonday (11)

It is important to underline that “seasonal” refers to a “statistical seasonality”. In Figure 6,
the seasonal component of three power plants on the three different rivers is represented. The plant
on river 3 is characterized by an amplitude in the seasonality profile more stressed than in the other
two, therefore it is reasonable to expect that this plant will benefit more than the other two from
a decomposition approach.
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Figure 6. Seasonal component of 3 plants on different rivers.
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The remaining component is the residual which contains information about the “irregularities”
found in the time-series decomposition. Figure 7 shows graphically the extraction of the three
components from the observed production of a selected plant. It is evident how the trend is
characterized by a smoother profile, with less noise, while the residual absorbs all the “irregularities”.
The seasonal component is used to analyze and understand the dynamics of the electric production and
the behavior of the river on which the hydroplant lies. To apply the above described decomposition it is
exploited the Python function seasonal-decompose, imported from the “statsmodel” library (which is
taken from the “stats” package of R language).
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Figure 7. Production decomposition: observed, trend, seasonal, and residual power. X-axis indicates
the day of the month from 9 May to 31 July.

On top of the obtained decomposition, the training of the ANN can be set. The novel hybrid
approach proposed is characterized by two ANNs having as output layer the trend in one case and
the residuals in the other, which will be then summed up to the seasonality component previously
extracted to recompose the function, according to (5).

A preliminary analysis is conducted in order to assess the order of magnitude of the main
parameters of the network: the size of the training set, the number of hidden layers, and the number
of neurons in each hidden layer [42,43]. A hyperparameter optimization is performed varying the
training set size and the number of neurons, selecting the combination of parameters that minimizes
MAE. The number of neurons is assumed varying in the range [2,40] with step 2.

The three models selected for the comparison undertook themselves a hyper-parameter
optimization to properly design their structure.

3. Results and Discussion

The analysis is carried out on the selected hydro plants and tested in the period from
1 January 2017 to 31 December 2017. The training of the networks is performed on the days of the year
2016. As input to the networks is provided the observed power production of the six preceding days
to the day to forecast (moving window approach).

From the analysis conducted on correlation factors, it has been decided to provide as input to the
neural network just the sub-basins highly correlated with the chosen plant (ρ > 0.5), in order to delete
those basins scarcely correlated to the plant production. The hyperparameter optimization conducted
allows to identify the optimal neural network configuration in order to carry out the forecast. In Table 1,
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the results of the analysis and the parameters settings adopted are summarized: the number of inputs
is function of the number of CSB identified.

Table 1. Hybrid ANN parameters settings; TSS is the Training Set Size.

Decomposition-Trend Decomposition-Resididual

TSS [days] 50 100
N. Layers 1 2
N. Neurons 8 4,4
N. Inputs 6 + N of CSB 7 + N of CSB
Input Layer CSB (ρ > 0.5), CSB (ρ > 0.5),

Wobs past 6 days Wobs past 6 days, trend forecast
Output Layer trend forecast residual forecast

Before starting the training process, the network automatically normalizes the inputs, to speed
up the simulation and reduce the computational burden. The activation function implemented in the
ANN is the tansigmoid one. It can be noticed that the trend forecast requires a very low number of
neurons and a short training set, just 50 days, due to its smoother profile. Residual forecast leverages on
a huger TSS, of 100 days, and on a two layers network, each of them made by four neurons. In Figure 8
is represented the Residual ANN structure of the plant 2, river 3: it takes in input the CSB flow (CSB xy),
the production of the previous six days (Wobs xy) and the trend forecast (Ptrend).
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Figure 8. Residual ANN structure for the hybrid approach of plant 2.

To get the overall foreseen production, the trend and residual forecasts are summed to the
seasonality extracted in the decomposition procedure. In Figure 9 are reported the three phases of
the decomposition approach: trend (Figure 9a) and residual forecast (Figure 9b) in order to obtain,
once these components are summed to the extracted seasonality, the overall production forecast
(Figure 9c). As it is possible to observe, the network is able to predict quite accurately the trend
behavior, while the residual forecast is less precise and has the aim to detect the sudden increase
or decrease of energy production, for instance, around day 120 (positive and negative peaks), or
between days 200 and 250 (negative peaks). In the recomposed forecast (Figure 9c) the majority of the
peaks, the most difficult to be predicted, are now well interpolated; negative peaks until day 120 are
well represented thanks to the seasonality contribution: these negative peaks occur during Sundays.
RoR plants can have a small storage capacity (pondage), which can imply the possibility of a limited
amount of power regulation, that allows the producer to generate more electric power when electric
prices are higher (mid-week), and generate less when prices are lower (weekend). The objective of the
seasonal component is to detect these periodic recurrences and adjust the forecast.
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Figure 9. Comparison between forecast (red) and observed (blue) values in the decomposition
phases: (a) Trend component; (b) Residual Component; (c) Recomposed production (Trend, Seasonality
and Residual).

To evaluate the performance improvement associated to the hybrid forecast methodology
(HYPE + ANN) with decomposition, three alternative configurations are considered: a Hybrid method
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(without decomposition) and an ANN with the same inputs of the HYPE model (rainfall precipitation),
without and with time series components extraction. In Table 2 are reported the optimal parameters
settings resulting from the hyper-parameter optimization performed.

Table 2. Benchmark ANNs parameters settings: Hybrid, ANN, and ANNs with decomposition (Trend
and Residual); TSS is the Training Set Size.

Hybrid ANN ANN + Dec.-Trend ANN + Dec.-Resididual

TSS [days] 250 250 50 100
N. Layers 1 1 1 2
N. Neurons 12 4 6 6,3
N. Inputs 6 + N of CSB 9 9 10
Input Layer CSB (ρ > 0.5), precipitation [mm], precipitation [mm], precipitation [mm],

Wobs past 6 days Wobs past 6 days Wobs past 6 days Wobs past 6 days, trend forecast
Output Layer production forecast production forecast trend forecast residual forecast

As input to the ANNs, instead of the HYPE output, is provided the precipitation measured by
three climate stations located in the region, in [mm], in addition to the past real production. This type
of input layer has been selected after the hyperparameter optimization performed, as it proved to lead
to higher performances in this specific configurations.

In Table 3, the obtained results for the proposed hybrid method and for the three models taken
as benchmark are displayed. As an example, it is here reported one plant per each considered
river; the results associated to the other plants under analysis can be found in the Appendix A.
The investigated hybrid methods (Hybrid and Hybrid with decomposition), show the highest
performance (green or olive color) in all the considered metrics and plants. Indeed, in all the cases
analyzed the traditional neural network (ANN), with rainfalls in input, shows the worst performances
(orange or magenta color). Considering the hybrid method without decomposition,it provides better
results than the decomposition approach in nine plants out of fifteen. The hybrid approach could
therefore be a valuable alternative to the ANN method to improve forecast performance even though
it requires the implementation of a hydrological model, the HYPE.

Table 3. Performance comparison proposed method and the three benchmarks considered: Hybrid
with decomposition, Hybrid, ANN, and ANNs with decomposition for three of the analyzed plants:
(a) plant 1 on river 1, (b) plant 1 on river 2 and (c) plant 1 on river 3. Color legend from the best to the
worst result: green, olive, orange, and magenta.

(a) Plant 1, River 1. nMAE E f MASE

Hybrid + Dec. 4.75 0.91 0.61
Hybrid 3.89 0.94 0.50
ANN 8.18 0.72 1.04
ANN + Dec. 10.94 0.57 1.40

(b) Plant 1, River 2. nMAE E f MASE

Hybrid + Dec. 3.68 0.87 0.72
Hybrid 2.97 0.92 0.58
ANN 5.53 0.71 1.08
ANN + Dec. 7.84 0.47 1.53

(c) Plant 1, River 3. nMAE E f MASE

Hybrid + Dec. 2.52 0.96 0.39
Hybrid 2.56 0.96 0.40
ANN 6.79 0.65 1.04
ANN + Dec. 6.83 0.69 1.05

In Table 4 the aggregated performances are reported, in terms of mean and standard deviation,
per river ((4a) to (4f)) and over all the considered plants ((4g), (4h)). In all the analyzed plants,
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the hybrid method proved to be more performing than the ANN method: considering the nMAE
metric, for example, the error committed is more than halved moving from the ANN to the hybrid
model. The adoption of the decomposed hybrid approach seems to be beneficial just for the plants
located on River 3, while in all the other cases the hybrid approach got the highest forecast accuracy.

Table 4. Mean performance and standard deviation (SD) of the methods under analysis: (a) and (b)
refer to River 1, (c) and (d) refer to River 2, (e) and (f) refer to River 3 while (g) and (h) report mean
and standard deviation of all the plants together.

(a) Mean Plants on River 1. nMAE E f MASE

Hybrid + Dec. 3.86 0.92 0.64
Hybrid 3.34 0.94 0.56
ANN 6.65 0.73 1.10
ANN + Dec. 8.85 0.60 1.47

(b) SD Plants on River 1. nMAE E f MASE

Hybrid + Dec. 0.25 0.03 0.05
Hybrid 0.35 0.01 0.03
ANN 0.70 0.02 0.03
ANN + Dec. 0.65 0.08 0.04

(c) Mean Plants on River 2. nMAE E f MASE

Hybrid + Dec. 4.55 0.91 0.54
Hybrid 3.98 0.93 0.48
ANN 8.77 0.72 1.05
ANN + Dec. 11.33 0.53 1.35

(d) SD Plants on River 2. nMAE E f MASE

Hybrid + Dec. 0.84 0.03 0.09
Hybrid 0.52 0.01 0.40
ANN 0.68 0.01 0.01
ANN + Dec. 1.50 0.08 0.11

(e) Mean Plants on River 3. nMAE E f MASE

Hybrid + Dec. 2.52 0.96 0.36
Hybrid 2.70 0.94 0.39
ANN 7.14 0.66 1.02
ANN + Dec. 7.13 0.70 1.02

(f) SD Plants on River 3. nMAE E f MASE

Hybrid + Dec. 0.10 0.01 0.03
Hybrid 0.14 0.01 0.02
ANN 0.59 0.18 0.05
ANN + Dec. 0.49 0.02 0.03

(g) Mean All Plants nMAE E f MASE

Hybrid + Dec. 3.37 0.93 0.49
Hybrid 3.17 0.94 0.46
ANN 7.30 0.70 1.06
ANN + Dec. 8.54 0.63 1.24

(h) SD All Plants. nMAE E f MASE

Hybrid + Dec. 0.93 0.03 0.14
Hybrid 0.59 0.01 0.08
ANN 0.99 0.12 0.05
ANN + Dec. 1.80 0.09 0.22

Recalling Figure 6, plants on river 3 on average present a wider seasonality profile than plants on
the other rivers: this issue could motivate the different performance of the proposed method on the
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analyzed plants. Taking into account the standard deviation of the considered performance metrics,
in most of the cases the hybrid method is characterized by a smaller variability than the ANN one.

In Figure 10, the scatter plot related to the two approaches—hybrid with decomposition (orange
dots) and ANN model (blue diamonds)—together with the associated regression lines (same colors)
and the R2 indicator, to evaluate the degree of accuracy of the forecast over the whole year are reported.
In black it is drown the ideal regression line, in case of perfect forecast. On the x-axes is reported
the measured production while on the y-axes is reported the forecast production. R2 measures the
goodness of the prediction: it reaches a maximum value of 1, and the closer it is to 1, the more the
prediction can be considered precise.
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(c) Plant 1, River 3

Figure 10. Scatterplot comparison, obtained with real data on x-axis and forecast data on y-axis. In blue
the results got with the hybrid decomposition approach, in orange the results with the ANN model for
three of the considered plants: (a) Plant 1 on river 1; (b) Plant 1 on river 2; (c) Plant 1 on river 3.

The most distant points are always under the black line, in the right part of the chart, therefore
the most relevant errors are made when the electric production is high, as the greater dispersion of
the points in the top right highlights. Instead when production is low, as in the left part of the chart,
the forecast reaches high levels of accuracy. This is maybe due to the low numerosity of observations
of very high production. Indeed, for smaller values of measured power, it is possible to observe
a lower dispersion of the points around the black line. In plant 1, River 1 (Figure 10a) and plant 1,
River 3 (Figure 10c) the regression lines of the ANN and hybrid models almost coincide, while in
plant 1, River 2 (Figure 10b) there is a small discrepancy in favor of the hybrid method. Focusing on
the coefficient of determination R2, the hybrid decomposition values manage to better explain the
variability in the measured data with respect to the ANN approach. The improvement is particularly
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significant for the plant 1, river 3, where the R2 index doubles in the hybrid approach with respect to
the benchmark case.

4. Conclusions

In this work, different approaches for daily hydroelectric production forecast, applied to
fifteen RoR plants, along three different rivers, have been investigated. In particular it has been
analyzed the effect, in terms of forecast accuracy, of diverse input data to the artificial neural
network: sub-basins flow data derived from a hydrological model (HYPE) and precipitations data from
three climate stations have been alternatively provided to a neural network in order to establish which
can be more suitable for hydro-production forecast purposes. Furthermore the effect of production
decomposition in its three components, trend, seasonality, and residual, has been analyzed. The hybrid
approach, where precipitations are processed by the HYPE model to provide sub-basins flow as input
to the ANN, outperformed the ANN model, both with and without decomposition. In addition,
the hybrid forecast proved to be more performing than decomposed hybrid method in most of the
analyzed plants.

Even if the presented case study is inherent to the RoR power plants, the current method could be
adopted to other hydroelectric power plants characterized by the same features (seasonality, strong
dependence on rainfalls and sub-basins flow, etc.).
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ECA European Climate Assessment
E f Nash–Sutcliffe Efficiency Index
HYPE HYdrological Predictions for the Environment
MA Moving Average
MAE Mean Absolute Error
MASE Mean Absolute Scaled Error
MBE Mean Bias Error
PSP Pumped Storage Plant
RoR Run of the River
SD Standard Deviation
SHP Storage Hydro Plants
SMAPE Symmetric Mean Absolute Percentage Error
TS Time Series
TSO Transmission System Operator
TSS Training Set Size
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Appendix A

Table A1. Performance comparison: hybrid ANN with decomposition, hybrid ANN, ANN, and ANNs
with decomposition.

(a) Plant 2, River 1. nMAE E f MASE

Hybrid + Dec. 3.62 0.94 0.44
Hybrid 3.51 0.94 0.43
ANN 8.62 0.71 1.06

ANN + Dec. 10.07 0.60 1.24

(b) Plant 3, River 1. nMAE E f MASE

Hybrid + Dec. 5.27 0.87 0.58
Hybrid 4.54 0.92 0.50
ANN 9.51 0.72 1.05

ANN + Dec. 12.99 0.44 1.43

(c) Plant 2, River 2. nMAE E f MASE

Hybrid + Dec. 3.61 0.92 0.60
Hybrid 3.23 0.94 0.54
ANN 6.50 0.74 1.09

ANN + Dec. 8.57 0.57 1.43

(d) Plant 3, River 2. nMAE E f MASE

Hybrid + Dec. 3.74 0.93 0.61
Hybrid 3.10 0.95 0.50
ANN 6.79 0.72 1.11

ANN + Dec. 9.21 0.61 1.50

(e) Plant 4, River 2. nMAE E f MASE

Hybrid + Dec. 4.19 0.93 0.67
Hybrid 3.63 0.93 0.58
ANN 7.31 0.72 1.16

ANN + Dec. 9.19 0.66 1.46

(f) Plant 5, River 2. nMAE E f MASE

Hybrid + Dec. 4.07 0.93 0.62
Hybrid 3.79 0.94 0.58
ANN 7.11 0.76 1.09

ANN + Dec. 9.42 0.68 1.44

(g) Plant 2, River 3. nMAE E f MASE

Hybrid + Dec. 2.62 0.96 0.33
Hybrid 2.78 0.93 0.35
ANN 7.89 0.71 1.00

ANN + Dec. 8.00 0.67 1.02

(h) Plant 3, River 3. nMAE E f MASE

Hybrid + Dec. 2.63 0.96 0.34
Hybrid 2.90 0.93 0.37
ANN 7.60 0.72 0.97

ANN + Dec. 7.59 0.68 0.97

(i) Plant 4, River 3. nMAE E f MASE

Hybrid + Dec. 2.49 0.95 0.37
Hybrid 2.70 0.94 0.40
ANN 6.60 0.79 0.98

ANN + Dec. 6.86 0.73 1.02
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Table A1. Cont.

(j) Plant 5, River 3. nMAE E f MASE

Hybrid + Dec. 2.55 0.96 0.41
Hybrid 2.46 0.96 0.39
ANN 6.39 0.79 1.02

ANN + Dec. 6.65 0.71 1.07

(k) Plant 6, River 3. nMAE E f MASE

Hybrid + Dec. 2.53 0.96 0.37
Hybrid 2.78 0.93 0.40
ANN 7.69 0.27 1.11

ANN + Dec. 6.93 0.70 1.00

(l) Plant 7, River 3. nMAE E f MASE

Hybrid + Dec. 2.32 0.96 0.34
Hybrid 2.67 0.95 0.39
ANN 7.01 0.71 1.03

ANN + Dec. 7.02 0.71 1.03
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