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Abstract: Forecasting, using time series data, has become the most relevant and effective tool for
fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been
commonly used to predict the general trend for fish landings with increased reliability and precision.
In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and
catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and
both were non-stationary. The first-order differencing was applied to transform the non-stationary
data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike
information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square
error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average
relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency
coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led
to the identification and construction of ARIMA models, suitable in explaining the time series and
forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish
landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values
AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI,
R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1)
and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of
2725.243 metric tons and CPUE of 0.097 kg/h by 2024.

Keywords: ARIMA models; CPUE; fish landings; forecasting; lake Malombe; time series approach

1. Introduction

Lake Malombe is located within the Upper and Middle Shire River basin in the
Southern part of Malawi. The lake is one of the most important freshwater ecosystems
in terms of providing fishing resources in Malawi [1]. It is mostly dominated by Ci-
chlidae, Claridae, and Cyprinidae families though other genera such as Bathyclarias,
Fossorochromis, Pseudotropheus, Caprichromis, and Brycinus are also equally important.
Historically, Lake Malombe is well known for massive fisheries resource depletion in Africa
since the 1960s [2]. The relative biomass index of the lake fishery decreased from 1.01 units
in the 1970s to 0.3 units in 2016. Fish biomass landings also decreased from 44,000 metric
tons in 1981 to 6000 in 2018. The above evidence impelled the Malawi government to
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take a command control approach (stipulated in the guideline of Fisheries Act [3] for-
mulated based on the Laws of Malawi, Chapter 66:05 1974 and amended in 1976, 1977,
1979, 1984, 1996, and 1997, which include gear licensing, gear and mesh size regulations,
implementation of the closed season, banning of fine-meshed beach seines and regulating
fishing effort) to reverse the situation. However, this approach faced strong resistance in
its implementation and hence failed to achieve its objective. In the 1980s, the fisheries
co-management approach was introduced [4]. This approach was considered to be more
holistic and assumed that Lake Malombe fishing communities affected by the collapse of
the fishery had the potential to find a sustainable solution to address the impact through
collaborative planning. The approach was further introduced in response to the perceived
failure of the command control management approach in preventing the decline of fish
stocks in the lake and the lack of proper government resources to effectively manage the
fisheries. However, several researchers, fisheries experts, and experienced fishers argued
that the co-management approach in Lake Malombe was also a failure. Hara [5] in his study
noted that lack of information on social, cultural, and institutional factors underlying the ex-
ploitation patterns of lake fishery was the main reason for the failure of the co-management
approach in Lake Malombe. It was further argued that the implementation arrangements
of this approach also followed the top-down method, was donor-driven, not formed within
a new institutional vacuum, and did not take into account the institutional landscape and
diversity that impacted the functioning and performance of the structures [6].

The failure of fisheries co-management prompted the Malawi government to de-
velop an ecosystem-based fisheries management approach. The forecasting of total annual
biomass landings and catch per unit effort (CPUE) is a basic component embedded in this
approach to effectively manage the stocks. For example, one of the main objectives of
this new approach is to set a practical fishing effort in a concrete area during the known
breeding period for stock replacement. To achieve this objective, it is necessary to pre-
dict uncontrollable biomass trends and possible abundance of the stock biomass in the
lake—an approach that requires the development and the application of stock production
conceptual models. These models are very relevant since they are directly linked to the
concept of the precautionary approach—a basic concept in fish stock management [7].
Schaeffer and Fox production models, also known as surplus production models (a model
associated with maximum sustainable yield (MSY)), have already been commonly applied
to depict the status of fishery in Lake Malawi and other inland lakes. Although these models
are acceptable in fishery management, their applications are still questionable. For ex-
ample, the models only depict the current picture of the fishery using time-series trends
and lack the power of prediction. Other models such as state-space [8] and Bayesian [8]
have also been applied with little success. The time-series approach, however, has been
indispensable in understanding natural resources systems and the development of better
management policies. It is described as the best approach to fisheries modeling and stock
assessment. It provides a feasible way to examine the time series data and provide a
prediction of the catches. The approach demands fewer biological assumptions than other
traditional fisheries models and with simple mathematical techniques and few assumptions,
it can significantly reduce the modeling costs including research costs. Several researchers
have recommended the time series approach in fisheries stock assessment. For example,
Stergiou [9] highly recommended a time series approach and efficiently predicted the Mul-
lidae fishery in the Eastern Mediterranean Sea. Selvaraj et al. [10] successfully developed
autoregressive integrated moving average (ARIMA) models to predict fishery landings
in the Colombian Pacific Ocean. Koutroumanidis et al. [11], however, combined ARIMA
models and fuzzy expected intervals software to forecast fishery landings in Thessaloniki,
Greece. Researchers such as Park [12], Georgakarakos et al. [13], Lioret et al. [14], Prista
et al. [15], Raman et al. [16], and Stergiou [17] also preferred time series modeling in their
predictions of the marine fishery, understanding the dynamics of the fishery, monitoring
and forecasting fish landings in data-scarce regions. This study used ARIMA (p,d,q) models
to forecast Lake Malombe fish landings and CPUE.
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2. Materials and Methods
2.1. The Study Area

Lake Malombe (Figure 1) is located in the Shire River Basin (the largest and longest
river basin in Malawi and fourth-largest in Africa). The Shire River basin lies in the
southern part of the East Africa Great Rift valley system.

Figure 1. Map of Lake Malombe.

It originates from Lake Malawi at Samama and flows 400 km south and southeast to its
confluence with the Zambezi River at Ziu Ziu in Mozambique with an estimated catchment
area of 18,945 km2 divided into the upper, middle, and lower sections. The upper section
of the Shire River Basin (with a total channel bed drop of about 15 m over a distance
of 130 km) lies between Mangochi and Machinga districts. From Mangochi, the Upper
Shire River Basin drains into Lake Malombe (coordinates 14◦40′0” S 35◦15′0” E) 8 km
south of Mangochi and continues to flow through swampy banks flanked by hills and
escarpment. Lake Malombe is documented as the third-largest in Malawi with an estimated
total area of 162 square miles (420 km2), length of 30 km, a width of 17 km, and water depth
not exceeding 6 m [18]. The communities around the lake catchment are predominately
fishers [19]. The lake has approximately 65 fishing beaches scattered over the three major
administrative strata known as Lake Malombe East coded as 1.1, Lake Malombe West coded
1.2, and Upper Shire coded 1.3 [19]. The surrounding area of Lake Malombe is densely
populated by the Yao ethnic tribe consisting of over 85% [19] of the fishing population.
Few tribes such as Chewa, Lhomwe, and Nyanja are also found around the Lake.

2.2. Data Sources
2.2.1. Fish Biomass

Department of Fisheries through its statistical office under the Malawi Fisheries Man-
agement Act (1997) is mandated to collect fish landing data on a weekly basis from artisanal
fishermen. In Lake Malombe, the fish landing data is collected using Malawi Traditional



Forecasting 2021, 3 42

Fishery (MTF)—a computerized gear-based sampling technique. The mathematical model
below is used to determine the fish landings:

B =
c
t .A
a.xi

(1)

where c
t is the mean catch per unit effort obtained per administrative stratum during the

survey, A is the total area of the stratum and a is the area swept by the net during the unit
effort and xi being a proportion of the fish in the path of the gear that is returned by a
net. The data is entered into the catch and effort statistics database hosted by Monkey
Bay Fisheries Research Division of the Department of Fisheries. Therefore, the 43 years’
annual fish landings data used in this study was the summation of annual fish landings
from different species in all Lake Malombe strata expressed in metric tons.

2.2.2. The Estimation of Catch per Unit Effort (CPUE)

The catch per unit effort (CPUE) data is collected alongside fish biomass landings. It is
defined as an estimate of stock size [20]. It shows if the relationship between catch and
effort is linear through the origin. Traditionally, there are two ways to calculate CPUE:

CPUE1 =
∑ Ci

fi

n
=

(
C
f

)
(2)

CPUE2 =
∑ Ci

∑ fi
=

C
f

(3)

where Ci is defined as the ith catch (usually expressed in weight) and fi is its respective
fishing effort [21]. Griffiths [22] named CPUE1 as a weighted index of density and CPUE2

as the unweighted index of density reasoning that the ratio CPUE2
CPUE1

, which he called the index
of concentration, would exceed unity in areas of higher-than-average density. If fishing
is at random, the index of concentration is 1 and if fishing effort is applied in those areas
with less than average density, the ratio is less than 1. Another ratio estimator, that does
not have much intuition, is presented by Snedecor and Cochran [23] (Equation (4)):

CPUE3 =
∑ Ci. fi

∑ fi
2 =

C. f
f 2 (4)

where C is proportional to f, the regression line between them statistically goes through
the origin and can be fitted by a simple model Ci = β fi + εi. The above three equations
are unbiased estimates of the population ratio β in normally distributed populations.
The choice among the three is a matter of precision.

2.2.3. Conceptual Framework of the ARIMA Model

This paper presents Box and Jerkins approaches that were followed to model and
forecast time series data using autoregressive integrated moving average (ARIMA) models.
To model the fish landings and CPUE data, the traditional statistical models such as
autoregressive (AR), smoothing, moving average (MA) and autoregressive integrated
moving average (ARIMA) were applied. The autoregressive (AR (p)) model is expressed as

Yt = α1γt−1 + α2γt−2 + . . . + αpγt−p + εt (5)

where Yt is the dependent variable γ at time t, γt−1 + γt−2 + . . . + γt−p are the lagged
dependent variables while α1 + α2 + . . . + αp are the unknown parameters of the model
α1 6= 0 and εt is the value of the disorders term at time t, i, i.d. εt ∼

(
0, α2): p-the number of
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lagged values of y and represent the order of the process. The moving average (MA (q)) is
defined by a function of its present and q-past disorders (lagged error) and is expressed as

Yt = εt + β1εt−1 + β2εt−2 + . . . + βqεt−q (6)

where Yt is the dependent variable y at time t, εt−1, εt−2 . . . εt−q means lagged disturbances,
and β1, β2 . . . .βq means unknown parameters of the model βq 6= 0, εt ~N

(
0, α2) q the

number of lagged values of y and represents the order of the process. The two-process (AR)
and (MA) are combined to form the autoregressive moving average model (ARMA (p,q))
expressed as:

Yt = α1γt−1 + α2γt−2 + . . . + αpγt−p + εt + β2εt−2 . . . + βqεt−q (7)

However, the ARMA model works with stationary data which is not the case with fish
landings and CPUE data [24]. Therefore, the application of differencing to remove a mean
trend from non-stationary series is the common procedure for transforming non-stationary
data to stationary [25]. The procedure has been advocated in the Box–Jenkins approach [26].
In this paper, the autoregressive integrated moving average model (ARIMA (p,d,q)) is in-
troduced to deal with non-stationary data. The general form of the ARIMA model is

α(L)∆dγt = β(L)εt with ∆0 = 1 and α(L)∆dγt (8)

where a new time series is obtained by differencing the initial series (γt)d. In the fisheries
context, p describes the movements of the data series, d represents the degree of difference
used to achieve stationarity and q represents the smoothing technique used to estimate
secular trends. The autocorrelation (AC) and partial autocorrelation (PAC) functions are
used to extract the periodic component of the time series and construct ARIMA models
suitable for explaining time series data. The ACF is defined as the sequence of values:

τt =
Ct

C0
T = 0, 1 . . . . . . . . . T − 1 (9)

where

CT =
1
T

T−1

∑
t=τ

(γt − γ)(γt−τ − γ) (10)

is the empirical autocovariance at lag τ and Co is the sample variance. The ACF reveals
regular moving average spikes. For example, if the model has an MA (1) component,
then there will only be one regular significant spike. If the model has an MA (2) component,
then the model will have two regular spikes. The sample ACF ρτ at lag, τ is simply the
correlation between two sets of residuals obtained from regressing the elements γt and
γt τ+1 on the set of intervening values. The PAC reveals a spike at the lag of the interaction
term. Different combinations of multiplicative parameters were estimated to determine
whether the identified parameters were statistically significant.

To evaluate the adequacy and performance of the models during the validation
process, a series of measures of accuracy were applied. The correlation coefficient (R) was
used to depict the relationship between observed and predicted fish landings and CPUE.
On the other hand, the coefficient of determination (R2) described the proportion of the
total variance applied and was explained by the model. Other significant measures of
variance such as standard error of prediction (SEP), the coefficient of efficiency (E2), and the
average relative variance (ARV) were also applied to see how far the model was able to
explain the total variance of the data. It was further noted that there was a need to quantify
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the errors in the same series of variables and these errors include the square root of the
mean square error (RMSE) and the mean absolute error (MAE) expressed as:

RMSE =

√√√√ N

∑
i=1

(
QT − Q̂T

)2

N
=
√

MSE (11)

MAE =
∑N

i=1
∣∣Qt − Q̂t

∣∣
N

(12)

where Qt is the observed total annual fish landings or CPUE at the time t, Q̂t is the estimated
total annual fish landings or CPUE at time t, and N is the total number of observations of
the validation set. The percent standard error of prediction (SEP) was expressed as

SEP =
100
Qt

RMSE (13)

where Q is the mean observed total annual biomass or CPUE of the validation set. The co-
efficient of efficiency E2 and the average relative variance (ARV) were expressed as:

E2 = 1− ∑N
i=1
∣∣Qt − Q̂t

∣∣2
∑N

i=1
∣∣Qt −Qt

∣∣2 (14)

ARV =
∑N

i=1
(
Qt − Q̂t

)2

∑N
i=1
(
Qt −Qt

)2 − 1− E2 (15)

The sensitivity to outliers due to the squaring of the different terms is linked to E2 or
equivalent to ARV. A value of zero for E2 suggests that the observed average Q̂ is as good
as a predictor of the model, while negative values indicate that the observed average is a
better predictor than the model. For the perfect match, the values of R2 and E2 should be
close to one and those of SEP and ARV close to zero. The persistence index (PI) was also
used for the model performance evaluation.

PI = 1− ∑N
i=1
(
Qt − Q̂t

)2

∑N
i=1(Qt −Qt−L)

2 (16)

where Qt−L is the observed fishery landings or CPUE at the time step t− L and L is the lead-
time. The PI values of one reflect a perfect adjustment between predicted and the observed
values and a value of zero indicates that the model is not suitable. Negative PI means
that the model is degrading the original trend meaning that it has the worst performance.
The t ratios of the parameters to their standard error were also estimated. The Ljung–Box
Chi-squared test was used to estimate whether the overall correlogram of the residuals
displayed any methodical error. The Ljung–Box Chi-squared test is expressed as

Q = n(n + 2)∑(n− k)−1rk2 (17)

where rk (k = 1 . . . . . . . . . m) are residual AC and n is the number of observations used to
fit the model. Akaike information criterion (AIC) and Bayesian information criterion (BIC)
was calculated to give the possibility to compare with values obtained from other models.
The AIC is expressed as

AIC = −2 ln f
(

y
∅

)
+ 2k (18)
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where −2 ln f
( y
∅
)

means the goodness of fit while +2k means model complexity and k is
the number of model parameters. Note, the model with the smallest AIC is chosen as the
finest. The BIC was calculated as:

BIC = log(MSE) +
m log(N)

N
(19)

The Gaussian maximum likelihood estimation (GMLE) algorithm was further used to
check the model adequacy. The GMLE was expressed by firstly denoting the elements of
τ1 and τ2 in ascending order as

j1<j2<···<jp and i1 < i2 < · · · < iq (20)

Let ∅ ≡
(
θ1, . . . , θp+q

)T
=
(
bji, . . . , bjp, . . . ., bjp, σi1 . . . ., σiq

)T , assuming ∅ = Θ, where
Θ ⊂ Rp+q is the parameter space. Given the parameter, Θ is a compact set containing the
true value θo as an interior point and observation {X(u, v), u = 1, . . . ., N1, v = 1, . . . , N2},
the GMLE function was expressed as

L(θ)2 ∝ σ−N∣∣∑ θ
∣∣− 1

2 exp
{
− 1

2σ2 XT ∑ θ−1X
}

(21)

where N = N1N2, X is an N.1 vector consisting of N observation in ascending order and

∑ θ =
1

2σ2 var(X) (22)

is independent of σ2. The GMLE estimators were expressed as

θ̂ = argmin

log
{

XT ∑ θ−1X/N
}
+

θ∈Θ

N−1 log[∑ θ]

, θ̂2 = XT(θ̂)−1 X/N (23)

Once the suitable time series model estimated its unknown parameters and established
that the model fits well, the next step was to forecast fishery landings and CPUE values.
In this context, the autoregressive model is represented as follows:

Yt =
∞

∑
u=1

πµγt−µ + εt (24)

The next observation beyond y1 . . . . . . . . . . . . yT is predicted using the model ex-
pressed below

Ŷt+1 =
∞

∑
u=1

π̂µγt+1−µ (25)

where the π̂µ are obtained by substituting the estimated parameters in the theoretical ones.
The forecast γt+1 is obtained and used to forecast γt+2 which later is used to generate γt+3.
The process is used to obtain a forecast out of any point in the future.

3. Results

Modeling and forecasting of fish landings and CPUE were conducted based on the raw
data. The precision and characteristics of ARIMA models were studied in detail following
the Box–Jenkins approach. The model parameters were identified, estimated, and verified.
The model shown in Figure 2 is based on the 43 years’ time-series data from 1976 to 2019.
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Figure 2. Total biomass landings (tons) and catch per unit effort (kg/h).

The first approach to ARIMA modeling was data inspection. Figure 2 shows that
the fishery landing trend was very unstable with the highest observed from 1980 to 1990.
The same observation is made in the catch per unit effort (CPUE) data plot which shows
the highest within the period from 1976 to 1980. Figure 3 on the other hand shows
the autocorrelation (AC) and partial autocorrelation (PAC) functions of the original fish
landings time series data.

Figure 3. Autocorrelation and partial autocorrelation functions of original fishery landings and CPUE.

The AC is significantly higher than zero and gradually decreases to a zero function
of the number of lags demonstrating that the time series data were not stationary. Similar
results were observed in CPUE data series.

3.1. Model Identification

From the time series plot (above), it was very apparent that the time series data
for fishery landings and CPUE had a random walk behavior and therefore had to be
differenced. Differencing is an explicit option in ARIMA modeling [27]. It is implicitly
a part of random walk and exponential smoothing models. In this paper, the first-order
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differencing was applied and the results were inspected in the form of the data plot.
Figure 4 shows that time-series data of the first-order difference was stationary in mean
and variance and therefore, it was suggested that an ARIMA (p,1,q) model was probably
the best. The selected model was able to remove the trend component of the time series to
remain with irregular components.

Figure 4. First order differences.

A correlogram was also applied to detect whether particular time series data was
stationary or non-stationary. The stationary time series data give an AC and PAC functions
that decay rapidly from their initial value of unity zero lag while in non-stationary time
series, the ACF dies out gradually over time. The stationary testing was done using a
plot analysis of the autocorrelation (ACF) and partial autocorrelation function (PACF).
The ACF depicted the correlation measurement of the observations at different times.
PACF coefficient also called reflection coefficients in signal processing was used as the basis
of autoregressive estimation. The ACF and PACF of the transformed fish landings time
series (original and smoothed series) are presented in Figure 5. Both fishery landings and
CPUE data series showed that a first-order differencing (d = 1) was adequate to remove the
trend. The ACF and PACF in Figure 5 showed a significant spike only at lag 1, meaning
that higher-order autocorrelation was explained by lag 1 AR [26].

In verifying the data stationarity, however, it was noted that AR or MA models were
not pure as seen from ACF and PACF correlograms in Figure 5. Therefore, several models
had to be tested to identify the most suitable one for fishery landings and CPUE forecasting.

3.2. Model Selection

The model selection was based on the minimization of Akaike information criterion
(AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE),
the mean absolute error (MAE), standard error of prediction (SEP), average relative vari-
ance (ARV) and increasing Gaussian maximum likelihood estimation (GMLE) algorithm,
efficiency coefficient (E2) and coefficient of determination (R2). Table 1 summarizes the
values of different competing models and proves the choice of the ARIMA (p,d,q) model
on which fishery landings’ prediction was based on. Table 1 shows that the ARIMA model
(0,1,1) had the lowest Akaike information criterion (AIC = 776.96), Bayesian informa-
tion criterion (BIC = 780.49), square root of the mean square error (RMSE = 2001.29 tons),
percentage standard error of prediction (SEP = 22%), average relative variance (ARV = 0.29),
high Gaussian maximum likelihood estimation algorithm (GMLE =−386.48), and efficiency
of coefficient (E2) (0.71).

The coefficient of determination also known as R squared was used as an indicator
for the goodness of model fit in the linear regression. The ARIMA (0,1,1) had the highest
R2 coefficient (R2 = 0.73) suggesting that about 73% of the variance was explained by the
model. Also, the persistent index (PI) was closer to 1 and higher (PI = 0.59) than the rest of
the competing models suggesting that the ARIMA (0,1,1) model was not naïve. The p-value
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for the Ljung–Box test was greater than 0.05 suggesting that there was very little evidence
for non-zero autocorrelations. Both AR and MA models were greater than 0.05, suggesting
that the residues of the model were independent at a 95% level of confidence and the ARMA
model proved to be the best model fit. The level of explained variance displayed a percentage
standard error prediction (SEP) of 22%, root mean standard error (RMSE) of 2001.29 tons, and a
mean absolute error of 1044.04 tons. A detailed analysis of the results showed that the model
displayed the best performance as indicated by the persistence index which was closer to 1
(PI = 0.56). R statistical package version 3.6.3 has an installation for finding the appropriate
forecasting model “auto. arima ()”. As seen from Figure 6, the ARIMA (0,1,1) was displayed
as the most appropriate forecasting model for fish landings.

Figure 5. Autocorrelation (AC) and partial autocorrelation (PAC) functions.

Figure 6. Estimated values for ARIMA (0,1,1) (a) and ARIMA (0,1,0) (b).
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Table 1. Competing autoregressive integrated moving average (ARIMA) models for total annual fish landings.

Model (p,d,q) R2 RMSE (tons) MAE (tons) BIC AIC Log-Likelihood SEP (%) ARV E2 PI Ljung–Box (p-Value)

ARIMA (0,1,0) 0.69 2035.37 1507.99 815.50 777.96 −386.49 32 0.33 0.67 0.23 0.49
ARIMA (1,1,1) 0.69 2035.24 1514.83 795.50 778.95 −389.48 44 0.33 0.67 0.13 0.63
ARIMA (2,1,2) 0.69 2067.42 1518.65 795.61 779.60 −386.76 56 0.34 0.66 0.14 0.89
ARIMA (2,2,2) 0.70 2107.42 1494.62 815.83 777.65 −398.82 53 0.35 0.65 0.44 0.48
ARIMA (0,1,1) 0.73 2001.29 1044.04 780.49 776.96 −386.48 22 0.29 0.71 0.56 0.64
ARIMA (2,0,0) 0.66 2015.74 1474.24 915.06 788.68 −389.34 76 0.32 0.68 0.39 0.65

R2 means coefficient of determination, RMSE means square root of the mean square error, MAE means mean absolute error, BIC means
Bayesian information criterion, AIC means Akaike information criterion, SEP means percentage standard error of prediction, ARV means
average relative variance, E2 means efficiency Coefficient, PI means persistent index.

Table 2 on the other hand summarizes the measures of forecasting accuracy for CPUE
among the competing ARIMA (p, d, q) models. According to the measures of forecast-
ing used, the best forecasting performance was displayed by the ARIMA model (0,1,0).
The model had lowest AIC (−44.24), BIC (−55.43), RMSE (0.08 kg/h), MAE (0.05 kg/h),
SEP (26%), ARV (0.25), highest GMLE (39.6), E2 (0.6465), and PI (0.66). The R squared
was used as an indicator for the goodness of model fit in the linear regression model.
The ARIMA (0,1,0) had the highest R2 coefficient (R2 = 0.78) suggesting that about 78% of
the variance was explained by the model. Also, the persistent index (PI) was closer to 1
and higher (PI = 0.66) than the rest of the competing models suggesting that the ARIMA
(0,1,0) model was not naïve. The p-value for the Ljung–Box test was also greater than
0.05 suggesting that there was very little evidence for non-zero autocorrelations. Both AR
and MA models were greater than 0.05 suggesting that the residues of the model were
independent at a 95% level of confidence and the ARMA model proved to be the best model
fit. Using the “auto. arima ()" command in R statistical package version 3.6.3, the software
also automatically estimated ARIMA (0,1,0) as the best ARIMA model (Figure 6).

Table 2. Competing ARIMA models for CPUE.

Model (p,d,q) R2 RMSE (kg/h) MAE (kg/h) BIC AIC Log-Likelihood SEP (%) ARV E2 PI Ljung–Box (p-Value)

ARIMA (0,1,0) 0.75 0.08 0.05 −55.43 −57.19 39.6 26 0.25 0.6465 0.66 0.589
ARIMA (1,1,1) 0.74 0.11 0.06 −44.08 −53.68 29.84 44 0.37 0.6264 0.38 0.844
ARIMA (2,1,2) 0.72 0.10 0.06 −47.09 −55.67 34.84 47 0.39 0.6057 0.29 0.707
ARIMA (2,2,2) 0.57 0.12 0.07 −45.08 −54.88 32.44 64 0.36 0.6398 0.47 0.717
ARIMA (0,1,1) 0.75 0.11 0.06 −49.14 −43.94 24.97 54 0.43 0.5701 0.32 0.787
ARIMA (2,0,0) 0.75 0.13 0.07 −36.68 −42.54 −35.34 92 0.43 0.5700 0.34 0.645

R2 means coefficient of determination, RMSE means square root of the mean square error, MAE means mean absolute error, BIC means
Bayesian information criterion, AIC means Akaike information criterion, SEP means percentage standard error of prediction, ARV means
average relative variance, E2 means efficiency Coefficient, PI means persistent index.

Based on the selected ARIMA (0,1,1) and ARIMA (0,1,0) models presented in Figure 6,
the following model was developed.

yt = δ + δ1yt−1 − θ1εt−1 + εt (26)

with: yt, yt−1: fish landings or CPUE period t and t − 1, respectively, εt, εt−1: residuals
of period t and t − 1 constitute a white noise, and δ1 and θ1: coefficients of AR and MA
processes, respectively.

3.3. Accuracy of ARIMA (0,1,1) and ARIMA (0,1,0) Models

Before forecasting, the residuals were checked through ACF and PACF to see if there
was any systematic patterns that need to be eliminated to improve the accuracy and
performance of the selected model. The ACF and PACF residuals plot (Figure 7) showed
that none of the ACF were significantly different from zero at 95% confidence intervals.
Therefore, ARIMA (0,1,1) and ARIMA (0,1,0) models provided an adequate predictive
model which probably could not be improved.
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Figure 7. Autocorrelation and partial autocorrelation functions residuals.

4. Forecast

The modeled and predicted fish landings and CPUE are displayed in Figure 8. The sum-
mary of predicted and observed fish landings and CPUE are presented in Tables 3 and 4.
Tables 3 and 4 show that the noise residuals were a combination of positive and negative errors
and falling within 95% confidence intervals indicating that the model had a good performance
of forecasting.

Table 3. Forecast total fish annual biomass landings from 2019 to 2024.

Year Forecast Lo 80 Hi 80 Lo 95 Hi 95

2020 2725.243 147.222 5203.265 −1064.563 6515.05
2021 2725.243 −185.147 5635.634 −1725.814 7176.301
2022 2725.243 −561.115 6011.602 −2300.809 7751.295
2023 2725.243 −898.282 6348.769 −2816.460 8266.947
2024 2725.243 −1206.64 6657.128 −3288.055 8738.542

Figure 8 presents the results of fish landings and CPUE forecasts obtained after
applying ARIMA (0,1,1) and ARIMA (0,1,0) models for the period of 5 years (2019–2024).
As seen from Figure 8, the model satisfactorily predicted that by 2024, both fish landings
and CPUE will be estimated at 2725.243 metric tons and 0.097 kg/h respectively.
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Figure 8. Forecast fish landings and CPUE from 2019 to 2024.

Table 4. Forecast CPUE from 2019 to 2024.

Year Forecast Lo 80 Hi 80 Lo 95 Hi 95

2020 0.097 −0.059 0.252 −0.141 0.335
2021 0.097 −0.123 0.317 −0.240 0.434
2022 0.097 −0.173 0.367 −0.316 0.509
2023 0.097 −0.215 0.409 −0.380 0.574
2024 0.097 −0.251 0.445 −0.436 0.629

5. Discussion

The abundance of fish species in Lake Malombe is directly linked to CPUE; though
common criticism of CPUE is that the relationship between abundance and CPUE is
more complex [28,29]. Figure 9 depicts the variation of the annual fish landings during
each defined fish landing period. The data plot shows that Lake Malombe fish landings
experience strong periodical fluctuations, with higher catches registered in 1976–1996 and
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maximum fish landings in 1984, and limited fish landings during the rest of the period.
A significant decline in fishery landings is noted, during 2000–2005, mostly attributed to
stock depletion as the result of an increase in fishing effort. The fishery recovery appeared
from 2006 to 2016, with the maximum registered in 2015. The CPUE in Figure 9 was at the
peak in 1976 and then began fluctuating negatively and thereafter remained constant with
a slight fluctuation.

Figure 9. Biomass and CPUE trend.

The decrease in CPUE trends from the 1980s to 2019 was an indicator of increasing
fishing effort and a decrease in fish landings. Maynou et al. [30] explained that CPUE series
reflect the general abundance of species and catch fluctuation. According to Weyl et al. [31],
CPUE variation is strongly linked to the difference in the number of fishers, man-hours,
and the categories of fishing gears. Low CPUE indicates a relatively low abundance
of fish which results in prolonged man-hours and an increase in the number of fishers
and low catches [32,33]. Alexander et al. [34] had similar observations and reported a
strong relationship between whole lake CPUE to relative fish biomass and abundance.
Weyl et al. [31] evidenced an increase in biomass and CPUE in the southern part of Lake
Malawi after the subsequent closure of the fishery within 1992/1993. In Lake Nasser,
Egypt, the time series of size and CPUE also showed a negative trend indicating the high
exploitation rate of the most important commercial fish species in the lake by the fishing
gears [32]. A similar situation is reported in Lake Chilwa, Lake Malawi, and other inland
lakes [35–37].

The option to model both fishery landings and CPUE was based on the fact that
these two indicators can be used by regulators to monitor for a potential change in fish
population related to the effects of human exploitation and other anthropogenic factors [38].
It was based on the assumption that Lake Malombe fishery can provide a greater benefit
to the riparian communities if proper management conditions and plans are sustainably
exercised. Stergiou [38] claimed that fish landing fluctuation is linked to ecosystem type
and season while Pinnegar et al. [39] believed that fish landings can reflect changes in
gear technologies, management measures, and the species abundance in the lake ecosys-
tem. The two arguments above indicate that the inaccurate model can give inaccurate
management information and appropriate selection of the time series model is the basic
requirement in the prediction of fish landings and CPUE. In this case, the ARIMA (0,1,1)
and ARIMA (0,1,0) models were selected as the most accurate and the best in predicting
Lake Malombe fish landings and CPUE for five years. It should be noted that the p = 0
in ARIMA (0,1,1) for fish landings suggests that there were no autoregressive terms but
rather the model was exponential smoothing. On the other hand, the p = 0 and q = 0 in
ARIMA (0,1,0) suggests that the selected model was a random walk with a constant trend
and had no autoregressive and moving average terms. The five-year duration was chosen
to increase the accuracy of the model. It was also assumed that forecasting five years in
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advance could be of great importance for planning and decision-making among fisheries
managers, fishermen, and the fishing industry in general. The ARIMA (0,1,1) and ARIMA
(0,1,0) models accurately predicted the lowest lake fish landings (2725.243 tons) and CPUE
(0.097 kg/h), respectively. The prediction obtained by the models provides a special inter-
pretation to fisheries managers, scientists, ecologists, and experienced fishers. It implies
that the optimum fishing effort should be reduced below the current fishing effort for the
fishery to recover a certain level of CPUE. In the absence of limitations, the open-access ap-
proach to the fishery in Lake Malombe will eventually lead to a further cycle of depression
with declining economic returns for fishers and negative social and economic impacts [40].

6. Conclusions

In Malawi, fishing is described as the most productive and economic activity that
sustains millions in the riparian communities. This study was developed to predict uncon-
trollable biomass trends and the possible abundance of the stock. The main objective was
to provide baseline data to fisheries managers to set a practical fishing effort in the lake.
The annual fish landings and CPUE trends were first transformed from non-stationary to
stationary using the first-order differencing. The ACF, PACF, AIC, BIC, RMSE, MAE, SEP,
ARV, GMLE, E2, R2, and PI were estimated, which led to the identification and construction
of ARIMA models, suitable for explaining the time series and forecasting. According to
the measures of forecasting accuracy, the best forecasting models for fish landings and
CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest AIC, BIC,
RMSE, MAE, SEP, and ARV values. The models further displayed the highest values
of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further dis-
played ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The ARIMA (0,1,1) and ARIMA
(0,1,0) models accurately predicted the lowest lake fish landings (2725.243 tons) and CPUE
(0.097 kg/h), respectively, with a good level of confidence. The fish landings and CPUE
trends showed downward trends suggesting that the current stock exploitation in Lake
Malombe is unstainable. Therefore, the study recommends that the current fishing effort
should be reduced to enable the fishery to recover a certain optimum level of CPUE.

7. Limitation

This study did not consider the use of hybrid models to explore the potential effects of
covariates (such as fishing mortalities, environmental and social-economic drivers) due to
limited data availability. Therefore, it is suggested that future studies should consider that.
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