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Abstract: This article considers the estimation of Approximate Dynamic Factor Models with ho-
moscedastic, cross-sectionally correlated errors for incomplete panel data. In contrast to existing
estimation approaches, the presented estimation method comprises two expectation-maximization
algorithms and uses conditional factor moments in closed form. To determine the unknown factor
dimension and autoregressive order, we propose a two-step information-based model selection
criterion. The performance of our estimation procedure and the model selection criterion is inves-
tigated within a Monte Carlo study. Finally, we apply the Approximate Dynamic Factor Model to
real-economy vintage data to support investment decisions and risk management. For this purpose,
an autoregressive model with the estimated factor span of the mixed-frequency data as exogenous
variables maps the behavior of weekly S&P500 log-returns. We detect the main drivers of the index
development and define two dynamic trading strategies resulting from prediction intervals for the
subsequent returns.

Keywords: approximate dynamic factor model; expectation-maximization algorithm; forecasting; in-
complete data; mixed-frequency information; prediction interval; trading strategy; vector autoregression

JEL Classification: C51; C53; C58; E37; E47; G11; G17

1. Introduction

In this paper, we estimate Approximate Dynamic Factor Models (ADFMs) with in-
complete panel data. Data incompleteness covers, among others, two scenarios: (i) public
holidays, operational interruptions, trading suspensions, etc. cause the absence of single
elements, (ii) mixed-frequency information, e.g., monthly and quarterly indicators, results
in systematically missing observations and temporal aggregation. To obtain balanced panel
data without any gaps, we relate each irregular times series to an artificial, high-frequency
counterpart following Stock and Watson [1]. Depending on the relation, the artificial
analogs are categorized as stock, flow and change in flow variables. In the literature, the
above scenarios of data irregularities are handled in [1–7].

The gaps in (i) and (ii) are permanent, as they cannot be filled by any future observa-
tions. In contrast, publication delays cause temporary lacks until the desired information is
available. The numbers of (trading) days, public holidays, weeks, etc. per month change
over time. Therefore, calendar irregularities, the chosen time horizon, and different publi-
cation conventions further affect the panel data pattern. In a following paper, incomplete
data refers to any collection of stock, flow and change in flow variables [1,4].

Factor models with cross-sectionally correlated errors are called approximate, whereas
factor models without any cross-sectional correlation are called exact. In Approximate
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(Static) Factor Models with identically and independently distributed (iid) factors, Stock
and Watson [8] showed that unobserved factors can be consistently estimated using Princi-
pal Component Analysis (PCA). Moreover, the consistent estimation of the factors leads to
a consistent forecast. Under additional regularity assumptions, these consistency results
remain valid even for Approximate Factor Models with time-dependent loadings. In
the past, Approximate Static Factor Models (ASFMs) were extensively discussed in the
literature [9–15].

Dynamic Factor Models (DFMs) assume time-varying factors, whose evolution over
time is expressed by a Vector Autoregression Model (VAR). For Exact Dynamic Factor
Models (EDFMs), Doz et al. [16] showed that these models may be regarded as misspecified
ADFMs. Under this misspecification and in the maximum likelihood framework, they
proved the consistency of the estimated factors. Therefore, cross-sectional correlation of
errors is often ignored in recent studies [7,17–20]. However, cross-sectional error correlation
cannot be excluded in empirical applications. The estimation of DFMs is not trivial due
to the hidden factors and high-dimensional parameter space. Shumway and Stoffer [21]
and Watson and Engle [22] elegantly solved this problem by employing an Expectation-
Maximization Algorithm (EM) and the Kalman Filter (KF)-Kalman Smoother (KS). By
incorporating loading restrictions, Bork [23] further developed this estimation procedure
for factor-augmented VARs. Asymptotic properties of the estimation with KS and EM for
approximate dynamic factor models have recently been investigated by Barigozzi and
Luciani [24]. For EDFMs, Reis and Watson [25] treated serial autocorrelation of errors at
first. For the same model framework, Bańbura and Modugno [20] provided a Maximum-
Likelihood Estimation (MLE) using the EM and KF for incomplete data. It should be noted
that Jungbacker et al. [26] proposed a computationally more effective estimation procedure,
which involves, however, a more complex time-varying state-space representation.

This paper also aims at the estimation of ADFMs for incomplete panel data in the
maximum likelihood framework. It contributes to the existing estimation methodology in
the following manner: First, we explicitly allow for iid cross-sectionally correlated errors
similar to Jungbacker et al. [26] but do not undertake any adaptations for an underlying
DFMs. In contrast, Bańbura and Modugno [20] consider serial error correlation instead and
assume zero cross-sectional correlation. Second, our MLE does not combine an EM and
the KF. We instead propose the alternating use of two EMs and employ conditional factor
moments in closed form. The first EM reconstructs missing panel data for each relevant
variable by using a relation between low-frequency observations and their artificial coun-
terparts of higher frequency [1]. The second EM performs the actual MLE based on the full
data and is similar to Bork [23] and Bańbura and Modugno [20]. Our estimation approach
for incomplete panel data deals with a more simple state-space representation of DFMs,
which is invariant with respect to any chosen relationship between low-frequency obser-
vations and their artificial counterparts of higher frequency. In contrast, the approaches
by Bańbura and Modugno [20] and Jungbacker et al. [26] usually deal with more complex
underlying DFMs and require adjustments, even if a relationship between observations of
low-frequency and high-frequency changes for a single variable only. There exist different
types of possible relations between observations of low-frequency and high-frequency
in the literature and we refer to Section 2.2 for more details. Third, our paper addresses
a model selection problem for the factor dimension and autoregressive order. For this,
we propose a two-step approach and investigate its performance in a Monte Carlo study.
The choice of the factor dimension is inspired by Bai and Ng [27] and the choice of the
autoregressive lag is based on the Akaike Information Criterion (AIC) adjusted for the
hiddenness of the factors as in Mariano and Murasawa [28]. It should be noted that our
paper does not provide any statistical inference on ADFMs for incomplete panel data.

As an application, we develop a framework for forecasting weekly returns using
the estimated factors to determine their main driving indicators of different frequencies.
We also empirically construct prediction intervals for index returns taking into account
uncertainties arising from the estimation of the latent factors and model parameters. Our
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framework is able to trace the expected behavior of the index returns back to the initial ob-
servations and their high-frequency counterparts. In the empirical study, weekly prediction
intervals of the Standard & Poor’s 500 (S&P500) returns are determined for support of asset
and risk management. Thus, we detect the drivers of its expected market development and
define two dynamic trading strategies to profit from the gained information. For this, our
prediction intervals serve as the main ingredient of the two trading strategies.

The remainder of this paper is structured as follows. Section 2 introduces ADFMs.
For known model dimensions and autoregressive order, we derive here our estimation
procedure for complete and incomplete data sets. Section 3 proposes a selection procedure
for the optimal factor dimension and autoregressive order. Section 4 summarizes the results
of a Monte Carlo study, where we examine the performance of our estimation method and
compare it with the benchmark of Bańbura and Modugno [20] across different sample sizes,
factor dimensions, autoregressive orders and proportions of missing data. In Section 5,
we present our forecasting framework for a univariate return series using the estimated
factors in an autoregressive setup. We also discuss the construction of empirical prediction
intervals and use them to specify our two dynamic trading strategies. Section 6 contains
our empirical study and Section 7 concludes. Finally note that all computations have been
done in Matlab. Our Matlab codes and data are available as supplementary materials.

2. Estimation of ADFMs for Known Model Dimensions and Autoregressive Order
2.1. Estimation with Complete Panel Data

For any point in time t, the covariance-stationary vector Xt ∈ RN collects the observed
data at t. We assume that Xt is driven by a common (latent), multivariate normally dis-
tributed factor Ft ∈ RK, 1 ≤ K ≤ N, and an idiosyncratic component εt ∈ RN . The factors
(Ft)t are supposed to be zero-mean, covariance-stationary and potentially autoregressive
such that they obey a VAR(p), p ≥ 0. For p = 0 or p > 0 the described factor model is
static and dynamic, respectively. Because of the VAR(p) structure, it follows

Xt = WFt + µ + εt, εt ∼ N (0N , Σε)iid, (1)

Ft =
p

∑
i=1

AiFt−i + δt, δt ∼ N (0K, Σδ)iid, (2)

with constant matrices W ∈ RN×K, µ ∈ RN×1, Σε ∈ RN×N , Ai ∈ RK×K, 1 ≤ i ≤ p, and
Σδ ∈ RK×K. The vectors 0N ∈ RN×1 and 0K ∈ RK×1 are zero vectors, respectively, and
N (·, ·) denotes the multivariate normal distribution. The covariance matrices in (1)–(2)
do not have to be diagonal, thus, the above model ranks among the Approximate Factor
Models. Model (1)–(2) coincides with the Exact Static Factor Model (ESFM) from Tipping
and Bishop [29] for p = 0, if the covariance matrix of the factors (Ft)t is the identity matrix
and the matrix Σε is a constant times the identity matrix. Bańbura and Modugno [20]
consider an EDFM (1)–(2) with a diagonal covariance matrix Σε , i.e., the errors εt in (1) are
cross-sectionally uncorrelated. However, their model is more general in another direction,
namely, they allow for serial correlation of (εt)t.

Then, we focus on the dynamic case with p > 0. The conditional distributions Xt|Ft
and Ft|Ft−1, . . . , Ft−p can be derived from (1)–(2) and are given by

Xt|Ft ∼ N (WFt + µ, Σε),

Ft|Ft−1, . . . , Ft−p ∼ N
(

p

∑
i=1

AiFt−i, Σδ

)
.

The covariance-stationarity of (Ft)t requires that all z satisfying |IK −∑
p
i=1

(
Aizi)| = 0

lie outside the unit circle Hamilton [30] (Proposition 10.1, p. 259), where IK ∈ RK×K is the
identity matrix. Moreover, for the covariance matrix ΣF of the covariance-stationary factors



Forecasting 2021, 3 59

(Ft)t, Hamilton [30] (Equation (10.1.15), p. 260 and Proposition 10.2, p. 263) justifies the
following series representation

ΣF =
∞

∑
k=0

((
Ak
)

Σδ

(
Ak
)′)

, (3)

where we define for all k ≥ 1 and OK ∈ RK×K as the zero square matrix of dimension K

Ak =
[
A1, . . . , Ap

]A
k−1

...
Ak−p

 with A0 = IK and Ak−p = OK, ∀(k− p) < 0.

By virtue of the Bayes’ theorem, the conditional distribution Ft|Xt is given by

Ft|Xt ∼ N
(

M−1W ′Σ−1
ε (Xt − µ), M−1

)
= N

(
µFt |Xt

, ΣFt |Xt

)
, (4)

where M = W ′Σ−1
ε W + Σ−1

F . The independence of the errors (εt)t provides that the factors
Ft conditioned on the observations Xt, i.e., (Ft|Xt)t, are uncorrelated. For serially correlated
errors, the distribution in (4) has to be adjusted and the independence of (Ft|Xt)t is lost. In
empirical studies, the covariance matrix ΣF is computed by truncating the infinite series
in (3). Here, we truncate the infinite series for ΣF as soon as the relative change in the
Frobenius norm of two subsequent truncations is smaller than the predetermined tolerance
ηF = 10−6. For the existence of their inverse, both matrices Σε and ΣF must be positive
definite. Because of K < N, the positive definiteness usually holds in practical applications.
If one of them is merely positive semi-definite, we recommend a reduction of the factor
dimension K. For the trivial case K = N a proper solution of (1) is given by W = IK and
Σε = OK.

The log-likelihood function L(Θ|X, F) of Model (1)–(2) with parameters
Θ = {W, Σε , A1, . . . , Ap, Σδ} for complete samples X = [X1, . . . , XT ]

′ ∈ RT×N and
F = [F1, . . . , FT ]

′ ∈ RT×K of sufficient size T > p depends on the unobservable factors
Ft, t = 1, . . . , T and, therefore, cannot be directly computed. However, Model (1)–(2) can
be estimated in the maximum likelihood framework by using the two-step expectation-
maximization algorithm of Dempster et al. [31]. In the first step, called the expectation step,
the unobserved factors Ft are integrated out. This is achieved through the computation of
the conditional expectation of the log-likelihood L(Θ|X, F) with respect to the observed
data X = (X1, . . . , XT)

′ ∈ RT×N . Thus, Equation (4) yields

E[L|X] = −T
2
[N ln(2π) + ln(|Σε |)]−

T − p
2

[
K ln(2π) + ln

(∣∣Σδ

∣∣)]
− 1

2

T

∑
t=1

(
(Xt − µ)′Σ−1

ε (Xt − µ)
)
− 1

2

T

∑
t=1

tr
((

ΣFt |Xt
+ µFt |Xt

µ′Ft |Xt

)
W ′Σ−1

ε W
)

+
T

∑
t=1

(
µ′Ft |Xt

W ′Σ−1
ε (Xt − µ)

)
− 1

2

T

∑
t=p+1

tr
((

ΣFt |Xt
+ µFt |Xt

µ′Ft |Xt

)
Σ−1

δ

)

+
T

∑
t=p+1

p

∑
i=1

tr
(

µFt−i |Xt−i
µ′Ft |Xt

Σ−1
δ Ai

)

− 1
2

T

∑
t=p+1

p

∑
i=1

tr
((

ΣFt−i |Xt−i
+ µFt−i |Xt−i

µ′Ft−i |Xt−i

)
A′iΣ

−1
δ Ai

)

−
T

∑
t=p+1

p

∑
i,j=1

i<j

tr
(

µFt−j |Xt−j
µ′Ft−i |Xt−i

A′iΣ
−1
δ Aj

)
, (5)
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where tr(·) denotes the matrix trace. Now, the expected log-likelihood E[L|X] only depends
on the parameters of the conditional distribution of Ft from (4).

In the second step, called the maximization step, the expected log-likelihood E[L|X]
in (5) is maximized with respect to the parameters of Model (1)–(2). However, this maxi-
mization is done in a simplified way. The dependence of µFt |Xt

and ΣFt |Xt
on the parameters

in (1)–(2) for 1 ≤ t ≤ T is neglected at this stage (i.e., both are constants in the maximization
routine). This simplification allows us to compute the partial derivatives of (5) with respect
to W, Σε , Σδ and Ai, 1 ≤ i ≤ p, explicitly. It is also justified by the fact that µFt |Xt

and ΣFt |Xt
for 1 ≤ t ≤ T merely arise from the unobservable factors and therefore, can be treated as
data or known parameters. Please note that this simplification is in line with [20,23,29].

By setting the partial derivatives of E[L|X] equal to zero matrices and solving the
system of linear matrix equations, we receive updates for the parameters of Model (1)–(2).
Let index (l) refer to the respective loop of the EM with model parameters Θ(l) =
{W(l), Σε(l), A1(l), . . . , Ap(l), Σδ(l)}. For any b1, u1, b2, u2 ∈ N with u1 > b1, u2 > b2 and

u1 − b1 = u2 − b2, we define
{

u1
b1

Su2
b2

}
as follows

{
u1
b1

Su2
b2

}
=

1
u1 − b1

[
Xb1 − µ, . . . , Xu1 − µ

][
Xb2 − µ, . . . , Xu2 − µ

]′.
Then, the parameters of the next loop (l + 1) are given by

W(l+1) =
{

T
1ST

1

}
Σ−1

ε(l)W(l)

(
IK + D(l)

{
T
1ST

1

}
Σ−1

ε(l)W(l)

)−1
, (6)

Σε(l+1) =
(

IN −W(l+1)D(l)

){
T
1ST

1

}
, (7)

[
A1(l+1), . . . , Ap(l+1)

]
=
(

1′p ⊗ D(l)

)
S̃′
(

Ip ⊗ D′(l)
)

×
((

Ip ⊗M−1
(l)

)(
Ip ⊗ D(l)

)
Ŝ′
(

Ip ⊗ D′(l)
))−1

,
(8)

Σδ(l+1) = M−1
(l) + D(l)

{
T
p+1S

T
p+1

}
D′(l)−

−
[

A1(l+1), . . . , Ap(l+1)

](
Ip ⊗ D(l)

)
S̃
(

1p ⊗ D′(l)
)

,
(9)

D(l) = M−1
(l) W ′(l)Σ

−1
ε(l) ∈ RK×N , (10)

where ⊗ refers to the Kronecker product and 1p ∈ Rp is a vector of ones,

S̃ =



{
T−1
p ST

p+1

}
ON

. . .
ON {

T−p
1 ST

p+1

}


∈ RpN×pN

and

Ŝ =



{
T−1
p ST−1

p

}
· · ·

{
T−1
p ST−p

1

}
...

. . .
...{

T−p
1 ST−1

p

}
. . .

{
T−p
1 ST−p

1

}


∈ RpN×pN .

For the initialization of the EM, we deploy the Probabilistic Principal Component
Analysis (PPCA) of Tipping and Bishop [29], which is a special case of (6)–(10) and implies
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that our initial values for the matrices Ai(0), i = 1, . . . , p are zero matrices. Alternatively,
Doz et al. [16] and Bańbura et al. [32] comprise two steps for EM initialization: At first,
they apply PCA for estimating factors, loadings matrix and Σε . Thereafter, an Ordinary
Least Squares Regression (OLS) provides the VAR(p) parameters.

For an invertible matrix R ∈ RK×K,
{

WR−1, Σε , RA1R−1, . . . , RApR−1, RΣδR′
}

and{
W, Σε , A1, . . . , Ap, Σδ

}
represent solutions of Model (1)–(2). Hence, the EM output

(6)–(10) is unique up to any invertible, linear transformation [20] (working paper version).
Since the EM termination must not be affected by this degree of freedom, the absolute value
of the relative change in the log-likelihood function may serve as termination criterion. In
our implementation, the EM terminates as soon as the absolute value of the relative change
in E[L|X] between two successive iterations falls below the error tolerance η = 10−2. In
our simulations, decreasing the termination criterion from 10−2 to 10−4 from [20] (working
paper version, 2010) did not significantly improve the estimation quality of our method.

Bańbura and Modugno [20] employ the Kalman filter and smoother for estimating
factor moments and covariance matrices between factors and (missing) panel data. By
contrast, we estimate them analytically. If the reconstruction Formula (4) and error correla-
tion assumptions enter the update steps of Bańbura and Modugno [20], both approaches
coincide. Additionally, Bańbura and Modugno [20] allow for the linear restrictions given
in [23,33], which can also be transferred to our approach [34].

2.2. Estimation with Incomplete Panel Data

In this section, we treat incomplete data as stock, flow and change in flow variables. We
apply the notation from, e.g., Schumacher and Breitung [4], Ramsauer et al. [34]. As before,
let N and T be the number of time series and sample size. The counter 1 ≤ t ≤ T covers
each point in time, when the data is updated, i.e., it maps the highest frequency. For
1 ≤ i ≤ N, the vector X i

obs = (Xi
obs,j)1≤j≤T(i) with T(i) ≤ T collects the observations of

signal i and (nj)1≤j≤T(i) denotes the high-frequency periods of each low-frequency time
interval. For missing or low-frequency observations, it follows: T(i) < T. Finally, let
X i = (Xi

j)1≤j≤T be an artificial, high-frequency time series satisfying

X i
obs = QiX i, (11)

with Qi ∈ RT(i)×T .
For any complete time series, Qi = IT holds. For stock variables, only the respective

elements of Qi are 1, whereas the remaining entries are zeros. For a flow variable, which
reflects the average of its high-frequency counterparts, Qi is given by

X i
obs =


1

n1
· · · 1

n1
0 0 · · · 0

0 · · · 0 .. . 0 · · · 0
0 · · · 0 0 1

nT(i)
· · · 1

nT(i)


︸ ︷︷ ︸

Qi

X i. (12)

The change in a flow variable Qi has the following shape

∆X i
obs =



1
n1
··· n1−1

n1
1 n2−1

n2
··· 1

n2
0 0 ··· 0 0 ··· 0 0 ··· 0

0 ··· 0 0 1
n2
··· n2−1

n2
1 n3−1

n3
··· 1

n3
0 ··· 0 0 ··· 0

0 ··· 0 0 0 ··· 0 0 1
n3
··· n3−1

n3
∗ ··· ∗ 0 ··· 0

0 ··· 0 0 0 ··· 0 0 0 ··· 0 ∗ . . . ∗ 0 ··· 0

0 ··· 0 0 0 ··· 0 0 0 ··· 0 ∗ ··· ∗
nT(i)−1

nT(i)
··· 1

nT(i)


︸ ︷︷ ︸

Qi

∆X i. (13)

Sometimes, a flow variable serves as the sum of the high-frequency signals instead
of their average [7] (ECB working paper, pp. 9–10). In this case, the fractions in Qi in (12)
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are replaced by ones. Only, if all low-frequency periods comprise the same number of
high-frequency periods, the sum version of the change in flow variable (13) exists [34] (p. 8,
footnote 6). The change in an averaged flow variable (13) does require this equality.

The chosen data type does not affect our subsequent considerations such that we
continue with Model (11). For 1 ≤ t ≤ T, 1 ≤ k ≤ K, 1 ≤ i ≤ N, let F = (Fk

t )tk ∈ RT×K and
ε = (εi

t)ti ∈ RT×N collect all factors and errors of Model (1). Then, we have for 1 ≤ i ≤ N

X i = FW ′
i + µi1T + εi,

X i
obs = QiFW ′

i + Qiµi1T + Qiε
i,

where Wi, µi and εi denote the i-th row of W, the i-th element of µ and the i-th column of
ε, respectively. Because of εt ∼ N (0N , Σε)iid, for all 1 ≤ i ≤ N we get εi ∼ N (0T , σ2

i IT)
resulting in (

X i

X i
obs

)∣∣∣∣
F
∼ N

((
FW ′

i + µi1T
QiFW ′

i + Qiµi1T

)
, σ2

i

(
IT Q′i
Qi QiQ′i

))
.

Finally, X i conditioned on F and X i
obs is still normally distributed with

E
[

X i|F, X i
obs

]
=
(

FW ′
i + µi1T

)
+ Q′i

(
QiQ′i

)−1
[

X i
obs −Qi

(
FW ′

i + µi1T
)]

Var
[

X i|F, X i
obs

]
= σ2

i

[
IT −Q′i

(
QiQ′i

)−1Qi

]
, (14)

which is the reconstruction formula of Stock and Watson [1,35].
Using (14), we extend the EM (6)–(10) to treat incomplete panel data. In each loop

(l) ≥ 0 and for all 1 ≤ i ≤ N, an update X i
(l+1) is generated as follows

X i
(l+1) =

(
F(l)W

′
i(l) + µi(l)1T

)
+ Q′i

(
QiQ′i

)−1
[

X i
obs −Qi

(
F(l)W

′
i(l) + µi(l)1T

)]
. (15)

The matrix Q′i
(
QiQ′i

)−1 is the unique Moore-Penrose Inverse of Qi [36] (Definition A.64,

pp. 372–373), satisfying QiQ′i
(
QiQ′i

)−1
= IT(i). Its uniqueness eliminates degrees of free-

dom, whereas the relation QiQ′i
(
QiQ′i

)−1
= IT(i) ensures the match between observed and

artificial data, i.e., QiX i
(l+1) = X i

obs. For incomplete data, the overall approach consists of
an inner and outer EM as summarized in Algorithm A2 of Appendix A.

First, Algorithm A2 initializes complete panel data (if necessary, it fills gaps). A
univariate time series X i

(0) does not yet need to satisfy (11), since Equation (15) ensures this
until Algorithm A2 converges. As before, relative termination criteria reduce the dimension
impact of the parameter space and data sample on the algorithm’s runtime. Furthermore,
relative changes in EΘ̂(l)

[L|X] avoid that changes in (K∗, p∗) or ambiguous parameters
affect the convergence of the algorithm. After the initialization phase, Algorithm A2
alternately updates the complete panel data and reestimates the model parameters Θ̂(l)
until a (local) maximum of the expected log-likelihood function EΘ̂(l)

[L|X] is reached.
The two alternating EMs offer the following advantages: First, Static Factor Mod-

els (SFMs) and ADFMs with incomplete panel data can be estimated. Second, for low-
frequency observations, artificial counterparts of higher frequency are provided (nowcast-
ing). Third, besides the means, factor variances are estimated indicating some kind of
estimation uncertainty. Fourth, there is no need for the Kalman Filter.

3. Model Selection for Unknown Dimensions and Autoregressive Orders

The ADFM (1)–(2) for complete panel data and its estimation require knowledge
of the factor dimension K and autoregressive order p. In empirical analyses, both must
be determined. For this, we propose a two-step model selection method. For static
factor models, Bai and Ng [27] thoroughly investigated the selection of the optimal factor
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dimension K∗ and introduced several common model selection procedures which were
reused in, e.g., [23,25,37–40]. In this paper, we deploy the following modification of Bai
and Ng [27]:

K∗ = arg min
1≤K≤K̄

{V(K) + Kg(N, T)} (16)

= arg min
1≤K≤K̄

{
V(K) + Kσ̂2

(
N + T

NT

)
ln[min(N, T)]

}
, (17)

where 1 ≤ K̄ ≤ N denotes an upper limit for factor dimension K and

V(K) =
1

NT

T

∑
t=1

(
Xt − ŴµFt |Xt

− µ̂X

)′(
Xt − ŴµFt |Xt

− µ̂X

)
(18)

covers the estimated residual variance of Model (1) ignoring any autoregressive factor
dynamics. Bai and Ng [27] (p. 199, Theorem 2) showed that panel criteria in the form of (16)
consistently estimate the true factor dimension, if their assumptions A-D are satisfied, PCA
is used for factor estimation and the penalty function obeys for N, T → ∞:

g(N, T)→ 0 and min(N, T)g(N, T)→ ∞.

The penalty function g(N, T) in (17) coincides with the 2nd panel criterion in Bai and
Ng [27] (p. 201) except for σ̂2. For empirical studies, Bai and Ng [27] suggest σ̂2 = V(K̄)
as scaling of the penalty in (17) with V(K̄) as minimum of (18) for fixed K̄ regarding
Ŵ, µ̂Ft |Xt

}1≤t≤T and µ̂X . Therefore, their penalty depends on the variance that remains,
although the upper limit of the factor dimension was reached . If we use K̄ = N, the setting
Ŵ = IN , µFt |Xt

= Xt − µ̂X for all 1 ≤ t ≤ T is a trivial solution for SFM (1). Furthermore, it
yields σ̂2 = 0 and thus, overrides the penalty. For any K̄ < N, the choice of K̄ affects σ̂2

and hence, the penalty in (17). To avoid any undesirable degree of freedom arising from
the choice of K̄, we therefore propose

σ̂2 = m(VPPCA(1)−VPPCA(N − 1)) (19)

for a non-negative multiplier m and VPPCA(·) denoting the empirical residual variance, if
Model (1) is estimated using the PPCA of Tipping and Bishop [29].

Irrespective of whether PCA or PPCA is deployed, the error variance decreases,
when the factor dimension increases. Thus, VPPCA(1)− VPPCA(N − 1) ≥ 0 holds. The
non-negativity of m causes that σ̂2 in (19) and the penalty in (17) are non-negative. This
guarantees that large K is punished. Unlike σ̂2 = V(K̄), the strictness of σ̂2 depends on m
instead of K̄. Hence, the strictness of the penalty and upper limit of the factor dimension
are separated from each other. The panel criteria of Bai and Ng [27] are asymptotically
equivalent as N, T → ∞, but may differently behave for finite samples [25,27]. For a better
understanding of how m influences the penalty function, we exemplarily consider various
multipliers m ∈ [1/66, 1] in Section 4. Finally, we answer why (VPPCA(1)−VPPCA(N − 1))
instead of VPPCA(1) or any alternative is used. For m = 1/(N − 2), the term σ̂2 in (19)
coincides with the negative slope of the straight line through the points (1, VPPCA(1)) and
(N − 1, VPPCA(N − 1)), i.e., we linearize the decay in VPPCA(K) over the interval [1, N − 1]
and then, take its absolute value for penalty adjustment. In other words, for m = 1/(N − 2)
the term σ̂2 in (19) describes the absolute value of the decay in VPPCA(K) per unit in
dimension. In the empirical study of Section 6, we also use m = 1/31 = 1/(N − 2), since
this provides a decent dimension reduction, but it is not such restrictive that changes in
the economy are ignored. In total, neither our proposal of σ̂2 nor the original version in
Bai and Ng [27] affects the asymptotic behavior of the function g(N, T) such that K∗ in (17)
consistently estimates the true dimension. Please note that we neglect the factor dynamics
and treat DFMs as SFMs in this step.
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In a next step, our model selection approach derives the optimal autoregressive order
p∗(K) ≥ 0 for any fixed 1 ≤ K ≤ K̄ using AIC. As factors are unobservable, we replace the
log-likelihood LF of Model (2) by the conditional expectation E[LF|X] in the usual AIC.
Furthermore, Equation (2) can be rewritten as a stationary VAR(1) process (F̃t)t, whose
covariance matrix ΣF̃ has a similar representation to (3). When we run the EM for a fixed K
and a prespecified range of the autoregressive orders, the optimal p∗(K) satisfies

p∗(K) = arg min
0≤p≤ p̄

{
tr
(

Σ−1
F̃

((
Ip ⊗M−1

)
+
(

Ip ⊗ D
)(

X̃p −
(
1p ⊗ µ

))
×
(
X̃p −

(
1p ⊗ µ

))′(Ip ⊗ D′
)))

+ 2pK2 + K(K + 1)

+ TK ln(2π) + (T − p) ln(|Σδ|) + ln(|ΣF̃ |) + (T − p)K},

(20)

with 0 ≤ p̄ < T as upper lag length to be tested [41]. For p > 0, we use the maximum
likelihood estimates of matrices M, D and ΣF̃ . Like ηF, the criterion ηF̃ truncates the
infinite series for ΣF̃ . Alternatively, ΣF̃ can explicitly be computed, see Lemma A.2.7 in [41].
Further, the vector X̃p = (X ′p, . . . , X ′1)

′ ∈ RpN comprises the first p observations of X.
For p = 0, Model (1)–(2) is regarded as SFM. In particular, the objective function of the
selection criterion (20) for SFMs is K(K + 1) + TK ln(2π) + T ln(|Σδ|) + TK. Thereafter,
we choose an optimal factor dimension K∗ by using (17) and ignoring the autoregressive
structure in (2). An algorithm for the overall model selection procedure is provided in
Algorithm A1.

4. Monte Carlo Simulation

In this section, we analyze the two-step estimation method for ADFM (1)–(2) for
complete and incomplete panel data within a Monte Carlo (MC) simulation study. Among
other things, we address the following questions: (i) does the data sample size (i.e., length
and number of time series) affect the estimation quality? (ii) to what extent does data
incompleteness deteriorate the estimation quality? (iii) do the underlying panel data
types (i.e., stock, flow and change in flow variables) matter? (iv) does our model selection
procedure detect the true factor dimension and lag order, even for K > 1 and p > 1? (v)
how does our two-step approach perform compared to the estimation method of Bańbura
and Modugno [20]? (vi) are factor means and covariance matrices more accurate for the
closed-form factor distributions (4) instead of the standard KF and KS?

Before we answer the previous questions, we explain how our random samples are
generated. For a, b ∈ R with a < b, let U (a, b) stand for the uniform distribution on the
interval [a, b] and let diag(z) ∈ RK×K be a diagonal matrix with elements z = [z1, . . . , zK] ∈
RK. For fixed data and factor dimensions (T, N, K, p), let Vi ∈ RK×K, 1 ≤ i ≤ p, Vδ ∈ RK×K

and Vε ∈ RN×N represent arbitrary orthonormal matrices. Then, we receive the parameters
of the ADFM (1)–(2) in the following manner:

Ai = Vi diag
(

zi,1

p
, . . . ,

zi,K

p

)(
V′i
)
, zi,j ∼ U (0.25, 0.75)iid, 1 ≤ i ≤ p, 1 ≤ j ≤ K,

Σδ = Vδ diag(zδ,1, . . . , zδ,K)
(
V′δ
)
, zδ,j ∼ U (0.25, 0.50)iid, 1 ≤ j ≤ K,

W =
(
wn,j

)
n,j, wn,j ∼ N (0, 1)iid, 1 ≤ n ≤ N, 1 ≤ j ≤ K,

µ = (µn)n, µn ∼ N (0, 1)iid, 1 ≤ n ≤ N,

Σε = Vε diag(zε,1, . . . , zε,N)
(
V′ε
)
, zε,n ∼ U (0.05, 0.25)iid, 1 ≤ n ≤ N.

The above ADFMs have cross-sectionally, but not serially correlated shocks. To
prevent us from implicitly constructing SFMs with eigenvalues of Ai close to zero, the
eigenvalues of Ai, 1 ≤ i ≤ p, lie within the range [0.25/p, 0.75/p]. The division by p
balances the sum of all eigenvalues regarding the autoregressive order p. For simplicity
reasons, we consider matrices Ai with positive eigenvalues. However, this assumption, the
restriction to eigenvalues in the range [0.25/p, 0.75/p] and the division by p can be skipped.
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If matrices Ai, 1 ≤ i ≤ p, meet the covariance-stationarity conditions, we simulate factor
samples F ∈ RT×K and panel data X ∈ RT×N using Equations (1) and (2). Otherwise, all
matrices Ai are drawn again until the covariance-stationarity conditions are met. Similarly,
we only choose matrices W of full column rank K.

So far, we have complete panel data. Let ρm ∈ [0, 1] be the ratio of gaps arising from
missing observations and low-frequency time series, respectively. To achieve incomplete
data we remove dρmTe elements from each time series. For stock variables, we randomly
delete dρmTe values to end up with irregularly scattered gaps. At this stage, flow and
change in flow variables serve as low-frequency information, which is supposed to have an
ordered pattern of gaps. Therefore, an observation is made at time t = d1 + s/(1− ρm)e
with 0 ≤ s ≤ b(T − 1)(1− ρm)c and s ∈ N0. Please note that an observed (change in) flow
variable is a linear combination of high-frequency data.

In Tables A1–A9, the same ρm applies to all univariate columns in X such that gaps
of (change in) flow variables occur at the same time. If the panel data contains a single
point in time without any observation, neither our closed-form solution nor the standard
KF provide factor estimates. To avoid such scenarios, i.e., empty rows of the observed
panel data Xobs, each panel data in the second (third) column of Tables A1–A4 comprises
dN/2e times series modeled as stock variable and bN/2c time series treated as (change
in) flow variable. To ensure at least one observation per row of Xobs, we check each panel
data sample, before we proceed. If there is a zero row in Xobs, we reapply our missing data
routine based on the complete data X.

Note that estimated factors are unique except for an invertible, linear transformation.
For a proper quality assessment across diverse estimation methods, we must take this
ambiguity into account as in [4,8,16,20,42]. Let F and F̂ be the original and estimated
factors, respectively. If the estimation methodology works, it holds: F̂R = F. The solution
R = (F̂′ F̂)−1 F̂′F justifies the trace R2 of Stock and Watson [8] defined by

trace R2 =
tr
(

F′ F̂
(

F̂′ F̂
)−1 F̂′F

)
tr(F′F)

.

The trace R2 lies in [0, 1] with lower (upper) limits indicating a poorly (perfectly)
estimated factor span.

Eventually, we choose for the termination criteria: η = ξ = 10−2 and ηF = 10−6, i.e.,
we have the same η, ξ and ηF as in the empirical application of Section 6. Furthermore, we
use constant interpolation for incomplete panel data, when we initialize the set X(0). In
Tables A1–A3, we consider for known factor dimension K and lag order p, if the standard
KF and KS should be used for estimating factor means EΘ[Ft|X] and covariance matrices
CovΘ[Ft, Fs|X], 1 ≤ t, s ≤ T, instead of the closed-form distributions (4). To be more precise,
Table A1 shows trace R2 means (each based on 500 MC simulations) when we combine
the EM updates (6)–(10) with the standard KF and KS. For the same MC paths, Table A2
provides trace R2 means, when we use Equation (4) instead.

A comparison of Tables A1 and A2 shows: First, both estimation methods offer large
trace R2 values regardless the data type, i.e., the mix of stock, flow and change in flow
variables does not affect the trace R2. Second, the larger the percentage of gaps the worse
the trace R2. Third, the trace R2 increases for large samples (i.e., more or longer time
series). Fourth, for larger K and p the trace R2, ceteris paribus, deteriorates. Fifth, our
estimation method based on closed-form factor moments appears more robust than the
Kalman approach. For instance, in Table A1 for K = 1, p = 1, N = 75, T = 100 and 40% of
missing data the trace R2 is NaN, which is an abbreviation for Not a Number, i.e., there was
at least one MC path the Kalman approach could not estimate. By contrast, the respective
trace R2 in Table A2 is 0.94 and so, all 500 MC paths were estimated without any problems.
The means in Tables A1 and A2 are pretty close, this is why Table A3 divides the means in
Table A2 by their counterparts in Table A1. Hence, ratios larger than one indicate that our
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estimation method outperforms the Kalman approach, while ratios less than one do the
opposite. Since all ratios in Table A3 are at least one, our method is superior.

For the sake of simplicity, we proceed with stock variables only, i.e., we treat all
incomplete time series as stock variables in Table A4, which compares the single-step
estimation method from Bańbura and Modugno [20] (abbreviated by BM) with our closed-
form factor moments, two-step approach (abbreviated by CFM). At first glance, one step
less speaks in favor of the single-step ansatz. However, one step less comes with a price, i.e.,
its state-space representation. Whenever a switch between data types occurs, the state-space
representation of the overall model in [20] calls for adjustments. Furthermore, the inclusion
of mixed-frequency information requires a regular scheme as for months and quarters.
E.g., for weeks and months with an irregular pattern, the state-space representation in [20]
becomes tremendous or calls for a recursive implementation of the temporal aggregation
(11) as in Bańbura and Rünstler [18]. By contrast, our two-step approach permits any data
type and calendar structure through the linear relation (11) and leaves the overall model
untouched. This is easy and reduces the risk of mistakes. Moreover, the estimation of
factor moments in closed form is computationally cheaper than a KF-KS-based estimation.
Because of this, our approach can be more than 5-times faster than the corresponding
procedure in [20]. According to Table A4, our approach is 5.5 times faster than its BM
counterpart for complete panel data with N = 25, T = 100, K = 7 and p = 3. For missing
panel data in the range of [10%, 40%], ceteris paribus, our closed-form approach is 3.3–3.7
times faster than the KF-KS approach in [20].

Bańbura and Modugno [20] first derived their estimation method for EDFMs. There-
after, they followed the argumentation in Doz et al. [16] to admit weakly cross-sectionally
correlated shocks εt. Since Doz et al. [16] provided asymptotic results, we would like to
assess how the method of [20] performs for finite samples with cross-sectionally correlated
shocks. With a view to Table A4 we conclude: First, the general facts remain valid, i.e., for
more missing data the trace R2 means worsen. Similarly, for larger K and p, the trace R2

means, ceteris paribus, deteriorate. By contrast, for larger panel data the trace R2 means
improve. Second, for simple factor dynamics, i.e., small K and p, or sufficiently large panel
data, cross-sectional correlation of the idiosyncratic shocks does not matter, if the ratio
of missing data is low. This is in line with the argumentation in [16,20]. However, for
small panel data, e.g., N = 25 and T = 100, with 40% gaps and factor dimensions K ≥ 5
cross-sectional error correlation matters. This is why our two-step estimation method
outperforms the one-step approach of [20] in such scenarios.

Next, we focus on our two-step model selection procedure. Here, we address the impact
of the multiplier m in Equation (19) on the estimated factor dimension. For Tables A5–A9,
we set ηF̃ = 10−6 in Algorithm A1. Since Tables A5 and A6 treat ADFMs with K ≤ 5 and
p ≤ 2, the upper limits K̄ = 7 and p̄ = p̄(K) = 4 are set. In Tables A7–A9, we have trace
R2 means, estimated factor dimension and lag orders of ADFMs with K = 17 and p ≤ 2.
Therefore, we specify K̄ = 22 and p̄ = p̄(K) = 4 in these cases. For efficiency reasons, the
criterion (17) tests factor dimensions in the range [12, 22] instead of the overall range [1, 22].
A comparison of Tables A5 and A6 shows that multipliers m = 1 and m = 1

2 detect the
true factor dimension and hence, support that the true lag order is identified. In doing
so, larger panel data increases the estimation quality, i.e., trace R2 means increase, while
estimated factor dimensions and lag orders converge to the true ones. By contrast, more
gaps deteriorate the results.

For a better understanding of the meaning of m, we have a look at ADFMs with
K = 17 in Tables A7–A9 and conclude: First, multiplier m = 1

2 is too strict, since it provides
12 for the estimated factor dimension, which is the lower limit of our tests. Fortunately, the
criterion (20) for estimating the autoregressive order tends to the true one, even though
the estimated factor dimension is too small. Second, for N = 35 the slope argumentation
after Equation (17) yields m = 1

33 , which properly estimates the true factor dimension
for all scenarios in Table A8. As a consequence, the trace R2 means in Table A8 clearly
dominate their analogs in Table A7. Third, we consider m = 1

2·33 = 1
66 in Table A9 for some
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additional sensitivity analyses. If 40% of the panel data is missing, m = 1
66 overshoots the

true factor dimension, which is reflected in slightly smaller trace R2 means than in Table A8.
For lower ratios of missing observations, our two-step estimation method with m = 1

66
also works well, i.e., it delivers large trace R2 means and the estimated factor dimensions
and lag orders tend towards the true values. With Tables A7–A9 in mind, we recommend
for empirical studies to have m rather too small than too big.

5. Modeling Index Returns

The preceding sections show how to condense information in large, incomplete panel
data in the form of factors with known distributions. In the past, factor models were popular
for nowcasting and forecasting of Gross Domestic Products (GDPs) and the construction of
composite indicators [4,12,14,15,17,18,28,43].

Now, we show how estimated factors may support investing and risk management.
Let (rt)t be the returns, e.g., of the S&P 500 price index. The panel data X i

obs, 1 ≤ i ≤ N,
delivers additional information on the financial market, related indicators, the real economy,
etc. Like Bai and Ng [44], we construct interval estimates instead of point estimates for the
future returns. However, our prediction intervals are empirically derived, since we cannot
take their asymptotic ones in the presence of missing observations.

Uncertainties arising from the estimation of factors and model parameters shall affect
the interval size. Additionally, we intend to disclose the drivers of the expected returns
supporting plausibility assessments. As any problem resulting from incomplete data was
solved before, we assume coincident updating frequencies of factors and returns. Let
the return dynamics satisfy an Autoregressive Extended Model (ARX)(q̃, p̃) with 0 ≤ q̃
and 0 ≤ p̃ ≤ p. The VAR(p) in (2) requires the latter constraint, as otherwise for p̃ > p
the ARX parameters are not identifiable. Thus, for sample length T̃, m̃ = max{q̃, p̃} and
(m̃ + 1) ≤ t ≤ T̃, we consider the following regression model

rt = α +
q̃

∑
i=1

(βirt−i) +
p̃

∑
i=1

(
γ′i Ft−i

)
+ εt, εt ∼ N

(
0, σ2

ε

)
iid, (21)

where α, βi ∈ R and γi ∈ RK are constants and Ft ∈ RK denotes the factor at time t
in Model (1)–(2). Then, we collect the regression parameters of (21) in the joint vector
θ = (α, β1, . . . , βq̃, γ′1, . . . , γ′p̃)

′ ∈ R1+q̃+ p̃K.
The OLS estimate θ̂ of θ is asymptotically normal with mean θ and covariance ma-

trix Σθ depending on σ2
ε and the design matrix resulting from (21) [30] (p. 215) and its

parameters can be consistently estimated. Subsequently, we assess the uncertainty caused
by the estimation of θ. For this, the asymptotic distribution with consistently estimated
parameters is essential, since an unknown parameter vector θ is randomly drawn from
it [41] (Algorithm 4.2.1) for the construction of prediction intervals of rT+1. The factors are
unique up to an invertible, linear transformation R ∈ RK as shown by

rt = α +
q̃

∑
i=1

(βirt−i) +
p̃

∑
i=1

((
γ′i R

−1
)
(RFt−i)

)
+ εt, εt ∼ N

(
0, σ2

ε

)
iid.

The unobservable factor Ft must be extracted from X which may be distorted by
estimation errors. To cover the inherent uncertainty, we apply (4) and obtain for (21)

rt = α +
q̃

∑
i=1

(βirt−i) +
p̃

∑
i=1

(
γ′i

(
µFt−i |Xt−i

+ Σ1/2
Ft−i |Xt−i

Zt−i

))
+ εt, (22)

with Σ1/2
Ft−i |Xt−i

as square root matrix of ΣFt−i |Xt−i
and Zt ∼ N (0K, IK)iid for all 1 ≤ t ≤ T̃.

The vector Zt and error εs are independent for all 1 ≤ t, s ≤ T̃.
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When we empirically construct prediction intervals for rT̃+1, uncertainties due to
factor and ARX parameter estimation shall drive the interval width. To implement this
in a Monte Carlo approach, let C be the number of simulated rT̃+1 using Equation (22).
After Algorithm A2 determined the factor distribution (4), for each trajectory 1 ≤ c ≤ C
a random sample Fc

1 , . . . Fc
T̃ enters the OLS estimate of θ̂ such that the distribution of θ̂c

depends on c. Therefore, we capture both estimation risks despite their nonlinear relation.
The orders (q̃∗, p̃∗) are selected using AIC based on the estimated factor means. To take

the factor hiddenness into account, we approximate the factor variance by the distortion
of Fc

1 , . . . Fc
T̃ . Then, let the periods and frequencies of X = [X1, . . . , XT ] and r = [r1, . . . , rT̃ ]

be coincident. Besides T = T̃, this prevents from a run-up period before t = 1 offering
additional information in terms of Ft, t ≤ 0. For chosen (K, p) from Model (1)–(2), the opti-
mal pair (q̃∗, p̃∗) can be computed using an adjusted AIC. Here we refer to Ramsauer [41]
for more details. Finally, a prediction interval for rT+1 can be generated in a Monte-Carlo
framework by drawing θ̄c from the asymptotic distribution of θ̂, the factors Fc

1 , . . . , Fc
T

from (4) and using (21).
The mean and covariance matrix of the OLS estimate θ̂ are functions of the factors

such that the asymptotic distribution of θ̂c in Ramsauer [41] (Algorithm 4.2.1) depends
on Fc. If we neglect the Fc impact on the mean and covariance matrix of θ̂c for a moment,
e.g., in case of a sufficiently long sample and little varying factors, we may decompose the
forecasted returns as follows

rc
T+1 = ᾱc +

q̃

∑
i=1

(
β̄c

i rT+1−i
)

︸ ︷︷ ︸
AR Nature

+
p̃

∑
i=1

(
w′i(XT+1−i − µ)

)
︸ ︷︷ ︸

Factor Impact

+
p̃

∑
i=1

(
(γ̄c

i )
′Zc

T+1−i

)
︸ ︷︷ ︸

Factor Risk

+ σ̂c
ε Zc︸ ︷︷ ︸

AR Risk

, (23)

with w′i =
(
γ̄c

i
)′M−1W ′Σ−1

ε ∈ RN and Zc
T+1−i = Fc

T+1−i − µFT+1−i |XT+1−i
∈ RK for all

1 ≤ i ≤ p̃.
If neither the returns r nor any transformation of r are part of the panel data X, the

distinction between the four pillars in (23) is more precise. In Equation (23), there are four
drivers of rc

T+1. AR Nature covers the autoregressive return behavior, whereas Factor impact
maps the information extracted from the panel data X. Therefore, both affect the direction
of rc

T+1. By contrast, the latter treat estimation uncertainties. Therefore, Factor Risk reveals
the distortion caused by Fc and hence, indicates the variation inherent in the estimated
factors. This is of particular importance for data sets of small size or with many gaps.
Finally, AR Risk incorporates deviations from the expected trend, since it adds the deviation
of the ARX residuals.

The four drivers in (23) support the detection of model inadequacies and the construc-
tion of extensions, since each driver can be treated separately or as part of a group. For
instance, a comparison of the pillars AR Nature and Factor Impact shows, whether a market
has an own behavior such as a trend and seasonalities or is triggered by exogenous events.
Next, we trace back the total contribution of Factor Impact to its single constituents such
that the influence of a single signal may be analyzed. For this purpose, we store the single
constituents of Factor Risk, sort all time series in line with the ascendingly ordered returns
and then, derive prediction intervals for both (i.e., returns and their single drivers). This
procedure prevents us from discrepancies due to data aggregation and ensures consistent
expectations of rc

T+1 and its drivers.
All in all, the presented approach for modeling the 1-step ahead returns of a financial

index offers several advantages for asset and risk management applications: First, it admits
the treatment of incomplete data. E.g., if macroeconomic data, flows, technical findings and
valuation results are included, data and calendar irregularities cannot be neglected. Second,
for each low-frequency signal a high-frequency counterpart is constructed (nowcasting)
to identify, e.g., structural changes in the real economy at an early stage. Third, the ARX
Model (21) links the empirical behavior of an asset class with exogenous information to
provide interval and point estimations. Besides the expected return trend, the derived
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prediction intervals measure estimation uncertainties. In addition, investors take a great
interest in the market drivers, as those indicate its sustainability. For instance, if increased
inflows caused by an extremely loose monetary policy trigger a stock market rally and an
asset manager is aware of this, he cares more about an unexpected change in monetary
policy than poor macroeconomic figures. As soon as the drivers are known, alternative
hedging strategies can be developed. In our example, fixed income derivatives might also
serve for hedging purposes instead of equity derivatives.

The prediction intervals cover the trend and uncertainty of the forecasted returns.
Therefore, we propose some simple and risk-adjusted dynamic trading strategies incor-
porating them. For simplicity, our investment strategies are restricted to a single financial
market and a bank account. For t ≥ 1, let πt ∈ [0, 1] be the ratio of the total wealth invested
with an expected return rt over the period (t− 1, t]. The remaining wealth 1− πt is de-
posited on the bank account for an interest rate r̃t. Let Lt and Ut be lower and upper limits,
respectively, of the ν-prediction interval for the same period. Then, a trading strategy based
on the prediction intervals is given by

πt =


1 if Lt ≥ 0 and Ut ≥ 0,

Ut
Ut−Lt

if Lt < 0 and Ut > 0,

0 if Lt ≤ 0 and Ut ≤ 0.

(24)

If the prediction interval is centered around zero, except for lateral movements, no
clear trend is indicated. Regardless of the interval width, Strategy (24) takes a neutral
allocation (i.e., 50% market exposure and 50% bank account deposit). As soon as the
prediction interval is shifted to the positive (negative) half-plane, the market exposure
increases up to 100% (decreases down to 0%). Depending on the interval width, the same
shift size results in different proportions πt, i.e., for large intervals with a high degree of
uncertainty, a shift to the positive (negative) half-plane causes a smaller increase (decrease)
in πt compared to tight ones indicating low uncertainty. Besides temporary uncertainties,
the prediction level ν affects the interval size and so, the market exposure πt. Therefore, we
have: The higher the level ν, the lower and rarer are deviations from the neutral allocation.

Strategy (24) is not always appropriate for applications in practice due to investor-
specific risk preferences and restrictions. For all t ≥ 1, Strategy (24) can therefore be
accordingly adjusted

π̂t = max
[
min

[
αAπt, πU − πL

]
, 0
]
+ πL, (25)

with πt from Equation (24). πL, πU ∈ R with πL ≤ πU are the lower and upper limits,
respectively, of the market exposure which may not be exceeded. αA ≥ 0 reflects the risk
appetite of the investor.

The max-min-construction in Equation (25) defines a piecewise linear function
bounded below (above) by πL (πU). Within these limits the term αAπt drives the market
exposure π̂t. For αA > 1 changes in πt are scaled-up (i.e., increased amplitude of αAπt
versus πt). Furthermore, the limits are reached more likely. This is why, αA > 1 refers to
a risk-affine investor. By contrast, 0 ≤ αA ≤ 1 reduces the amplitude of αAπt and thus,
of π̂t. Therefore, 0 ≤ αA ≤ 1 covers a risk-averse attitude. As an example, we choose
πL = −1, πU = 1 and αA = 2 which implies: π̂t ∈ [−1, 1] such that short sales are possible.

6. Empirical Application

This section applies the developed framework to the S&P500 price index. Diverse
publication conventions and delays require us to declare, when we run our updates. From
a business perspective the period between the end of trading on Friday and its restart
on Monday is reasonable. On the one hand, there is plenty of time after the day-to-day
business is done. On the other hand, there is enough time left to prepare changes in existing
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asset allocations triggered by the gained information, e.g., the weekly prediction intervals,
until the stock exchange reopens. In this example, we have a weekly horizon such that
the obtained prediction intervals cover the expected S&P500 log-return until next Friday.
For the convenience of the reader, we summarize the vintage data of weekly, monthly or
quarterly frequencies in Appendix E. Here, we mention some characteristics of the raw
information, explain the preprocessing of inputs and state the data types (stock, flow or
change in flow variable) of the transformed time series. Some inputs are related with each
other, therefore, we group them into US Treasuries, US Corporates, US LIBOR, Foreign
Exchange Rates and Gold, Demand, Supply, and Inflation, before we analyze the drivers of
the predicted log-returns. This improves the clarity of our results, in particular, when we
illustrate them.

The overall sample ranges from 15 January 1999 to 5 February 2016 and is updated
weekly. We set a rolling window of 364 weeks, i.e., seven years, such that the period from
15 January 1999 until 30 December 2005 constitutes our in-sample period. Based on this,
we construct the first prediction interval for the S&P500 log-return from 30 December 2005
until 6 January 2006. Then, we shift the rolling window by one week and repeat all steps
(incl. model selection and estimation) to derive the second prediction interval. Finally,
we proceed until the sample end is reached. As the length of the rolling window is kept,
the estimated contributions remain comparable, when time goes by. Furthermore, our
prediction intervals react on structural changes, e.g., crises, more quickly compared to an
increasing in-sample period. As upper limits of the factor dimension, factor lags and return
lags we choose K̄ = 22, p̄ = 4 and q̄ = 5, respectively. For the termination criteria, we have:
ξ = 10−2, η = 10−2, ηF = 10−6, ηF̃ = 10−6 and ηB̃ = 10−3. To avoid any bias caused by
simulation each prediction interval relies on C = 500 trajectories.

For the above settings, we receive the prediction intervals in Figure A1 for weekly
S&P500 log-returns. To be precise, the light gray area reveals the 50%-prediction intervals,
while the black areas specify the 90%-prediction intervals. Here, each new, slightly darker
area corresponds to prediction levels increased by 10%. In addition, the red line shows the
afterwards realized S&P500 log-returns. Please note that the prediction intervals cover the
S&P500 returns quite well, as there is a moderate number of interval outliers. However,
during the financial crisis in 2008/2009 we have a cluster of interval outliers, which calls
for further analyses. Perhaps, the inclusion of regime-switching concepts may remedy this
circumstance.

As supplement to Figure A1, Figure A2 breaks the means of the predicted S&P500
log-returns down into the contributions of our panel data groups. In contrast to Figure A1,
where Factor and AR Risks widened the prediction intervals, both do not matter in
Figure A2. This makes sense, as we average the predicted returns, whose Factor and
AR Risks are assumed to have zero mean. Dark and light blue colored areas detect how
financial data affects our return predictions. In particular, during the financial crisis in
2008/2009 and in the years 2010–2012, when the United States (US) Federal Reserve inter-
vened on capital markets in the form of its quantitative easing programs, financial aspects
mainly drove our return predictions. Since the year 2012, the decomposition is more scat-
tered and changes quite often, i.e., macroeconomic and financial events matter. Figure A3
also supports the hypothesis that exogenous information increasingly affected the S&P500
returns in recent years. Although the factor dimension stayed within the range [15, 16] and
we have for the autoregressive return order q̃ = 4, from mid-2013 until mid-2015 the factor
lags p and p̃ increased. This indicates a more complex ADFM and ARX modeling.

Next, we focus on the financial characteristics of the presented approach. Therefore,
we verify whether the Trading Strategies (24) and (25) may benefit from the proper mapping
of the prediction intervals. Here, we abbreviate Trading Strategy (24) based on the 50%-
prediction intervals by Prediction Level (PL) 50, while PL 60 is its analog using the 60%-
prediction intervals, etc. For simplicity, our cash account does not offer any interest rate, i.e.,
r̃t ≡ 0 for all times t ≥ 0 and transaction costs are neglected. In total, Figure A4 illustrates
how an initial investment of 100 United States Dollar (USD) on December 30, 2005 in the
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trading strategies PL 50 until PL 90 with weekly rebalancing would have evolved. Hence,
it shows a classical backtest.

In addition, we analyze how Leverage & Short Sales (L&S) change the risk-return
profile of Trading Strategy (24). Again, we have for the cash account: r̃t ≡ 0 and there are
zero transaction costs. That is, how the risk-return profile of Trading Strategy (25) deviates
from the one in (24) and what the respective contribution of parameters αA, πU and πL is.
In Figure A4, L&S 2/1/0 stands for Trading Strategy (25) with weekly rebalancing based
on PL 50 with parameters αA = 2, πU = 1 and πL = 0. The trading strategy L&S 2/1/−1
is also based on PL 50, but has the parameters αA = 2, πU = 1 and πL = −1.

In Figure A4, the strategy S&P500 reveals how a pure investment in the S&P500 would
have performed. Moreover, Figure A4 shows the price evolution of two Buy&Hold (B&H)
and two Constant Proportion Portfolio Insurance (CPPI) strategies with weekly rebalancing.
Hence, the Buy&Hold strategies serve as Constant Mix strategies. Here, B&H 50 denotes
a Buy&Hold strategy with rebalanced S&P500 exposure on average of PL 50. Similarly,
B&H 90 invests the averaged S&P500 exposure of PL 90. In Figure A4, CPPI 2/80 stands
for a CPPI strategy with multiplier 2 and floor 80%. The floor of a CPPI strategy denotes
the minimum repayment at maturity. For any point in time before maturity, the cushion
represents the difference between the current portfolio value and the discounted floor. Here,
discounting does not matter, since r̃t ≡ 0 ∀t ≥ 0 holds. The multiplier of a CPPI strategy
constitutes to what extent the positive cushion is leveraged. As long as the cushion is
positive, the cushion times the multiplier, which is called exposure, is invested in the risky
assets. Because of r̃t ≡ 0 ∀t ≥ 0, there is no penalty, if the exposure exceeds the current
portfolio value. To avoid borrowing money, the portfolio value at a given rebalancing date
caps the risky exposure in this section. As soon as the cushion is zero or becomes negative,
the total wealth is deposited on the bank account with r̃t ≡ 0 for the remaining time to
maturity. Further information about CPPI strategies is stated in, e.g., Black and Perold [45].
Similarly, CPPI 3/60 stands for a CPPI strategy with multiplier 3 and floor 60%.

Besides Figure A4, Table A10 lists some common performance and risk measures for
all trading strategies. Then, we conclude: First, for higher prediction levels the Log-Return
(Total, %) of its PL strategy decreases. E.g., compare PL 50 and PL 90. By definition, a high
prediction level widens the intervals such that shifts in their location have less impact on
the stock exposure πt in (24). As shown in Figure A5, all PL strategies are centered around
a level of 50%, but PL 50 adjusts its stock exposure more often and to a bigger extent than
PL 90. Second, all PL strategies have periods of time with a lasting stock exposure ≥ 50%
or ≤ 50%. Over our out-of-sample period, PL 50 invests on average 51% of its wealth in
the S&P 500, but it outperformed B&H 50 by far. Hence, changing our asset allocation by
πt in (24) really paid off.

Except for the L&S strategies, PL 50 has the highest Log-Return (Total, %) and there-
fore, appears very attractive. However, the upside usually comes with a price. This is
why we next focus on the volatilities of our trading strategies. In this regard, CPPI 2/80
offers with 0.93% the lowest weekly standard deviation. With its allocation in Figure A5 in
mind, this makes sense, as CPPI 2/80 was much less exposed to the S&P500 than all others.
Please note that Figure A5 also shows how CPPI 3/60 was hit by the financial crisis in
2007/2008, when its S&P500 exposure dramatically dropped from 100% on 3 October 2008
to 21% on 13 March 2009. For PL strategies, we get for the volatility an opposite picture
compared to the Log-Return (Total, %), i.e., the higher the prediction level, the lower the
weekly standard deviation is. This sounds reasonable, as PL 90 makes smaller bets than PL
50. For L&S strategies, Table A10 confirms that leveraging works as usual. Both, i.e., return
and volatility, increased at the same time.

The Sharpe Ratio links the return and volatility of a trading strategy. Except for L&S
1.5/1/−0.5, the PL strategies offer the largest Sharpe Ratios. Therefore, PL 80 has the
biggest weekly Sharpe Ratio of 7.39%. As supplement, Table A11 reveals that the Sharpe
Ratios of PL 80 and PL 90 are significantly different to those of S&P500, CPPI 2/80 and
CPPI 3/60. The differences within or between the PL and L&S strategies are not significant.
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The Omega Measure compares the upside and downside of a strategy. Based on Table A10,
L&S 1.5/1/−0.5 and L&S 2/1/−1 have the largest Omega Measures given by 134.92% and
132.39%. The Omega Measures of the PL strategies lie in the range [121.34%, 124.94%],
which are larger than those of the benchmark strategies in the range [103.86%, 111.16%].
The differences between all Omega Measures are not significant, see Table 4.16 in [41].

Similar to the volatility, CPPI 2/80 has the smallest 95% Value at Risk and 95% Condi-
tional Value at Risk. The PL strategies have more or less the same weekly 95% VaR, since
all lie in the range [−1.99%,−1.90%]. However, their 95% CVaR ranges from −3.19% to
−2.78% and so, reflects that PL 50 makes bigger bets than PL 90. For L&S strategies, there
is no pattern how leveraging and short selling affects the 95% VaR and CVaR. Finally, we
consider the Maximum Drawdown based on the complete out-of-sample period. Please
note that Figures A4 and A5 and Table A10 confirm that CPPI 3/60 behaves like the S&P500,
until it was knocked out by the financial crises in 2007/2008. This is why its Maximum
Drawdown of −48.43% is close to the −56.24% of the S&P500. By contrast, the Maximum
Drawdowns of the PL strategies lie in the range of [−19.91%, −17.37%], which is less
than half. They are even smaller than the Maximum Drawdown of CPPI 2/80, which is
−23.18%. For L&S strategies, short sales admit us to gain from a drop on the stock market,
while leveraging boosts profits and losses. In total, this yields a scattered picture for their
Maximum Drawdowns.

With the financial figures in mind, we recommend PL 50 for several reasons: First,
it provides a decent return, which is steadily gained over the total period. Second, it has
an acceptable volatility and a moderate downside. Please note that all PL strategies, L&S
1.5/1/−0.5 and L&S 2/1/−1 are positively skewed, which indicates a capped downside.
The normalized histograms of the log-returns for all trading strategies can be found in
Figure 4.6 from Ramsauer [41].

If we repeat the previous analysis for complete panel data, we can verify whether the
inclusion of mixed-frequency information really pays off. Instead of all 33 time series in
Appendix E, we restrict ourselves to US Treasuries, Corporate Bonds, London Interbank
Offered Rate (LIBOR) and Foreign Exchange (FX)&Gold. Therefore, we have 22 time series
without any missing observations. Again, we keep our rolling window of 364 weeks and
gradually shift it over time, until we reach the sample end. For the upper limit of the factor
dimension, we set K̄ = 21. At this stage, there are no obvious differences between the
prediction intervals for incomplete and complete panel data [41] (Figure 4.7). If we break
the means of the predicted log-returns in Figure A6 down into the contributions of the
respective groups as shown in Figure A6, we have a different pattern than in Figure A2.
E.g., Figure A2 detects supply as main driver at the turn of the year 2009/2010, whereas
Figure A6 suggests US Treasuries and Corporate Bonds. However, in the years 2010–2012
US Treasuries gained in importance in Figure A6, which also indicates the interventions of
the US Federal Reserve through its quantitative easing programs.

Next, we analyze the impact of the prediction intervals on Trading Strategies (24) and
(25). Besides PL and L&S strategies of Figure A4 based on 33 variables, Figure A7 shows
their analogs arising from 22 complete time series. Please note that the expression PL 50
(no) in Figure A7 is an abbreviation for PL 50 using panel data with no gaps. The same
holds for L&S 2/1/0, etc. Besides the prices in Figure A7, Table A12 lists their performance
and risk measures. The S&P exposure of the single strategies based on the 22 complete
time series can be found in Figure 4.11 from Ramsauer [41]. Thus, we conclude: First, PL 50
(no) has a total log-return of 30.22%, which exceeds all other PL (no) strategies, but is much
less than 50.93% of PL 50. Similarly, the L&S (no) strategies have a much lower log-return
than their L&S counterparts. Second, PL 50 (no) changes its S&P500 exposure more often
and to a larger extent than PL 90 (no). Third, the standard deviations of PL (no) strategies
exceed their PL analogs such that their Sharpe Ratios are about half of the PL Sharpe Ratios.
As shown in Table A13, the Sharpe Ratios of PL and PL (no) strategies are significantly
different. Fourth, PL (no) strategies are dominated by their PL versions in terms of Omega
Measure. Table 4.19 in [41] shows that such differences are not significant. Fifth, the 95%
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VaR and CVaR of the PL (no) strategies are slightly worse than of the PL alternatives, but
their Maximum Drawdowns almost doubled in the absence of macroeconomic signals.
Except for PL 50 (no), the returns of all PL (no) strategies, are negatively skewed [41]
(Figure 4.12). This indicates that large profits were removed and big losses were added,
respectively. All in all, we therefore suggest the inclusion of macroeconomic variables.

Eventually, we consider the Root-Mean-Square Error (RMSE) for weekly point fore-
casts of the S&P500 log-returns. We replace sampled factors and ARX coefficients by
their estimates to predict the log-return of next week. In this context, an ARX based on
incomplete panel data has a RMSE of 0.0272, while an ARX restricted to 22 variables
provides a RMSE of 0.0292. Please note that a constant forecast r̂t ≡ 0 yields a RMSE of
0.0259, the RMSEs of Autoregressive Models (ARs) with orders from 1–12 lie in the range
[0.0260, 0.0266] and the RMSEs of Random Walks with and without drift are 0.0380 and
0.0379, respectively. Therefore, our model is mediocre in terms of RMSE. Since the RMSE
controls the size, but not the direction of the deviations, Figure A8 illustrates the deviations
r̂t − rt of our ARX based on all panel data and the AR(3), which was best regarding RMSE.
As Figure A8 shows, the orange histogram has 4 data points with r̂t− rt ≤ −0.10. Our ARX
predictions for 10/17/2008, 10/31/2008, 11/28/2008 and 03/13/2009 were too conserva-
tive, which deteriorated its RMSE. If we exclude these four dates, our mixed-frequency
ARX has a RMSE of 0.0251, which beats all other models.

For comparing the predictive ability of competing forecasts, we perform a conditional
Giacomini-White test. Our results rely on the MATLAB implementation available at
http://www.execandshare.org/CompanionSite/site.do?siteId=116 (accessed on 13 Decem-
ber 2020) of the test introduced in Giacomini and White [46]. Furthermore, we consider the
squared error loss function. We conclude: First, the inclusion of macroeconomic data in our
approach is beneficial at a 10%-significance level. A comparison of our method based on
incomplete panel data vs. complete financial data only provides a p-value of 0.06 and a test
statistic of 5.61. In this context, forecasting with macroeconomic variables outperforms the
forecasting relying on pure financial data by more than 50% of the time. Second, there are
not any significant differences between our approach and an AR(3) or a constant forecast
r̂t ≡ 0. By comparing our approach with an AR(3), we observe a p-value of 0.364. Similarly,
we have a p-value of 0.355 compared to the constant forecast r̂t ≡ 0. Unfortunately, this
also holds true, if we remove the four previously mentioned outliers from our prediction
sample.

Finally, we verify the quality of our interval forecasts with respect to the Ratio of Inter-
val Outliers (RIO) and Mean Interval Score (MIS) for prediction intervals in Table A14. For
the respective definitions, we refer to Gneiting and Raftery [47], Brechmann and Czado [48]
and Ramsauer [41]. In this context, the inclusion of mixed-frequency information provides
some statistical improvements. Except for the 50%-prediction intervals, we have more
outliers in Table A14, when the ARX relies on 22 complete time series than all 33 vari-
ables. Thus, the macroeconomic indicators make our model more cautious. Except for the
90%-prediction intervals based on complete panel data, all Ratios of Interval Outliers are
below the aimed threshold. In contrast to RIO counting the number of interval outliers,
MIS takes into account by how much the prediction intervals are exceeded. In this regard,
the ARX using incomplete panel data dominates the ARX restricted to the 22 time series.
All in all, this underpins again the advantages arising from the inclusion of macroeconomic
information.

7. Conclusions and Final Remarks

We estimate ADFMs with homoscedastic, cross-sectionally correlated errors for in-
complete panel data. Our approach alternately applies two EMs and selects the factor
dimension and autoregressive order. The latter feature is important for empirical applica-
tions. Furthermore, estimated latent factors are used to model future dynamics of weekly
S&P500 index returns in an autoregressive setting. In doing so, we are able to first quantify
the contributions of the panel data to our point forecasts. Second, we construct prediction

http://www.execandshare.org/CompanionSite/site.do?siteId=116
http://www.execandshare.org/CompanionSite/site.do?siteId=116
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intervals for the weekly returns and define two dynamic trading strategies based on them.
Our empirical application shows great potential of the proposed methodology for financial
markets without short selling or leverage.

Our paper makes three contributions to the existing literature for incomplete panel
data. First, it handles cross-sectionally correlated shocks usually ignored. Our MC simula-
tion study shows that our approach outperforms the benchmark estimation of ADFMs in
Bańbura and Modugno [20]. Second, our MLE does not link an EM and the KF/KS. We
use instead the means and covariance matrices of the latent factors in closed form. Our
MC simulation study reveals that MLE based on closed-form factor moments dominates
MLE with the KF/KS. Third, we treat the stochastic factor dynamics in its general form
and address the selection of the factor dimension as well as autoregressive order essential
for practical applications.

The processing of the estimated factors is also novel. Instead of point estimates, we
construct empirical prediction intervals for a return series. Besides exogenous information
and autoregressive return characteristics, the prediction intervals incorporate uncertainties
arising from the estimation of the factors and model parameters. Furthermore, we trace the
means of our prediction intervals back to the original panel data and their high-frequency
counterparts, respectively. This is an important feature for practitioners, as it offers them to
compare our model-based output with their expectations. To gain information from the
future index behavior, we propose two dynamic trading strategies. The first determines
how much of the total wealth should be invested in the financial index depending on the
prediction intervals. The second strategy shows how risk-return characteristics of the first
can be adapted to the needs of an investor.

Our approach does not cover serially correlated errors. Therefore, future research
could include the estimation of ADFMs with homoscedastic, serially and cross-sectionally
correlated idiosyncratic errors for incomplete panel data. In a next step, an extension to
heteroscedasticity or the incorporation of regime-switching concepts would be worthwhile.
Finally, several ADFMs could be coupled by copulas to capture nonlinear inter-market
dependencies similarly to Ivanov et al. [49].
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Appendix A. Algorithms

Algorithm A1: Estimate ADFMs based on complete panel data

Set relative termination criteria η > 0, ηF > 0 and ηF̃ > 0;
Define upper limit of factor dimension K̄ and lag length p̄;

for K = 1 to K̄ do

for p = 0 to p̄ do

Initialize model parameters using PPCA of Tipping and Bishop [29];
Run EM in (6)–(10), store (K, p) and estimated parameters Θ̂;

Determine p∗ (K) using (20), store (
K, p∗ (K)

) and estimated parameters Θ̂;

Determine K∗ using (17) and pairs (
K, p∗ (K)

);

Algorithm A2: Estimate ADFMs based on incomplete panel data
### Initialization

Choose termination criterion ξ > 0;
Set loop index (l) = 0;
for i = 1 to N do

Initialize Xi
(l) (if necessary, fill gaps);

Specify matrix Qi;

Estimate ADFM with X(l) using Algorithm A1 and store parameters Θ̂(l);
Determine expected log-likelihood EΘ̂(l)

[
L|X(l)

] in (5);

for i = 1 to N do

Derive updated panel data Xi
(l+1) from (15) and model parameters Θ̂(l);

Estimate ADFM with X(l+1) using Algorithm A1 and store parameters Θ̂(l+1);
Determine expected log-likelihood EΘ̂(l+1)

[
L|X(l+1)

] in (5);
### Alternating reconstruction and reestimation

while

abs

(
EΘ̂(l+1)

[
L|X(l+1)

]
−EΘ̂(l)

[
L|X(l)

])

abs

(
EΘ̂(l)

[
L|X(l)

]) > ξ do

Set loop index (l) = (l + 1);
for i = 1 to N do

Derive updated panel data Xi
(l+1) from (15) and model parameters Θ̂(l);

Estimate ADFM with X(l+1) using Algorithm A1 and store parameters Θ̂(l+1);
Determine expected log-likelihood EΘ̂(l+1)

[
L|X(l+1)

] in (5);

Appendix B. Simulation Results

Table A1. Means of trace R2 for random ADFMs using standard KF and KS.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.94 0.93 0.93 0.91 0.94 0.93 0.92 0.86 0.94 0.93 0.92 0.87
25 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.94 0.98 0.97 0.97 0.95
50 100 0.95 0.94 0.94 0.91 0.94 0.94 0.92 0.84 0.95 0.94 0.93 0.86
50 500 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.96
75 100 0.95 0.95 0.92 0.83 0.95 0.94 0.89 0.89 0.95 0.94 0.88 NaN
75 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97
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Table A1. Cont.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 3, p = 2

25 100 0.88 0.87 0.85 0.80 0.88 0.87 0.84 0.76 0.88 0.87 0.83 0.75
25 500 0.97 0.96 0.96 0.94 0.97 0.96 0.94 0.87 0.97 0.95 0.94 0.88
50 100 0.90 0.90 0.88 0.85 0.90 0.89 0.86 0.77 0.90 0.89 0.85 0.77
50 500 0.98 0.98 0.97 0.96 0.98 0.97 0.97 0.91 0.98 0.97 0.96 0.92
75 100 0.91 0.90 0.88 0.84 0.90 0.89 0.85 NaN 0.91 0.89 0.85 0.75
75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.93 0.98 0.97 0.97 0.94

K = 5, p = 2

25 100 0.88 0.87 0.84 0.79 0.88 0.87 0.82 0.75 0.88 0.86 0.82 0.75
25 500 0.97 0.96 0.95 0.92 0.97 0.96 0.93 0.85 0.97 0.95 0.93 0.85
50 100 0.89 0.89 0.87 0.84 0.89 0.88 0.85 0.78 0.89 0.88 0.84 0.77
50 500 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.89 0.97 0.96 0.95 0.90
75 100 0.90 0.89 0.87 0.85 0.89 0.88 0.85 0.78 0.90 0.88 0.85 0.78
75 500 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.91 0.98 0.97 0.97 0.92

a: For incomplete time series a stock variable is assumed. b: For incomplete data, dN/2e and bN/2c time series are stock and flow (average
formulation) variables, respectively. c: For incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average
formulation) variables.

Table A2. Means of trace R2 for random ADFMs using closed-form factor moments.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 0.96 0.95 0.95 0.95 0.96 0.95 0.95 0.92 0.96 0.95 0.94 0.92
25 500 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.95 0.98 0.97 0.97 0.95
50 100 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.94 0.96 0.95 0.96 0.94
50 500 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.97 0.99 0.98 0.98 0.97
75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.97 0.96 0.96 0.94
75 500 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98

K = 3, p = 2

25 100 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.90 0.95 0.94 0.94 0.90
25 500 0.98 0.97 0.97 0.96 0.98 0.97 0.96 0.93 0.98 0.96 0.96 0.94
50 100 0.96 0.95 0.95 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93
50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.96
75 100 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.96 0.95 0.96 0.94
75 500 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.96 0.99 0.98 0.98 0.97

K = 5, p = 2

25 100 0.95 0.94 0.94 0.93 0.95 0.94 0.93 0.89 0.95 0.93 0.93 0.88
25 500 0.98 0.97 0.97 0.95 0.98 0.97 0.96 0.92 0.98 0.96 0.96 0.92
50 100 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.93 0.96 0.95 0.95 0.93
50 500 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.95 0.99 0.98 0.98 0.96
75 100 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.94
75 500 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.96 0.99 0.98 0.98 0.97

All displayed means are derived from 500 MC simulations for known dimensions K and p. a: For incomplete time series a stock variable is
assumed. b: For incomplete data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively. c: For
incomplete data, dN/2e and bN/2c time series serve as stock or change in flow (average formulation) variables.
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Table A3. Ratios of trace R2 means for random ADFMs using both approaches.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 1, p = 1

25 100 1.02 1.02 1.02 1.04 1.02 1.02 1.03 1.08 1.02 1.02 1.03 1.06
25 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01
50 100 1.02 1.02 1.02 1.05 1.02 1.02 1.03 1.13 1.02 1.02 1.03 1.09
50 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01
75 100 1.01 1.02 1.04 1.15 1.01 1.02 1.08 1.07 1.01 1.02 1.09 NaN
75 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

K = 3, p = 2

25 100 1.08 1.08 1.11 1.16 1.08 1.08 1.12 1.19 1.08 1.08 1.13 1.20
25 500 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.02 1.07
50 100 1.06 1.07 1.08 1.13 1.06 1.07 1.11 1.21 1.06 1.07 1.12 1.21
50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05
75 100 1.06 1.07 1.09 1.14 1.06 1.07 1.12 NaN 1.06 1.07 1.13 1.24
75 500 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.03

K = 5, p = 2

25 100 1.08 1.08 1.12 1.18 1.08 1.08 1.13 1.18 1.08 1.08 1.14 1.18
25 500 1.01 1.01 1.02 1.03 1.01 1.01 1.03 1.08 1.01 1.01 1.03 1.09
50 100 1.08 1.08 1.09 1.13 1.08 1.08 1.12 1.19 1.08 1.08 1.13 1.20
50 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.07 1.01 1.01 1.03 1.07
75 100 1.07 1.08 1.10 1.13 1.07 1.08 1.12 1.20 1.07 1.08 1.13 1.21
75 500 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.05 1.01 1.01 1.02 1.05

The displayed ratios are derived from 500 MC simulations for known dimensions K and p. In doing so, each figure represents the mean of
the trace R2 in Table A2 divided by its counterpart in Table A1. a: For incomplete time series a stock variable is assumed. b: For incomplete
data, dN/2e and bN/2c time series are stock and flow (average formulation) variables, respectively. c: For incomplete data, dN/2e and
bN/2c time series serve as stock or change in flow (average formulation) variables.

Table A4. Comparison of trace R2 means for random ADFMs using the approach of [20] and our two-step estimation
method.

BM a CFM b CFM/BM

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 3, p = 2

25 100 0.93 0.93 0.92 0.91 0.95 0.95 0.94 0.93 1.02 1.02 1.02 1.02
25 500 0.97 0.97 0.97 0.96 0.98 0.97 0.97 0.96 1.00 1.00 1.00 1.00
50 100 0.94 0.94 0.93 0.93 0.96 0.96 0.95 0.95 1.02 1.02 1.02 1.02
50 500 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 1.00 1.00 1.00 1.00
75 100 0.94 0.94 0.94 0.94 0.96 0.96 0.96 0.96 1.02 1.02 1.02 1.02
75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00

K = 5, p = 4

25 100 0.90 0.90 0.88 0.85 0.94 0.94 0.93 0.92 1.05 1.05 1.06 1.08
25 500 0.97 0.96 0.96 0.94 0.97 0.97 0.96 0.95 1.01 1.01 1.01 1.01
50 100 0.91 0.91 0.91 0.90 0.96 0.95 0.95 0.95 1.05 1.05 1.05 1.05
50 500 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01
75 100 0.92 0.92 0.91 0.91 0.96 0.96 0.96 0.95 1.05 1.05 1.05 1.05
75 500 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

K = 7, p = 3

25 100 0.91 0.91 0.88 0.83 0.95 0.94 0.93 0.91 1.04 1.04 1.05 1.09
25 500 0.97 0.96 0.95 0.94 0.97 0.97 0.96 0.94 1.01 1.01 1.01 1.01
50 100 0.92 0.92 0.92 0.91 0.96 0.95 0.95 0.95 1.03 1.03 1.04 1.04
50 500 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.01 1.01 1.01
75 100 0.93 0.93 0.93 0.92 0.96 0.96 0.96 0.95 1.03 1.03 1.03 1.04
75 500 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 1.01 1.01 1.01 1.01

The means in columns BM and CFM are derived from 500 MC simulations for known dimensions K and p. The ratios in column CFM/BM
denote the means in column CFM divided by their counterparts in column BM. In case of incomplete data, all time series are supposed to
be stock variables. a: Abbreviation for the estimation method in [20]. b: Abbreviation for closed-form factor moments.
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Table A5. Means of trace R2 for random ADFMs of low dimensions using our two-step estimation method with m = 1.

Trace R2 Estimated K Estimated p

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 3, p = 2

25 100 0.95 0.94 0.92 0.87 2.99 2.98 2.89 2.72 1.65 1.74 1.69 1.76
25 500 0.98 0.97 0.97 0.94 3.00 3.00 2.99 2.93 2.04 2.04 2.05 2.04
50 100 0.96 0.96 0.96 0.94 3.00 3.00 3.00 2.95 1.72 1.78 1.72 1.70
50 500 0.99 0.98 0.98 0.98 3.00 3.00 3.00 3.00 2.03 2.03 2.06 2.06
75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.68 1.71 1.76 1.78
75 500 0.99 0.99 0.99 0.98 3.00 3.00 3.00 3.00 2.05 2.05 2.05 2.06

K = 5, p = 1

25 100 0.78 0.74 0.68 0.60 3.74 3.50 3.16 2.74 1.01 1.03 1.05 1.04
25 500 0.85 0.83 0.77 0.68 4.17 4.08 3.75 3.32 1.00 1.01 1.02 1.06
50 100 0.92 0.89 0.83 0.74 4.62 4.39 3.95 3.44 1.01 1.01 1.02 1.04
50 500 0.98 0.98 0.96 0.91 4.99 4.97 4.85 4.52 1.00 1.00 1.01 1.01
75 100 0.96 0.94 0.89 0.82 4.93 4.75 4.36 3.87 1.01 1.01 1.01 1.02
75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 4.96 1.01 1.00 1.01 1.00

K = 5, p = 2

25 100 0.77 0.72 0.64 0.56 3.78 3.45 3.05 2.64 1.60 1.62 1.72 1.80
25 500 0.85 0.81 0.74 0.64 4.23 4.06 3.67 3.21 2.00 2.01 2.01 2.01
50 100 0.92 0.88 0.79 0.70 4.70 4.36 3.82 3.29 1.47 1.56 1.66 1.79
50 500 0.98 0.98 0.96 0.89 4.99 4.98 4.83 4.45 2.01 2.00 2.00 2.00
75 100 0.95 0.94 0.87 0.79 4.94 4.83 4.28 3.73 1.44 1.48 1.59 1.71
75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 4.97 2.01 2.00 2.00 2.00

Table A6. Means of trace R2 for random ADFMs of low dimensions using our two-step estimation method with m = 1
2 .

Trace R2 Estimated K Estimated p

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 3, p = 2

25 100 0.95 0.95 0.94 0.93 3.00 3.00 3.00 3.01 1.67 1.67 1.63 1.65
25 500 0.98 0.98 0.97 0.96 3.00 3.00 3.00 3.02 2.05 2.03 2.03 2.04
50 100 0.96 0.95 0.96 0.95 3.00 3.00 3.00 3.01 1.72 1.75 1.77 1.76
50 500 0.99 0.98 0.98 0.98 3.00 3.00 3.00 3.02 2.03 2.04 2.06 2.04
75 100 0.96 0.96 0.96 0.96 3.00 3.00 3.00 3.00 1.70 1.72 1.76 1.73
75 500 0.99 0.99 0.99 0.98 3.00 3.00 3.00 3.02 2.03 2.04 2.04 2.05

K = 5, p = 1

25 100 0.94 0.92 0.90 0.87 4.87 4.75 4.65 4.50 1.01 1.01 1.01 1.01
25 500 0.97 0.97 0.96 0.94 4.96 4.97 4.92 4.85 1.00 1.00 1.00 1.01
50 100 0.96 0.96 0.95 0.95 5.00 5.00 4.98 4.91 1.00 1.01 1.01 1.01
50 500 0.99 0.99 0.98 0.98 5.00 5.00 5.00 5.00 1.00 1.00 1.01 1.00
75 100 0.96 0.96 0.96 0.96 5.00 5.00 5.00 4.99 1.00 1.00 1.01 1.01
75 500 0.99 0.99 0.99 0.99 5.00 5.00 5.00 5.00 1.00 1.00 1.00 1.00

K = 5, p = 2

25 100 0.94 0.92 0.89 0.85 4.88 4.78 4.60 4.47 1.35 1.42 1.43 1.47
25 500 0.97 0.97 0.95 0.93 4.98 4.96 4.92 4.85 2.00 2.00 2.00 2.00
50 100 0.96 0.96 0.95 0.94 5.00 5.00 4.98 4.92 1.45 1.46 1.43 1.47
50 500 0.99 0.98 0.98 0.98 5.00 5.00 5.00 5.00 2.00 2.01 2.00 2.00
75 100 0.96 0.96 0.96 0.96 5.00 5.00 5.00 4.99 1.46 1.42 1.42 1.41
75 500 0.99 0.99 0.99 0.98 5.00 5.00 5.00 5.00 2.00 2.00 2.00 2.01

All means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p. Therefore, columns two and
three show the corresponding means of the estimated factor dimension K and lag length p. In case of incomplete data, all time series are
supposed to be stock variables.
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Table A7. Means of trace R2 for random ADFMs of large dimensions using our two-step estimation method with m = 1
2 .

Trace R2 Estimated K Estimated p

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 17, p = 1

30 300 0.75 0.74 0.72 0.67 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00
30 400 0.74 0.73 0.71 0.67 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00
35 300 0.75 0.75 0.73 0.69 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00
35 400 0.75 0.74 0.72 0.69 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00
40 300 0.76 0.75 0.74 0.71 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00
40 400 0.75 0.75 0.73 0.70 12.00 12.00 12.00 12.00 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.74 0.73 0.70 0.66 12.00 12.00 12.00 12.00 1.80 1.78 1.81 1.77
30 400 0.73 0.72 0.70 0.65 12.00 12.00 12.00 12.00 1.98 1.98 1.99 1.98
35 300 0.74 0.73 0.71 0.68 12.00 12.00 12.00 12.00 1.88 1.83 1.84 1.83
35 400 0.74 0.73 0.71 0.67 12.00 12.00 12.00 12.00 2.00 2.00 2.00 1.99
40 300 0.75 0.74 0.72 0.69 12.00 12.00 12.00 12.00 1.89 1.87 1.88 1.89
40 400 0.74 0.73 0.72 0.69 12.00 12.00 12.00 12.00 2.00 2.00 1.99 1.99

Table A8. Means of trace R2 for random ADFMs of large dimensions using our two-step estimation method with m = 1
33 .

Trace R2 Estimated K Estimated p

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 17, p = 1

30 300 0.96 0.95 0.93 0.82 16.92 16.88 16.92 18.74 1.00 1.00 1.00 1.00
30 400 0.97 0.96 0.93 0.83 16.94 16.91 16.92 18.19 1.00 1.00 1.00 1.00
35 300 0.97 0.97 0.95 0.89 16.99 16.99 16.99 17.80 1.00 1.00 1.00 1.00
35 400 0.98 0.97 0.95 0.89 16.99 16.99 17.00 17.68 1.00 1.00 1.00 1.00
40 300 0.98 0.97 0.96 0.91 17.00 17.00 17.00 18.00 1.00 1.00 1.00 1.00
40 400 0.98 0.98 0.97 0.92 17.00 17.00 17.00 17.62 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.96 0.95 0.91 0.79 16.92 16.92 16.95 19.85 1.40 1.41 1.31 1.03
30 400 0.96 0.95 0.92 0.80 16.95 16.95 16.94 19.19 1.91 1.89 1.87 1.32
35 300 0.97 0.96 0.95 0.87 16.99 17.00 17.00 18.37 1.45 1.46 1.46 1.21
35 400 0.97 0.97 0.95 0.88 17.00 17.00 17.01 17.99 1.95 1.93 1.91 1.64
40 300 0.97 0.97 0.96 0.91 17.00 17.00 17.01 17.95 1.53 1.55 1.51 1.37
40 400 0.98 0.97 0.96 0.91 17.00 17.00 17.00 18.08 1.94 1.95 1.94 1.65

Table A9. Means of trace R2 for random ADFMs of large dimensions using our two-step estimation method with m = 1
66 .

Trace R2 Estimated K Estimated p

Ratio of Missing Data Ratio of Missing Data Ratio of Missing Data

N T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

K = 17, p = 1

30 300 0.97 0.96 0.92 0.80 17.00 17.00 17.66 21.90 1.00 1.00 1.00 1.00
30 400 0.97 0.96 0.92 0.81 17.00 17.00 17.48 21.84 1.00 1.00 1.00 1.00
35 300 0.97 0.97 0.95 0.87 17.00 17.00 17.39 21.95 1.00 1.00 1.00 1.00
35 400 0.98 0.97 0.95 0.88 17.00 17.00 17.20 21.81 1.00 1.00 1.00 1.00
40 300 0.98 0.97 0.96 0.92 17.00 17.00 17.20 21.39 1.00 1.00 1.00 1.00
40 400 0.98 0.98 0.96 0.93 17.00 17.00 17.11 20.18 1.00 1.00 1.00 1.00

K = 17, p = 2

30 300 0.96 0.95 0.90 0.78 17.00 17.00 18.32 21.97 1.41 1.39 1.18 1.00
30 400 0.97 0.96 0.91 0.79 17.00 17.00 17.95 21.97 1.92 1.88 1.59 1.02
35 300 0.97 0.96 0.94 0.85 17.00 17.00 17.98 22.00 1.49 1.48 1.29 0.99
35 400 0.97 0.97 0.95 0.86 17.00 17.00 17.38 21.99 1.92 1.93 1.85 1.06
40 300 0.97 0.97 0.96 0.91 17.00 17.01 17.47 21.95 1.54 1.54 1.44 0.95
40 400 0.98 0.97 0.96 0.92 17.00 17.01 17.21 21.66 1.96 1.96 1.91 1.16

The means in column trace R2 are derived from 500 MC simulations for unknown dimensions K and p. Therefore, columns two and
three show the corresponding means of the estimated factor dimension K and lag length p. In case of incomplete data, all time series are
supposed to be stock variables.



Forecasting 2021, 3 80

Appendix C. Empirical Results—Illustrations

Figure A1. Prediction intervals for S&P500 log-returns of the subsequent week (gray and black areas) and afterwards
realized S&P500 log-returns (red line). The light gray area reveals the 50%-prediction intervals, whereas the black areas
define the 90%-prediction intervals. Here, the prediction level gradually increases by 10% for each new, slightly darker area.

Figure A2. Decomposition of the S&P500 log-returns predicted for the next week.

Figure A3. Dimensions and lag orders of factors or returns of the predicted S&P500 log-returns.
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Figure A4. Evolution of an initial investment of 100 USD in diverse single-market strategies (S&P500, B&H, CPPI, PL and
L&S) over the out-of-sample period from December 30, 2005 until February 5, 2016. All strategies are weekly rebalanced
and have zero transaction costs.

Figure A5. Percentage of total wealth invested in the S&P500 for diverse single-market trading strategies (CPPI, PL and
L&S) over the out-of-sample period from 30 December 2005 until 5 February 2016.
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Figure A6. Decomposition of S&P500 log-returns predicted for next week, when the panel data is restricted to complete
time series.

Figure A7. Evolution of an initial investment of 100 USD in PL and L&S strategies based on complete and incomplete panel
data over the out-of-sample period from December 30, 2005 until February 5, 2016. All strategies are weekly rebalanced and
have zero transaction costs.

Figure A8. Differences between point forecasts and realizations of weekly S&P500 log-returns. The blue histogram shows
such differences, when the return predictions arise from an AR(3). The orange histogram uses forecasts of our ARX based
on mixed-frequency panel data.
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Appendix D. Empirical Results—Tables

Table A10. Comparison of trading strategies for the out-of-sample period from 30 December 2005 until 5 February 2016.

S&P500 B&H CPPI Prediction Level Leverage & Short Sales

50 90 2/80 3/60 50 60 70 80 90 2/1/0 1.5/1/−0.5 2/1/−1

Log-Return (Total, %) 40.95 25.30 24.84 10.87 14.45 50.93 49.55 48.12 48.47 43.57 61.23 55.59 58.08

Log-Return (Wkly., %) a 0.08 0.05 0.05 0.02 0.03 0.10 0.09 0.09 0.09 0.08 0.12 0.11 0.11

Std. Dev. (Wkly., %) b 2.59 1.31 1.29 0.93 2.04 1.37 1.32 1.28 1.25 1.22 1.97 1.32 1.76

Sharpe Ratio (Wkly., %) c : 3.00 3.65 3.67 2.22 1.34 7.05 7.12 7.11 7.39 6.78 5.89 7.97 6.26

Omega Measure (Wkly., %) d 109.08 111.12 111.16 106.24 103.86 124.94 124.37 123.70 124.03 121.34 118.51 134.92 132.39

95% VaR (Wkly., %) e −4.39 −2.22 −2.17 −1.53 −3.37 −1.99 −1.92 −1.90 −1.95 −1.92 −3.41 −1.59 −1.67

95% CVaR (Wkly., %) f −6.50 −3.25 −3.18 −2.45 −5.20 −3.19 −3.07 −2.97 −2.84 −2.78 −4.87 −2.85 −3.46

Max. Drawdown (in %) g −56.24 −33.12 −32.50 −23.18 −48.43 −18.61 −17.63 −17.37 −17.84 −19.91 −28.71 −12.90 −21.87

For each criterion, the bold value highlights the overall best strategy, whereas the bold and underlined value emphasizes the best strategy
without Leverage & Short Sales (L&S). a: The considered period of time consists of 527 weeks. Therefore, it holds: Log−Return (Wkly.) =
Log−Return (Total)/527. b: As standard deviation the square root of the empirical variance, i.e., the squared deviation from the Log−Return
(Wkly.) divided by 526, is used. c: The Sharpe Ratio divides the expected excess return by its standard deviation. As the cash account does
not provide any yield, the return of the benchmark is zero. d: The Omega Measure divides the upside by the downside of the expected excess
returns, i.e., it is the ratio of the averaged positive and negative parts of Log−Return (Wkly.). e: For a fixed time horizon and confidence
level α, the Value at Risk reflects the maximal Log−Return (Wkly.) that is not exceeded with probability 1− α. Mathematically, this
means: 95% VaR (Wkly.) = sup{r|P(Log−Return (Wkly.) < r) ≤ 0.05}. f : For a fixed time horizon and confidence level α, the Conditional
Value at Risk or Expected Shortfall is the expected return given that Log−Return (Wkly.) is below the α VaR, i.e., 95% CVaR (Wkly.) =
E[Log−Return (Wkly.)|Log−Return (Wkly.) < 95% VaR (Wkly.)]. g: The Maximum Drawdown reveals the lowest discrete return, i.e., the
highest loss to be gained during the complete out-of-sample period.

Table A11. Test statistic of Jobson and Korkie [50] for Sharpe Ratios.

S&P500 B&H CPPI Prediction Level Leverage & Short Sales

50 90 2/80 3/60 50 60 70 80 90 2/1/0 1.5/1/−0.5 2/1/−1
S&P500 x 4.6611 4.6634 0.4329 1.1120 1.3056 1.3796 1.4393 1.6756 1.7459 1.0333 0.8908 0.4720
B&H 50 x x 4.7699 0.7931 1.4806 1.1193 1.1882 1.2419 1.4708 1.4989 0.8171 0.7854 0.3820
B&H 90 x x x 0.8012 1.4885 1.1149 1.1837 1.2372 1.4659 1.4930 0.8120 0.7829 0.3799

CPPI 2/80 x x x x 0.8032 1.5177 1.6087 1.6703 1.8772 1.8728 1.3677 1.0658 0.6031
CPPI 3/60 x x x x x 1.6094 1.6792 1.7237 1.8974 1.9583 1.4495 1.1254 0.6900

PL 50 x x x x x x 0.2315 0.1025 0.3835 0.2205 1.0267 0.3433 0.1782

PL 60 x x x x x x x 0.0441 0.4052 0.3256 1.2036 0.2979 0.1878
PL 70 x x x x x x x x 0.6822 0.3846 1.2559 0.2830 0.1784
PL 80 x x x x x x x x x 1.1568 1.5309 0.1754 0.2242
PL 90 x x x x x x x x x x 0.7785 0.3188 0.0976

L&S 2/1/0 x x x x x x x x x x x 0.6283 0.0751
L&S 1.5/1/-0.5 x x x x x x x x x x x x 0.8438

L&S 2/1/-1 x x x x x x x x x x x x x

Values marked in dark gray are significant for level 5% (test statistic: 1.96), while light gray ones are significant for level 10% (test statistic: 1.64).
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Table A12. Comparison of trading strategies for the out-of-sample period from 30 December 2005 until 5 February 2016.

Prediction Level (no) Leverage & Short Sales (no)

50 60 70 80 90 2/1/0 1.5/1/−0.5 2/1/−1

Log-Return (Total, %) 30.22 21.92 22.12 20.35 18.62 47.92 23.11 16.50

Log-Return (Wkly., %) a 0.06 0.04 0.04 0.04 0.04 0.09 0.04 0.0300

Std. Dev. (Wkly., %) b 1.53 1.49 1.44 1.41 1.38 2.10 1.35 1.57

Sharpe Ratio (Wkly., %) c 3.75 2.80 2.91 2.74 2.56 4.33 3.24 2.00

Omega Measure (Wkly., %) d 112.79 109.18 109.34 108.66 107.97 113.33 112.67 108.28

95% VaR (Wkly., %) e −2.18 −2.06 −1.99 −2.03 −2.15 −3.21 −1.73 −2.05

95% CVaR (Wkly., %) f −3.88 −3.85 −3.70 −3.56 −3.47 −5.17 −3.52 −3.97

Max. Drawdown (in %) g −30.75 −33.67 −34.56 −35.13 −35.82 −42.34 −27.24 −34.12

For each criterion, the bold value highlights the overall best strategy, whereas the bold and underlined value emphasizes the best strategy
without Leverage & Short Sales (L&S). a: The considered period of time consists of 527 weeks. Therefore, it holds: Log−Return (Wkly.) =
Log−Return (Total)/527. b: As standard deviation the square root of the empirical variance, i.e., the squared deviation from the Log−Return
(Wkly.) divided by 526, is used. c: The Sharpe Ratio divides the expected excess return by its standard deviation. As the cash account does
not provide any yield, the return of the benchmark is zero. d: The Omega Measure divides the upside by the downside of the expected excess
returns, i.e., it is the ratio of the averaged positive and negative parts of Log−Return (Wkly.). e: For a fixed time horizon and confidence
level α, the Value at Risk reflects the maximal Log−Return (Wkly.) that is not exceeded with probability 1− α. Mathematically, this
means: 95% VaR (Wkly.) = sup{r|P(Log−Return (Wkly.) < r) ≤ 0.05}. f : For a fixed time horizon and confidence level α, the Conditional
Value at Risk or Expected Shortfall is the expected return given that Log−Return (Wkly.) is below the α VaR, i.e., 95% CVaR (Wkly.) =
E[Log−Return (Wkly.)|Log−Return (Wkly.) < 95% VaR (Wkly.)]. g: The Maximum Drawdown reveals the lowest discrete return, i.e, the
highest loss to be gained during the complete out-of-sample period.
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Table A13. Test statistic of Jobson and Korkie [50] for Sharpe Ratios

Prediction Level Leverage & Short Sales Prediction Level (no) Leverage & Short Sales (no)
50 60 70 80 90 2/1/0 1.5/1/−0.5 2/1/−1 50 60 70 80 90 2/1/0 1.5/1/−0.5 2/1/−1

PL 50 x 0.2315 0.1025 0.3835 0.2205 1.0267 0.3433 0.1782 1.5261 1.8144 1.7131 1.7162 1.7233 1.1995 1.2113 1.1017
PL 60 x x 0.0441 0.4052 0.3256 1.2036 0.2979 0.1878 1.6177 1.9247 1.8228 1.8264 1.8322 1.2891 1.2235 1.1001
PL 70 x x x 0.6822 0.3846 1.2559 0.2830 0.1784 1.6705 2.0073 1.9112 1.9209 1.9286 1.3535 1.2035 1.0779
PL 80 x x x x 1.1568 1.5309 0.1754 0.2242 1.9030 2.2925 2.2170 2.2419 2.2509 1.6464 1.2526 1.1023
PL 90 x x x x x 0.7785 0.3188 0.0976 1.6910 2.2467 2.2325 2.3126 2.3633 1.5731 1.0252 0.9401

L&S 2/1/0 x x x x x x 0.6283 0.0751 1.0206 1.3953 1.3294 1.3703 1.4097 0.7876 0.7989 0.8041
L&S 1.5/1/-0.5 x x x x x x x 0.8438 1.0064 1.1360 1.0758 1.0748 1.0796 0.7995 1.3368 1.6229

L&S 2/1/-1 x x x x x x x x 0.4439 0.5771 0.5461 0.5590 0.5753 0.3216 0.6635 1.1484
PL (no) 50 x x x x x x x x x 1.5643 0.9987 0.9268 0.9027 0.4772 0.2334 0.4231
PL (no) 60 x x x x x x x x x x 0.3328 0.0933 0.2763 1.3698 0.1665 0.1762
PL (no) 70 x x x x x x x x x x x 0.5149 0.5916 1.3364 0.1152 0.1903
PL (no) 80 x x x x x x x x x x x x 0.6066 1.4478 0.1578 0.1495
PL (no) 90 x x x x x x x x x x x x x 1.5453 0.2008 0.1087

L&S (no) 2/1/0 x x x x x x x x x x x x x x 0.3485 0.4753
L&S (no) 1.5/1/-0.5 x x x x x x x x x x x x x x x 0.5895

L&S (no) 2/1/-1 x x x x x x x x x x x x x x x x

Values marked in dark gray are significant for level 5% (test statistic: 1.96), while light gray ones are significant for level 10% (test statistic: 1.64).
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Table A14. Comparison of RIO and MIS for weekly S&P500 log-returns based on the out-of-sample
period from 30 December 2005 until 5 February 2016.

Measure Panel Data Prediction Level

50% 60% 70% 80% 90%

RIO incomplete 0.4402 0.3397 0.2524 0.1594 0.0930

RIO complete 0.4269 0.3548 0.2638 0.1765 0.1139

MIS incomplete 0.0635 0.0713 0.0816 0.0963 0.1240

MIS complete 0.0663 0.0749 0.0854 0.1010 0.1303

Bold figures highlight the best value of each category, i.e., for the ν-prediction interval in rows 1–2 the RIO closest
to (1− ν) and in rows 3–4 the lowest MIS are marked in bold.

Appendix E. Underlying Data

Table A15 describes the panel data considered. For clarity reasons, we distinguish
between the following categories: real output and income; employment and hours; con-
sumption; housing starts and sales; real inventories, orders, and unfilled orders; stock
prices; foreign exchange rates; interest rates; money and credit quantity aggregates; price
indices; average hourly earnings; miscellaneous; mixed-frequency time series; observed
variables Yt.

The total sample ranges from 8 January 1999 to 5 February 2016 and is updated weekly.
However, it comprises monthly and quarterly time series marked by “m” or “q” in the
column Freq. as well as shorter time series as indicated in the column Time span. E.g., see
time series MBST with its first observation in December 2002. For our empirical study we
prepare vintage data by taking publication delays into account. For instance, for GDP data
we assume a publication delay of 140 days, i.e., we include the Q3/2015 GDP figures on 19
February 2016 representing the first Friday after the assumed publication delay of 140 days
based on 1 October 2015 which denotes the end of Q3/2015. For our underlying vintage
data incl. the assumed publication delays please see our provided supplementary data.

For assumed data types, we have in column Type: stock (1), sum formulation of
flow variable (2), average version of flow variable (3), sum formulation of change in flow
variable (4) and average version of change in flow variable (5). Please note that for complete
time series the data type does not matter, since all yield an identity matrix for matrix Qi.

Regarding data transformations in the scope of the preprocessing phase the col-
umn Trans. distinguishes between: no transformation (1), first difference (2), second
difference (3), logarithm (4) and first difference of logarithm (5). This classification is in
accordance with Bernanke et al. [51]. The column Series description provides information
on how publication delays are taken into account and highlights seasonality adjustments:
Seasonally Adjusted (SA) and Not Seasonally Adjusted (NSA).

Table A15. Panel data description.

No. Series ID Time Span Freq. Type Trans. Series Description

US Treasuries

1. DGS3MO 1999/01/08–2016/02/05 d 1 2
3-Month Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS3MO (accessed on
13 December 2020)

2. DTB3 1999/01/08–2016/02/05 d 1 2
3-Month Treasury Bill: Secondary Market Rate, percent, NSA, delay of
1 day, https://research.stlouisfed.org/fred2/series/DTB3 (accessed on
13 December 2020)

3. DGS1 1999/01/08–2016/02/05 d 1 2
1-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS1 (accessed on
13 December 2020)

4. DGS2 1999/01/08–2016/02/05 d 1 2
2-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS2 (accessed on
13 December 2020)

5. DGS3 1999/01/08–2016/02/05 d 1 2
3-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS3 (accessed on
13 December 2020)

https://research.stlouisfed.org/fred2/series/DGS3MO
https://research.stlouisfed.org/fred2/series/DTB3
https://research.stlouisfed.org/fred2/series/DGS1
https://research.stlouisfed.org/fred2/series/DGS2
https://research.stlouisfed.org/fred2/series/DGS3
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Table A15. Cont.

No. Series ID Time Span Freq. Type Trans. Series Description

6. DGS5 1999/01/08–2016/02/05 d 1 2
5-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS5 (accessed on
13 December 2020)

7. DGS7 1999/01/08–2016/02/05 d 1 2
7-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS7 (accessed on
13 December 2020)

8. DGS10 1999/01/08–2016/02/05 d 1 2
10-Year Treasury Constant Maturity Rate, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/DGS10 (accessed on
13 December 2020)

US Corporates

9. DAAA 1999/01/08–2016/02/05 d 1 2
Moody’s Seasoned Aaa Corporate Bond Yield, percent, NSA, delay of
1 day, https://research.stlouisfed.org/fred2/series/DAAA (accessed on
13 December 2020)

10. DBAA 1999/01/08–2016/02/05 d 1 2
Moody’s Seasoned Baa Corporate Bond Yield, percent, NSA, delay of
1 day, https://research.stlouisfed.org/fred2/series/DBAA (accessed on
13 December 2020)

11. C0A0CM 1999/01/08–2016/02/05 d 1 2

BofA Merrill Lynch US Corporate Master Option-Adjusted Spread,
percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/BAMLC0A0CM
(accessed on 13 December 2020)

12. C0A4CBBB 1999/01/08–2016/02/05 d 1 2

BofA Merrill Lynch US Corporate BBB Option-Adjusted Spread,
percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/BAMLC0A4CBBB
(accessed on 13 December 2020)

US LIBOR

13. LIBOR1 1999/01/08-2016/02/05 d 1 2

1-Month LIBOR, based on USD, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/USD1MTD156N (history,
accessed on 13 December 2020), http://www.global-rates.com/interest-
rates/libor/american-dollar/usd-libor-interest-rate-1-month.aspx
(latest values, accessed on 15 December 2020)

14. LIBOR2 1999/01/08–2016/02/05 d 1 2

2-Month LIBOR, based on USD, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/USD2MTD156N (history,
accessed on 13 December 2020), http://www.global-rates.com/interest-
rates/libor/american-dollar/usd-libor-interest-rate-2-months.aspx
(latest values, accessed on 15 December 2020)

15. LIBOR3 1999/01/08–2016/02/05 d 1 2

3-Month LIBOR, based on USD, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/USD3MTD156N (history,
accessed on 13 December 2020), http://www.global-rates.com/interest-
rates/libor/american-dollar/usd-libor-interest-rate-3-months.aspx
(latest values, accessed on 15 December 2020)

16. LIBOR6 1999/01/08–2016/02/05 d 1 2

6-Month LIBOR, based on USD, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/USD6MTD156N (history,
accessed on 13 December 2020), http://www.global-rates.com/interest-
rates/libor/american-dollar/usd-libor-interest-rate-6-months.aspx
(latest values, accessed on 15 December 2020)

17. LIBOR12 1999/01/08–2016/02/05 d 1 2

12-Month LIBOR, based on USD, percent, NSA, delay of 1 day,
https://research.stlouisfed.org/fred2/series/USD12MD156N (history,
accessed on 13 December 2020), http://www.global-rates.com/interest-
rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx
(latest values, accessed on 15 December 2020)

Foreign Exchange Rates and GOLD

18. USAL 1999/01/08–2016/02/05 d 1 5

US / Australia Foreign Exchange Rate, NSA, delay of 0 days, http:
//www.rba.gov.au/statistics/historical-data.html#exchange-rates
(history, accessed on 13 December 2020),
http://www.rba.gov.au/statistics/frequency/ exchange-rates.html
(latest values, accessed on 15 December 2020)

19. CAUS 1999/01/08–2016/02/05 d 1 5

Canada / US Foreign Exchange Rate, NSA, delay of 0 days, https://
fred.stlouisfed.org/series/DEXCAUS (history, accessed on 13 December
2020), http://www.bankof
canada.ca/rates/exchange/noon-rates-5-day/ (latest values, accessed
on 15 December 2020)

https://research.stlouisfed.org/fred2/series/DGS5
https://research.stlouisfed.org/fred2/series/DGS7
https://research.stlouisfed.org/fred2/series/DGS10
https://research.stlouisfed.org/fred2/series/DAAA
https://research.stlouisfed.org/fred2/series/DBAA
https://research.stlouisfed.org/fred2/series/BAMLC0A0CM
https://research.stlouisfed.org/fred2/series/BAMLC0A4CBBB
https://research.stlouisfed.org/fred2/series/USD1MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-1-month.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-1-month.aspx
https://research.stlouisfed.org/fred2/series/USD2MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-2-months.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-2-months.aspx
https://research.stlouisfed.org/fred2/series/USD3MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-3-months.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-3-months.aspx
https://research.stlouisfed.org/fred2/series/USD6MTD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-6-months.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-6-months.aspx
https://research.stlouisfed.org/fred2/series/USD12MD156N
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates
http://www.rba.gov.au/statistics/historical-data.html#exchange-rates
http://www.rba.gov.au/statistics/frequency/exchange-rates.html
https://fred.stlouisfed.org/series/DEXCAUS
https://fred.stlouisfed.org/series/DEXCAUS
http://www.bankofcanada.ca/rates/exchange/noon-rates-5-day/
http://www.bankofcanada.ca/rates/exchange/noon-rates-5-day/
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Table A15. Cont.

No. Series ID Time Span Freq. Type Trans. Series Description

20. USUK 1999/01/08–2016/02/05 d 1 5

US / UK Foreign Exchange Rate, NSA, delay of 1 day,
http://www.bankofengland.co.uk/boeapps/iadb/index.asp?Travel=
NIxIRx&levels=1&XNotes=Y&C=C8P&G0Xtop.x=28&G0Xtop.y=10
&XNotes2=Y&Nodes=X3790X3791X3836&SectionRequired=I&
HideNums=-1&ExtraInfo=true#BM (accessed on 13 December 2020)

21. USEU 1999/01/08–2016/02/05 d 1 5
US / Euro Foreign Exchange Rate, NSA, delay of 1 day, https://www.
ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
(accessed on 13 December 2020)

22. GOLD 1999/01/08–2016/02/05 d 1 5
Gold fixing price in London Bullion Market at 10.30 am (London time),
USD per troy ounce, NSA, delay of 0 days,
https://fred/GOLDAMGBD228NLBM (accessed on 13 December 2020)

Demand

23. UNRATENSA 1999/01/08–2016/02/05 m 5 2
Civilian Unemployment Rate, percent, NSA, delay of 35 days after 1st of
respective month, https://fred.stlouisfed.org/series/UNRATENSA
(accessed on 13 December 2020)

24. PSAVERT 1999/01/08–2016/02/05 m 5 2
Personal Saving Rate, percent, SA annual rate, delay of 61 days after 1st
of respective month, https://fred.stlouisfed.org/series/PSAVERT
(accessed on 13 December 2020)

25. PI 1999/01/08–2016/02/05 m 3 5
Personal Income, billions of USD, SA annual rate, delay of 61 days after
1st of respective month, https://fred.stlouisfed.org/series/PI (accessed
on 13 December 2020)

26. PCE 1999/01/08–2016/02/05 m 3 5
Personal Consumption Expenditures, billions of USD, SA annual rate,
delay of 61 days after 1st of respective month,
https://fred.stlouisfed.org/series/PCE (accessed on 13 December 2020)

27. GOVEXP 1999/01/08–2016/02/05 q 3 5

Government total expenditures, billions of USD, SA annual rate, delay
of 140 days after 1st of respective quarter,
https://fred.stlouisfed.org/series/W068RCQ027SBEA (accessed on
13 December 2020)

Supply

28. GDP 1999/01/08–2016/02/05 q 3 5
Gross Domestic Product, billions of USD, SA annual rate, delay of 140
days after 1st of respective quarter,
https://fred.stlouisfed.org/series/GDP (accessed on 13 December 2020)

29. INDPRO 1999/01/08–2016/02/05 m 3 5
Industrial Production Index, Index 2007=100, SA, delay of 45 days after
1st of respective month, https://fred.stlouisfed.org/series/INDPRO
(accessed on 13 December 2020)

30. EXPGSC1 1999/01/08–2016/02/05 q 3 5

Real Exports of Goods & Services, billions of chained 2009 USD, SA
annual rate, delay of 140 days after 1st of respective quarter,
https://fred.stlouisfed.org/series/EXPGSC1 (accessed on 13 December
2020)

31. IMPGSC1 1999/01/08–2016/02/05 q 3 5

Real Imports of Goods & Services, billions of chained 2009 USD, SA
annual rate, delay of 140 days after 1st of respective quarter,
https://fred.stlouisfed.org/series/IMPGSC1 (accessed on 13 December
2020)

Inflation

32. CPIAUCNS 1999/01/08–2016/02/05 m 3 5

Consumer Price Index for All Urban Consumers: All Items, Index
1982-1984=100, NSA, delay of 45 days after 1st of respective month,
https://fred.stlouisfed.org/series/CPIAUCNS (accessed on
13 December 2020)

33. PPIACO 1999/01/08–2016/02/05 m 3 5

Producer Price Index for All Commodities, Index 1982=100, NSA, delay
of 43 days after 1st of respective month,
https://fred.stlouisfed.org/series/PPIACO (accessed on 13 December
2020)
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