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Abstract: The determination of electric energy consumption is remarked as one of the most vital
objectives for electrical engineers as it is highly essential in determining the actual energy demand
made on the existing electricity supply. Therefore, it is important to find out about the increasing trend
in electric energy demands and use all over the world. In this work, we present a prediction scheme
for the progression of worldwide aggregates of cumulative electricity consumption using the time
series of the records released annually for the net electricity use throughout the world. Consequently,
we make use of an autoregressive (AR) model by retaining the best possible autoregression order
recording the highest regression accuracy and the lowest standardized regression error. The resultant
regression scheme was proficiently employed to regress and forecast the evolution of next-decade
data for the net consumption of electricity worldwide from 1980 to 2019 (in billion kilowatt-hours).
The experimental outcomes exhibited that the highest accuracy in regressing and forecasting the
global consumption of electricity is 95.7%. The prediction results disclose a linearly growing trend in
the amount of electricity issued annually over the past four decades’ observation for the global net
electricity consumption dataset.

Keywords: electric energy consumption; kilowatt-hours; time-series model; autoregressive process;
regression error; time-series forecasting

1. Introduction

Electricity consumption is an imperative commercial indicator and holds a substantial
responsibility in developing the energy advancement strategy for every country [1]. World-
wide electric energy consumption grew from 7323 TWh in 1980 to 23.4 TWh in 2019 [2].
Normally, countries with greater populations consume extra electric power. For instance,
China and the United States are among the highest per capita consumers of electricity in
the world, consuming 4.55 and 12.6 MWh, respectively, in 2017 [3]. However, Canada
is one of the highest consumers of electricity at 14.3 MWh per capita, despite having a
population of about 36 million residents. Per capita consumption of electricity can vary
widely due to electricity rates, appliance penetration, market saturation, and heating and
cooling. However, the accumulated amounts of global electric energy consumption have
been observed and collected in time-based data items over the past four decades. To
illustrate the data distribution of the given time series, Figure 1 shows the actual dataset
of the annual releases of worldwide past statistics of the worldwide cumulative electric
energy consumption releases between 1980 and 2019 [4,5]. In 2019, the world’s electricity
consumption amounted to approximately 23.4 trillion kWh. One quadrillion watts is
approximately equal to one petawatt. Indeed, in 2019, the worldwide consumption of
electrical energy increased at a markedly slower rate than the previous years as a result of
the slowdown in economic progression and more moderate temperatures in several large
countries [5].

Forecasting 2021, 3, 256–266. https://doi.org/10.3390/forecast3020016 https://www.mdpi.com/journal/forecasting

https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0003-2422-0297
https://doi.org/10.3390/forecast3020016
https://doi.org/10.3390/forecast3020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/forecast3020016
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/2571-9394/3/2/16?type=check_update&version=1


Forecasting 2021, 3 257

Forecasting 2021, 3 FOR PEER REVIEW  2 

Certainly, the determination of the electricity consumption trend is observed as one 
of the most essential targets in electrical power engineering as it is highly essential for 
environmental engineering and information technology [6]. Consequently, it is essential 
to find out about the increasing tendency of the statistics of worldwide electric energy 
consumption. Generally speaking, a time-series technique can be used to analyze the dep-
osition rate of electricity consumption. However, an extraordinarily powerful autoregres-
sive signal technique can be used as a modeling and processing technique to predict the 
trend. The parametric regression processes have been largely employed as multidiscipli-
nary tools for time-series regression, interpolation, and extrapolation. Examples of em-
ploying the parametric regression model in time-series regression and estimation can be 
found in [7–15]. Therefore, the work of this paper employs the parametric regression 
method to develop an estimation scheme for the aforementioned annual reports of elec-
tricity consumption rates based on the data collected from the previous time sequences 
with optimal forecasting accuracy. 

 
Figure 1. The overall growth in net consumption of electricity worldwide from 1980 to 2019 (in 
billion kilowatt-hours). 

Recently, several signal prediction techniques, including multivariate analysis meth-
ods and artificial intelligence techniques [16–21], have been commonly suggested to cope 
with the dependence of electricity consumption projection on a large number of chrono-
logical records and training samples to attain accurate projections [22,23]. Moreover, some 
related statistical methodologies require the records to match specific statistical assump-
tions like following a normal distribution [24]. Hence, to build a forecasting scheme for 
electricity consumption, a prediction process is required to perform well using a small 
number of past records that may not meet any statistical assumptions [25,26]. In this re-
search, we make use of the autoregression system (AR process) to redevelop and then 
examine the dataset of the yearly launch for net electric energy consumption of the pre-
ceding four decades (1980–2019) by exploiting the best possible regression accuracy with 
the lowest possible accumulative regression error. Particularly, the key contributions of 
this work can be summarized as follows: 
• We develop an autoregression process scheme that preserves an optimal degree of 

regression and prediction accuracy with minimum modeling error for the collected 
electricity data records. 

• We apply the developed regression scheme to reproduce the records of the origi-
nal dataset (prior to 2019) and to forecast the near-term upcoming possible records 
(2020–2029) for the worldwide progressive consumption of electric energy [4,5]. 

Figure 1. The overall growth in net consumption of electricity worldwide from 1980 to 2019 (in billion kilowatt-hours).

Certainly, the determination of the electricity consumption trend is observed as one
of the most essential targets in electrical power engineering as it is highly essential for
environmental engineering and information technology [6]. Consequently, it is essential
to find out about the increasing tendency of the statistics of worldwide electric energy
consumption. Generally speaking, a time-series technique can be used to analyze the depo-
sition rate of electricity consumption. However, an extraordinarily powerful autoregressive
signal technique can be used as a modeling and processing technique to predict the trend.
The parametric regression processes have been largely employed as multidisciplinary
tools for time-series regression, interpolation, and extrapolation. Examples of employing
the parametric regression model in time-series regression and estimation can be found
in [7–15]. Therefore, the work of this paper employs the parametric regression method to
develop an estimation scheme for the aforementioned annual reports of electricity con-
sumption rates based on the data collected from the previous time sequences with optimal
forecasting accuracy.

Recently, several signal prediction techniques, including multivariate analysis meth-
ods and artificial intelligence techniques [16–21], have been commonly suggested to cope
with the dependence of electricity consumption projection on a large number of chronolog-
ical records and training samples to attain accurate projections [22,23]. Moreover, some
related statistical methodologies require the records to match specific statistical assump-
tions like following a normal distribution [24]. Hence, to build a forecasting scheme for
electricity consumption, a prediction process is required to perform well using a small num-
ber of past records that may not meet any statistical assumptions [25,26]. In this research,
we make use of the autoregression system (AR process) to redevelop and then examine
the dataset of the yearly launch for net electric energy consumption of the preceding four
decades (1980–2019) by exploiting the best possible regression accuracy with the lowest
possible accumulative regression error. Particularly, the key contributions of this work can
be summarized as follows:

• We develop an autoregression process scheme that preserves an optimal degree of
regression and prediction accuracy with minimum modeling error for the collected
electricity data records.

• We apply the developed regression scheme to reproduce the records of the original
dataset (prior to 2019) and to forecast the near-term upcoming possible records
(2020–2029) for the worldwide progressive consumption of electric energy [4,5].
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• We analyze the experimental findings of the original dataset in conjunction with
the forecasted datasets to demonstrate the importance and efficiency of the estab-
lished scheme.

The remainder of this paper is organized as follows: Section 2 defines the regression
scheme using autoregression method. Section 3 depicts and analyzes the experimental
findings by contemplating a number of situations. Finally, Section 4 provides the inferences
and remarks for the proposed work and findings.

2. Autoregressive AR(p) Process Modeling

The autoregressive (AR) model is a parametric approach for signal (i.e., time-series/
data points) spectrum modeling and estimation [27]. It can be used to grant a linear frame-
work to approximate the signal dynamics over time and predict (forecast) the momentary
future behavior based totally on previous conduct of the time series. This could be accom-
plished by means of employing the time-series regression and estimation strategies on the
current time-sequence statistics against one or more previous values in the equal series.
In AR(p), the value p is known as the model order for the autoregressive process. For
example, an AR(1) would be a “first-order autoregressive process” in which the outcome
variable of AR technique at some factor in time t is related only to time durations at t-1
solely (i.e., the value of the variable at one period apart). For the second-order AR process,
the consequence variable of AR technique at time t is associated solely with periods at t-1
and t-2 (i.e., the value of the variable at two durations apart) and so on. The widespread
structure of the AR model can be realized as illustrated in Figure 2.
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Figure 2. The hardware realization of autoregressive model AR(p) where Z−1 is the time shift (delay) operator; y(n) is the
target model signal to be described and predicted by AR model; e(n) is a prediction noise (error); and a1, a2, . . . , ap are
polynomial coefficients for AR model which are derived according to the model order.

According to Figure 2, the mathematical expression of the AR process can be derived
for any order as follows:

• The first-order AR process is obtained with one parameter according to the follow-
ing formula:

AR(1) → y(n) = e(n) − a1y(n − 1)

• The second-order AR process is obtained with two parameters according to the fol-
lowing formula:

AR(2) → y(n) = e(n) − a1y(n − 1) − a2y(n − 2)
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• The pth order AR process is obtained with p parameters according to the following formula:

AR(p)→ y(n) = e(n) − a1y(n − 1) − a2y(n − 2) . . . − apy(n − p)

AR(p) → y(n) = e(n)−
p

∑
i=1

aiy(n− i)

Thus⇒ y(n) = ŷ(n) + e(n)

where y(n) is the original dataset, ŷ(n) is the estimated dataset, and e(n) is the accu-
mulative autoregression error. Actually, to maintain the best autoregression process
for dataset interpolation and extrapolation/estimation, the optimum autoregression
order needs to be reached, which can be attained only when the accumulative au-
toregression/perdition error is minimized. Consequently, solving the computational
minimization problem for the accumulative autoregression error can lead to com-
puting the parameters for the autoregression process using autocorrelation function
(ACF) Ryy(k) as follows:

p

∑
i=1

aiRyy(i− j) = −Ryy(j)
f or⇒ j = 1, 2, 3, . . . , p

Ryy(k) =
N−1

∑
n=0

y(n)y(n− k) Where⇒ Ryy(k) = Ryy(−k)

For better understanding, let us consider the third-order AR process (p = 3), which is
obtained with three parameters according to the following formula:

y(n) = e(n) − a1y(n − 1) − a2y(n − 2) − a3y(n − 3)

To develop this third-order model, one needs to find the parameters a1, a2, and a3.
Therefore, we need to expand j to 1, 2, and 3 and apply them as follows:

For j = 1 : a1Ryy(0) + a2Ryy(1) + a3Ryy(2) = Ryy(1) (1)

For j = 2 : a1Ryy(−1) + a2Ryy(0) + a3Ryy(1) = Ryy(2) (2)

For j = 3 : a1Ryy(−2) + a2Ryy(−1) + a3Ryy(0) = Ryy(3) (3)

Then, we come up with a system of equations with three unknowns: a1, a2, a3. Such
an algebraic system can be solved using several numerical methods such as using the
matrix system known as the Toeplitz matrix [28]. The obtained system can subsequently
be applied for both time-series regression and estimation.

Nonetheless, the appropriate order for the autoregression process varies amongst the
time-series records since it principally depends on the diversity of interpretations through
the time-series records in addition to the extent of linearity along with the data records of the
time-series itself [29]. Figure 3 illustrates the block diagram for the autoregression modeling
methodology steps from scattered data points to the regularized predicted data points.
As shown in the illustration, the data points are supplied into the parametric scheme
for the interpolation process using the highest relevant regression order and therefore
commissioned to foresee/extrapolate the forthcoming developments of the interpolated
dataset [29].
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Figure 3. The structure chart for the time-series modeling approach illustrating the modeling procedure steps from scattered
data points to the regularized predicted data points.

3. Electricity Consumption Estimation Schemes

Autoregression process AR(p) is a recursive parameter-oriented method for time-
series/dataset regression and estimation. The basic idea of such a parametric scheme is that
AR(p) process is obtained by a means of a stochastic difference equation via developing
the regression process parameters that fulfill the ultimate modeling order for each dataset
record. Definitely, the process with the smallest error value and suitable design cost is the
primary model (i.e., it is preferable to choose the model with the lowest regression order
that maximizes the regression confidence while minimizing the complexity of the system).
In order to accomplish this, one should investigate and analyze the relationship between the
various regression process orders with respect to their subsequent accumulative regression
error values. In this work, we have developed an autoregression system using MATLAB to
reproduce the time-series data-records for the yearly publication of the aforementioned
electricity consumption dataset.

Initially, the linear time series for the worldwide electricity consumption should
be statistically, visually, or algebraically checked for the unit root nonstationarity [30].
In this paper, we have visually assessed the stationarity by inspecting the plots of the
sample autocorrelation function (ACF). According to Figure 4a, the downward sloping of
the plot indicates a unit root process. The lengths of the line segments on the ACF plot
gradually decay, and this pattern continues for increasing lags. This behavior indicates
a nonstationary series. As a result, we have applied the detrending and differencing
transformations that can be used to address nonstationarity due to a trending mean [31].
According to this methodology, the resultant data looks stationary, as illustrated in the plot
of the sample autocorrelation function (ACF) of Figure 4b.
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Figure 4. Assessment of stationarity of a time series using sample autocorrelation function (ACF) for (a) the original time
series (nonstationary) and (b) the transformed time series (stationary).

In the previous sections, we presented the genuine datasets of the yearly issues for
electric energy consumption using the past data-records from 1980 to 2019. In terms of
time-series reliability, we have to choose the best regression order for the AR process by
illustrating the acquisitive autoregression error values vs. the autoregression order values
to select the greatest order that diminishes the estimation error and lessens the design
complexity as well. The cumulative (final) autoregression/prediction error can be com-
puted using various error calculation techniques such as via the evaluation of normalized
final prediction error using (Normalized(e))/(Normalized(y)) for each regression order
value. Therefore, the relationships among various regression/prediction order-numbers in
opposition to final regression/prediction error (FPE), Akaike information criterion (AIC),
and Bayesian information criterion (BIC) [32] are illustrated in Figure 4. Besides, the figure
demonstrates the determination process for the best regression order number using the
least accumulated error of the three measures. As a result, the fourth autoregression process
order, i.e., AR(4), has been selected as the most appropriate scheme to regress and forecast
the wide variety of electricity amounts’ time series as it resembles the least normalized
prediction error (LNPE), least normalized Akaike information criterion (LN-AIC), and
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Bayesian information criterion (LN-BIC) [33]; it can reproduce the common quantity of
electricity time series with highest regression confidence percentage (RCP) of more than
95.7% for the most fulfilling model order, see Figure 5.
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Figure 6 demonstrates the data-records correlation for the given time series by visual-
izing the original time series vs. the regressed time series using AR(4) process along with
the regression error per sample. According to this illustration, the time-series regression for
the given-dataset indicators is very specific and very close to the original dataset indicators,
including a very insignificant discrepancy. The reason for having such a high level of data
matching is the large degree of linearity between the data-points of the original time series.
This clearly illustrates the influence of the autoregression scheme, and hence, this process
can be employed to forecast the subsequent decade with extreme accuracy, peaking at
95.7% for the presented time series.

Figure 6. Time-series regression fit curves for the aforementioned dataset using the best possible regression order: (a) original
vs. target curve; (b) regression errors (per sample).

Besides, the cross-correlation function (CCF) that calculates the degree of similarity
among two different signals (datasets), i.e., the dataset x and the shifted versions of a
dataset y, can be used as a metric to measure the similarity between the original datasets
and the regressed datasets for the aforementioned datasets. Figure 7 illustrates the input
cross-correlation functions (CCFs) between the actual dataset and the regressed dataset for
the electricity consumption dataset. According to the figure, the results of the CCF reveal
a high level of similarity for the examined dataset throughout the actual datasets with
additional similarity spans. The simulated results appear as autocorrelation figures because
the estimation models for each time sequence are fairly accurate and unique, mainly for
the net electricity consumption dataset. Nonetheless, the results in Figure 6 demonstrate
nonsignificant variations among the data points of the original signal values and the
reproduced data points of the autoregressive process for the plot of yearly quantities of
net electricity consumption which acquired lesser accuracy proportions for the regression
process percentage, especially between 2005 and 2008.
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Figure 7. The cross-correlation functions (CCFs) for the aforementioned dataset using the best possible regression order.

Lastly, as the resultant optimum regression process has exhibited a delicate signal
prediction tool with high regression confidence percentage (RCP), we can confidently apply
the resultant regression process to forecast the possible near-term forthcoming numbers for
the yearly published globally accumulated amounts of electric energy consumption time
series. Figure 8, along with its corresponding table, provides the potential projection of the
yearly numbers for the subsequent decade (2020–2029) for the abovementioned dataset
records. Accordingly, it appears that global electricity consumption will continue to grow
in a linear tendency, reaching 26.4 trillion kWh in 2025 and 28.4 trillion kWh in 2029.
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4. Conclusions

An autoregressive (AR) model has been developed to predict the progression of
global electricity consumption using the time series of the net electricity use records re-
leased annually. The proposed system makes use of the optimum order number of the
AR model derived at the lowest estimation error percentage with peak modeling accu-
racy. Consequently, the experimental outcomes indicated that the optimum AR modeling
orders to model and forecast the provided time-series signal have verified a significant
stage of confidence with a prediction self-confidence of 95.6%. As a result, the developed
system has been effectively employed to forecast the forthcoming decade (2020–2029) of
the growth in worldwide annual use/demand of electricity in kilowatt-hours. Accord-
ingly, the progression ratio of the global electricity consumption amounts showed a linear
increasing tendency.
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