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Abstract: This study investigates the daily co-movements in commodity prices over the period
2006–2020 using a novel approach based on a time-varying Gerber correlation. The statistic is com-
puted considering a set of probabilities estimated via non-traditional models that give a time-varying
structure to the measure. The results indicate that there are several co-movements across commodi-
ties, that these co-movements change over time, and that they are tendentially positive. Conditional
auto-regressive multithreshold logit models show higher forecasting accuracy for agricultural returns,
while dynamic conditional correlation models are more accurate for energy products and metals. The
proposed models are shown to be superior in terms of forecasting power to the benchmark method
which is based on estimating the Gerber correlation moving a rolling window.
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1. Introduction

The new millennium witnessed a rapid growth in commodity trading and a progres-
sive process of financialization of commodity markets. This process was fueled by the
diversification opportunities and the ‘safe haven’ characteristics commodities offer [1–5].
It was further accelerated by the financial deregulation measures adopted in the US in
the early 2000s. Indeed, the Commodity Futures Modernization Act [6] increased the
presence and importance of financial investors in commodity markets. Since then, several
agricultural, metal and energy commodities have experienced large sequences of price
swings, high volatility and an unprecedented surge in the dependence across returns on
different commodities [7,8]. Commodity price dynamics and co-movements (see [9] for a
discussion on the definition of co-movement) have several consequences for the economy.
Sharp price fluctuations, for instance, could reduce the ability of consumers to secure
supplies and increase the risks of producers in terms of low returns [10]. Price hikes and
volatility could discourage investments and reduce economic and political stability [11–13].
Movements in commodity prices could affect a country’s external and internal balance
(i.e., the current account and employment/unemployment rates), its fiscal and monetary
policies as well as the business cycle [14,15]. The tendency of commodity prices to co-move
has important welfare implications for both investors and commodity importers/exporters.
For example, investors could have problems in managing commodity portfolios given
the easy transmission of shocks from one commodity market to another. Likewise, a syn-
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chronized increase in commodity prices is likely to place commodity import-dependent
countries under considerable inflation pressure.

The widespread and undesirable consequences associated with commodity price
fluctuations and their joint wavering underline the critical importance of investigating
the co-movements in commodity prices. The present study goes in this direction and
enriches the literature by introducing a novel method to assess co-movements across
commodities and examine their common price dynamics. Specifically, 14 commodities
encompassing all major metals, energy and agricultural commodities are examined on a
daily basis for the period from 2006 to 2020. To assess the pervasiveness of co-movements in
commodity prices, we propose a set of models that allow the computation of a time-varying
Gerber correlation statistic [16]. The latter provides a robust measurement of common
price movements and is well suited to quantify the degree of dependency in financial
markets. The Gerber correlation statistic was recently applied to commodity spot markets
by Zaremba et al. [17] who examined monthly price changes over a period of 170 years. The
authors estimated the Gerber statistic by moving a rolling window (see Section 2.1.1) and
found that cross-commodity correlations are not so ‘unprecedented’ as usually expected,
thereby casting doubt on the link with the phenomenon of financialisation. Differently
from Zaremba et al. [17], we explicitly examine commodity futures markets and consider
daily instead of monthly data. In addition, we propose a novel approach based on a
set of models that enable us to compute a time-varying Gerber correlation in a more
robust way. Specifically, the conditional auto-regressive multithreshold logit (CARML),
the dynamic conditional correlation (DCC) and the filtered historical simulation (FHS)
models are considered. Rather than using traditional methodologies based on time-varying
parameters, such as state space models (see, e.g., [18]), we apply dynamic models that
permit us to model the conditional variance matrix (driving the dependence between
commodity returns) or the logit transformation of the probability appearing in the Gerber
statistic. The proposed models turn out to be superior to the benchmark method, i.e.,
historical simulation. Therefore, these models are better suited to gauge the extent to which
the degree of dependency in financial markets changes over time.

The remainder of the study is organized as follows. Section 2 describes the main
feature of the Gerber statistic and the models we use to make the Gerber correlation vary
over time. Section 3 shows the empirical results for the considered commodities and the
robustness checks. Section 4 concludes.

2. Materials and Methods

The Gerber correlation statistic [16] is a measure well-suited to capture the characteris-
tics of financial time series, namely volatility clustering, leptokurtosis and outliers, that
could distort the classic Pearson’s coefficient. Furthermore, it is insensitive to extremely
large co-movements that distort product-moment-based measures, while also being insen-
sitive to small noise fluctuations. The Gerber statistic, g, is, hence, a robust measure of
pairwise movements defined for a sample of T observations as

gij =
∑T

t=1 mij(t)

∑T
t=1
∣∣mij(t)

∣∣ (1)

where

mij(t) = I(ri,t ≥ Qi)I
(
rj,t ≥ Qj

)
+ I(ri,t ≤ −Qi)I

(
rj,t ≤ −Qj

)
−I(ri,t ≥ Qi)I

(
rj,t ≤ −Qj

)
− I(ri,t ≤ −Qi)I

(
rj,t ≥ Qj

)
.

Here, ri,t denotes the return (change in log prices) of asset i at time t, Qi is a threshold
and I(A) denotes the indicator function for the event A. I(A) equals 1 if A is true and 0
otherwise. Hence, mij(t) equals 1 if both returns simultaneously pierce their thresholds
in the same direction at time t; it equals −1 if they pierce their thresholds in opposite
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directions at time t; or it is zero if at least one of the returns is in absolute value smaller that
its threshold.

For simplicity, from now on, we drop the two indices (i, j). Dividing both the nu-
merator and the denominator of (1) by T, we obtain an alternative representation of the
Gerber statistic:

g =
pUU + pDD − pUD − pDU
pUU + pDD + pUD + pDU

(2)

where pUU denotes the empirical probability that both returns lie above their upper thresh-
old, pUD the probability that the first return is above its upper threshold and the second one
is below its lower threshold (i.e., −Qj), and so on. Note that Equation (2) does not include
the probability that at least one return lies between the lower and the upper threshold. As
in [16], we use the subscript N (neutral) for this case. Therefore, all nine possible probabili-
ties are identified by pab with (a, b) ∈ J , where the set J = {U, N, D} × {U, N, D}.

In a similar way, it is possible to derive a different type of Gerber correlation:

g(2) =
pUU + pDD − pUD − pDU√

p(A)p(B)
(3)

where

p(A) = pUU + pUN + pUD + pDU + pDN + pDD

p(B) = pUU + pNU + pUD + pDU + pND + pDD.

The correlation matrix constructed from (3) is positive semidefinite [16].

2.1. Dynamic Models

With the aim of constructing a Gerber correlation statistic that changes over time and
is able to capture daily common movements between return pairs of commodities, we
propose first to use a set of models to derive the probabilities appearing in (2) and/or (3)
and then employ them for the calculation of the statistic itself. This methodology enables
us to measure the time-varying co-movements for all the combinations of commodity pairs.

The following sections briefly describe the models considered for the estimations of
the aforementioned probabilities.

2.1.1. Historical Simulation

Historical simulation (HS) is the non-parametric traditional method that is used as
a benchmark for the comparisons with other models presented in Sections 2.1.2–2.1.4.
Based on a window of T observations, the HS method provides the T + 1-forecast for
the probabilities associated to the nine regions identified by the set J . For instance, the
T + 1-forecasts for the probabilities associated to the regions UD and NU are given by:

p̂UD,T+1|T =
1
T

T

∑
t=1

I(ri,t ≥ Qi)I
(
rj,t ≤ −Qj

)
p̂NU,T+1|T =

1
T

T

∑
t=1

I(−Qi < ri,t < Qi)I
(
rj,t ≥ Qj

)
.

2.1.2. Conditional Auto-Regressive Multithreshold Logit Models

As a first alternative to HS, the CARML model proposed by Taylor [19] is considered.
The model allows us to estimate the probabilities needed for the dynamic Gerber correlation
statistic. To start with, as in a multinomial logit model, we express the probabilities as
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pab,t =
exab,t

1 + ∑(h,k)∈J \(N,N) exhk,t
, (a, b) ∈ J \ (N, N);

pNN,t =
1

1 + ∑(h,k)∈J \(N,N) exhk,t
,

where the state (N, N) is assumed to be the reference category.
Next, we consider a linear model for each of the eight logit transforms. For instance,

xab,t = γab + αab fab(ri,t−1, rj,t−1) + βabxab,t−1, (a, b) ∈ J \ (N, N). (4)

A possible choice of the functions fab(·) could be as follows:

fUU(ri,t−1, rj,t−1) = I(ri,t−1 ≥ Qi)I
(
rj,t−1 ≥ Qj

)
fDD(ri,t−1, rj,t−1) = I(ri,t−1 ≤ −Qi)I

(
rj,t−1 ≤ −Qj

)
fUD(ri,t−1, rj,t−1) = I(ri,t−1 ≥ Qi)I

(
rj,t−1 ≤ −Qj

)
fDU(ri,t−1, rj,t−1) = I(ri,t−1 ≤ −Qi)I

(
rj,t−1 ≥ Qj

)
fNU(ri,t−1, rj,t−1) = I(−Qi < ri,t−1 < Qi)I

(
rj,t−1 ≥ Qj

)
fUN(ri,t−1, rj,t−1) = I(ri,t−1 ≥ Qi)I

(
−Qj < rj,t−1 < Qj

)
fND(ri,t−1, rj,t−1) = I(−Qi < ri,t−1 < Qi)I

(
rj,t−1 ≤ −Qj

)
fDN(ri,t−1, rj,t−1) = I(ri,t−1 ≤ −Qi)I

(
−Qj < rj,t−1 < Qj

)
The model parameters can be estimated by maximizing the likelihood derived from a

categorical distribution:

L(θ) =
T

∏
t=1

∏
(a,b)∈J

pIab,t
ab,t

where Iab,t is 1 if returns at time t are in the region identified by the indices (a, b) and 0
otherwise. A model based on (4) comprises 24 (=3× 8) parameters. To reduce the number
of parameters to three, we consider the following dynamics:

xab,t = γ + α fab(ri,t−1, rj,t−1) + βxab,t−1, (a, b) ∈ J \ (N, N). (5)

Once model (4) has been estimated using the return data {(ri,t, rj,t)}t=1,...,T , we obtain
the time-varying probabilities as

p̂ab,t|T =
exab,t|T

1 + ∑(h,k)∈J \(N,N) exhk,t|T
, (a, b) ∈ J \ (N, N);

p̂NN,t|T =
1

1 + ∑(h,k)∈J \(N,N) exhk,t|T
,

(6)

with

xab,t|T = γab + αab fab(ri,t, rj,t) + βabxab,t−1|T , (a, b) ∈ J \ (N, N) and t = 1, . . . , T (7)

or its reduced form

xab,t|T = γ + α fab(ri,t, rj,t) + βxab,t−1|T , (a, b) ∈ J \ (N, N) and t = 1, . . . , T (8)

Furthermore, we forecast pab,T+1 as
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p̂ab,T+1|T =
exab,T+1|T

1 + ∑(h,k)∈J \(N,N) exhk,T+1|T
, (a, b) ∈ J \ (N, N);

p̂NN,T+1|T =
1

1 + ∑(h,k)∈J \(N,N) exhk,T+1|T
,

with
xab,T+1|T = γab + αab fab(ri,T , rj,T) + βabxab,T , (a, b) ∈ J \ (N, N)

or its reduced form

xab,T+1|T = γ + α fab(ri,T , rj,T) + βxab,T , (a, b) ∈ J \ (N, N)

2.1.3. Dynamic Conditional Correlation Models

In addition to CARML, the DCC model of Engle [20] is considered. In DCC models,
the conditional variance matrix of the returns of k assets is decomposed as follows:

Ht = DtRtDt

where Dt = diag(
√

h11,t, . . . ,
√

hkk,t) and Rt is the positive definite conditional correlation
matrix. In this way, if ρij,t is the element of position i, j of the correlation matrix Rt, then

the corresponding element of Ht is found to be ρij,t

√
hii,thjj,t.

Let ûi,t be the time t residual from the mean equation of asset i. We denote by
ηt = (η1,t, . . . , ηk,t)

′ the marginally standardized innovation vector:

ηi,t =
ûi,t√
hii,t

i = 1, . . . , k.

Then, Rt is the covariance matrix of ηt.
Engle [20] proposed modeling the correlation matrix as

Qt = (1− a− b)Q̄ + aηt−1η′t−1 + bQt−1

Rt = JtQt Jt,

where Q̄ is the unconditional covariance matrix of ηt, a and b are non-negative real numbers
satisfying 0 < a + b < 1 and Jt = diag(q−1/2

11,t , . . . , q−1/2
kk,t ), where qii,t denotes the element

of position (i, i) of Qt.
We estimate bivariate (k = 2) DCC models (i.e., one for each pair of commodity

returns) based on the bivariate normal distribution, (ri,t, rj,t)
′ ∼ N(µ, Ht). The vector of

means µ is estimated using the sample means and the individual volatilities are assumed
to follow a GARCH(1,1) model. Once the DCC model for the pair (ri,t, rj,t) has been
estimated, it is possible to calculate the probabilities appearing in the different types of
Gerber statistics. For instance, the forecast for time T + 1 for pUD is obtained as:

p̂UD,T+1|T =
∫ +∞

Qi

∫ −Qj

−∞
f (x, µ, ĤT+1|T)dx (9)

where f (x, µ, ĤT+1|T) denotes the bivariate normal density with vector of means µ and
variance matrix ĤT+1|T . Similarly,

p̂NU,T+1|T =
∫ Qi

−Qi

∫ ∞

Qj

f (x, µ, ĤT+1|T)dx. (10)

Formulae (9) and (10) make use of ĤT+1|T , the predicted variance matrix for time
T + 1 based on the information up to time T. It is also possible to use, for t = 1, . . . , T,
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formulae such as the two above with Ĥt|T instead of ĤT+1|T to obtain in-sample estimates
of the probabilities appearing in Equation (2) or Equation (3).

2.1.4. Filtered Historical Simulation

Filtered historical simulation is a semi-parametric method that combines HS and a
parametric model (the normal-DCC model in our case). The first step consists in estimating
the same DCC model of the previous section. Let(

zi,t
zj,t

)
= H−1/2

t

((
ri,t
rj,t

)
− µ

)
, t = 1, . . . , T

be the residuals from the model. Here, H−1/2
t denotes the inverse of the square-root matrix

of Ht, obtained via the Cholesky decomposition.
Next, we obtain the thresholds, Ki and Kj, from the residuals based on the predicted

covariance matrix for time T + 1:(
Ki
Kj

)
= Ĥ−1/2

T+1

((
Qi
Qj

)
− µ

)
.

Finally, we can use the same formulae used in the context of HS, but based on the
residuals z and the new calculated thresholds K:

p̂UD,T+1|T =
1
T

T

∑
t=1

I(zi,t ≥ Ki)I
(
zj,t ≤ −Kj

)
p̂NU,T+1|T =

1
T

T

∑
t=1

I(−Ki < zi,t < Ki)I
(
zj,t ≥ Kj

)
.

The remaining probabilities are predicted in a similar way.

2.1.5. The Time-Varying Gerber Correlation

Once one of the model of the previous section has been estimated, the T + 1-Gerber
statistic is obtained as

ĝT+1|T =
p̂UU,T+1|T + p̂DD,T+1|T − p̂UD,T+1|T − p̂DU,T+1|T
p̂UU,T+1|T + p̂DD,T+1|T + p̂UD,T+1|T + p̂DU,T+1|T

(11)

or

ĝ(2)T+1|T =
p̂UU,T+1|T + p̂DD,T+1|T − p̂UD,T+1|T − p̂DU,T+1|T√

p̂(A)
T+1|T p̂(B)

T+1|T

. (12)

The above formulae are the ones that we use in Section 3.3. In Section 3.2, we instead
use (for the CARML and the DCC models) formulae such as the two above, but with
p̂ab,T+1|T replaced by p̂ab,t|T , for t = 1, . . . , T.

Since it is important to provide some measure of uncertainty regarding the estimated
statistics (11) and (12), here we give some indication on how to derive the confidence
intervals for this measure. One possibility is to use the delta method in conjunction with
the covariance matrix of the estimated parameters. The issue with this approach is that the
derivatives needed in the delta method are not straightforward to calculate. An alternative
approach consists in computing joint confidence sets for the model parameters as done for
instance in [21] for stochastic volatility models and in [22] for GARCH models with heavy-
tailed innovations. This method constructs simultaneous confidence sets for the parameters
of the model by numerically “inverting” some test statistic such as the likelihood ratio test.
This is achieved by collecting the parameter values from a grid of admissible candidate
values that are not rejected by the test. From the joint confidence set, it is then possible
to derive confidence intervals for general functions of the vector of parameters and the
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observed data using the projection technique of Abdelkhalek and Dufour [23]. This second
approach is, however, computationally intensive, given the large number of parameters
in the model. For instance, a strategy to reduce the number of parameters in the DCC
model could be to focus only on the parameters a and b appearing in the dynamics of the
Qt matrix and treat the parameters of the univariate models as nuisance parameters.

3. Empirical Analysis
3.1. Data Description

To measure the degree of dependence across commodities, we compute the daily
log-returns for the futures prices of the commodities listed in Table 1. The 14 commodities
include major metals, energy and agricultural products. The first panel of Table 1 reports the
commodities for which detailed results are discussed in Sections 3.2 and 3.3. Commodity
log-returns are obtained as the log differences of futures prices and are based on first
generic futures contracts series extracted from Bloomberg. Specifically, we consider, at each
date, the price of the contract closest to maturity. When a given contract approaches the
expiration date, Bloomberg calculates a weighted average of the prices of two consecutive
contracts, hence making a smooth transition between the contracts. Data cover the period
from 11 August 2006 to 4 March 2020 for a total of 3500 observations for each commodity.

Table 1. Commodity futures (Bloomberg Tickers).

Selected Commodities

Ticker Description

C1 Comdty Generic 1st Corn No. 2 Yellow futures, US$
S1 Comdty Generic 1st Soybean No. 2 Yellow futures, US$
W1 Comdty Generic 1st Wheat futures, US$
CL1 Comdty WTI crude oil
NG1 Comdty Natural Gas
GC1 Comdty Gold
SI1 Comdty Silver

Remaining Agricultural Commodities

Ticker Description

KC1 Comdty Generic 1st Coffee futures contract
SB1 Comdty Generic 1st Sugar No. 11 (raw) futures
RR1 Comdty Generic 1st Rice futures
CC1 Comdty Generic 1st Cocoa

Remaining Energy Commodities

Ticker Description

CO1 Comdty Brent Oil
HO1 Comdty Heating oil

Remaining Metals

Ticker Description

HG1 Comdty Copper

The descriptive statistics for the considered log-returns of the 14 commodities are
reported in Table 2. For the full period, the mean daily returns are all positive but extremely
small. Oil and natural gas are the most volatile return series, with a daily standard deviation
of 2.0% and 2.6%, respectively. In addition, commodity returns are negatively skewed
and leptokurtic. Hence, the null of normality is strongly rejected by the Jarque–Bera tests.
Furthermore, we assess if returns are heteroskedastic by applying the ARCH test ([24]) and
the Ljung–Box test to squared returns. For all commodities, the null of homoskedasticity is
strongly rejected by both tests.
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Table 2. Descriptive statistics for the log-returns of commodities futures.

Selected Commodities

C1 S1 W1 CL1 NG1 GC1 SI1

Min. −0.081 −0.073 −0.098 −0.119 −0.186 −0.098 −0.195
1st Qu −0.008 −0.007 −0.010 −0.010 −0.015 −0.004 −0.007

Median 0.000 0.000 0.000 0.000 −0.001 0.001 0.001
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3rd Qu 0.009 0.007 0.010 0.010 0.014 0.006 0.009
Max. 0.086 0.065 0.086 0.135 0.166 0.086 0.124

Std. Dev. 0.016 0.013 0.018 0.020 0.026 0.011 0.019
Skewness −0.043 −0.252 0.034 0.030 0.141 −0.475 −0.916
Kurtosis 5.411 5.818 5.033 7.013 5.862 10.335 11.132
JB stat. 1214.252 1710.147 863.537 3360.445 1726.199 11,407.754 14,491.883
JB pval. 0 0 0 0 0 0 0

Q1 652.816 667.872 577.179 765.575 796.927 777.274 846.418
Q5 961.155 1241.034 842.120 1436.187 1068.713 935.768 951.451

Q1 pval. 0 0 0 0 0 0 0
Q5 pval. 0 0 0 0 0 0 0

LM1 5073.130 5761.032 4919.449 6467.057 4966.216 8230.659 7457.130
LM5 1567.114 1661.710 1531.263 1845.515 1577.667 2625.688 2431.796
LM1
pval. 0 0 0 0 0 0 0

LM5
pval. 0 0 0 0 0 0 0

Remaining Remaining Remaining
Agricultural Commodities Energy Commodities Metals

KC1 SB1 RR1 CC1 CO1 HO1 HG1

Min. −0.111 −0.124 −0.062 −0.096 −0.103 −0.098 −0.116
1st Qu −0.010 −0.009 −0.007 −0.009 −0.009 −0.009 −0.007

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3rd Qu 0.010 0.009 0.007 0.009 0.009 0.009 0.008
Max. 0.110 0.087 0.054 0.082 0.133 0.103 0.117

Std. Dev. 0.017 0.018 0.012 0.016 0.019 0.017 0.016
Skewness 0.047 -0.313 −0.003 −0.210 0.047 0.064 −0.043
Kurtosis 5.104 6.087 4.298 5.472 7.267 6.115 7.703
JB stat. 925.756 2071.051 351.917 1312.606 3800.539 2028.498 4615.341
JB pval. 0 0 0 0 0 0 0

Q1 519.798 679.805 566.418 393.100 790.971 646.284 930.245
Q5 578.844 779.116 691.245 462.829 1514.100 1230.272 1894.352

Q1 pval. 0 0 0 0 0 0 0
Q5 pval. 0 0 0 0 0 0 0

LM1 5203.071 5511.624 3811.809 6051.277 6428.943 5983.694 6486.196
LM5 1683.965 1809.333 1238.506 1962.049 1828.758 1717.633 1737.276
LM1
pval. 0 0 0 0 0 0 0

LM5
pval. 0 0 0 0 0 0 0

Note: ‘JB stat.’ and ‘JB pval.’ denote the Jarque–Bera test statistic and p-value, respectively. ‘Q1’ and ‘Q5’ are
the Ljung–Box test statistics (with 1 and 5 lags) calculated on squared returns and ‘Q1 pval.’, ‘Q5 pval.’ are their
p-values. ‘LM1’ and ‘LM5’ are the test statistics (with 1 and 5 lags) for Engle’s ARCH test and ‘LM1 pval.’ and
‘LM5 pval.’ are their p-values.

To calculate the Gerber statistic for the pair of returns (ri, rj), we consider two alterna-
tive pairs of thresholds: (1) Qi = σi/2 and Qj = σj/2 where σi and σj are the (unconditional)
return volatilities; and (2) Qi = qi(90%) and Qj = qj(90%) where qi(90%) and qj(90%) are
the (unconditional) 90% quantiles of the returns.
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3.2. In-Sample Analysis

In this section, we estimate the CARML model in its reduced form, Equation (5), and
the DCC model for six selected pairs of commodity returns using the whole sample of
3500 observations. Based on the estimated parameters, it is then possible to obtain a time-
varying version of probabilities appearing in Equation (2) or Equation (3). For instance,
in the case of the CARML model, we use Equation (8) with the estimated parameters and
then Equation (6) to recover the time-varying probabilities. In turn, these are used to obtain
the time-varying Gerber statistic. We plot the resulting time-varying Gerber correlations of
Equation (3) in Figures 1 and 2.
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Figure 1. Time-varying Gerber correlations, Equation (3). Thresholds are Qi = σi/2 and Qj = σj/2 where σi and σj are the
(unconditional) return volatilities.
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Figure 2. Time-varying Gerber correlations, Equation (3). Thresholds are Qi = qi(90%) and Qj = qj(90%) where qi(90%)

and qj(90%) are the (unconditional) 90% quantiles of the returns.

The shaded areas in the graphs—i.e., the periods from December 2007 to June 2009 and
from February 2020 to the end of the period of investigation—describe the recession phases
identified by the National Bureau of Economic Research. We find evidence of a significant
degree of joint movements in our commodities and document that co-movements vary
over time. Figure 1 visually shows the changing patterns of co-movements on a daily
basis and the significant amount of correlation pervasiveness in commodity returns, with
some degree of heterogeneity. Sharp co-movements are detected for the pairs silver–gold
(SI1,GC1), wheat–corn (W1,C1) and crude oil–gold (CL1,GC1).

The high co-movements between silver and gold is due to their characteristics of
hedging commodities [25,26]. The study by Jaffe [27] is one of the first analyses to em-
pirically investigate the linkages between these two precious metals from 1971 to 1987.
The pair was found to have a high correlation of 0.744. Erb and Harvey [28], using data
between December 1982 and May 2004, showed that silver has very low correlation with
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other major commodities, except gold (0.66). Our findings, based on the robust measure
we consider, corroborate previous studies and suggest that, since the two precious metals
display high correlation, the inclusion of both commodities in the same portfolio would be
redundant from an investment perspective. An interesting result is for the pair gold and
copper (not reported graphically). There is a very low positive correlation between the two
commodities during the global downturn of 2007–2008, while their correlation significantly
rises during normal times. This finding reflects the fact that the yellow precious metal is
produced, in the great majority, for investment purposes, while the red metal is destined
almost entirely for industrial usage. Hence, copper prices and returns tend to increase when
economies are strong and growing, simply because there is a greater global demand [29].
Conversely, gold prices and returns would rise when economies are weak, due to a risk
aversion channel.

CARML and DCC models deliver similar results for the pairs crude oil–natural gas
(CL1,NG1) and for crude oil–corn (CL1,C1). The joint return dynamics between crude oil
and corn increased during the worldwide financial crisis. The rise in co-movements can be
explained by the fact that an increase in oil prices generates contemporaneous upsurges in
the price of other commodities, such as foodstuffs, via both the cost effect on the energy
intensive agriculture sector and the substitution effect due to the increasing biofuel produc-
tion which utilizes corn and soybeans [30]. As an energy-intensive sector, agriculture is
traditionally linked to the energy industry through its input channels. While fuel and elec-
tricity are used directly in agricultural production, fertilizers and pesticides represent the
two most prominent indirect energy inputs. Through these energy input channels, higher
energy prices increase the cost of producing and transporting agricultural commodities.

The case of crude oil–gold (CL1,GC1) is interesting. Specifically, during critical eco-
nomic and financial phases, gold is confirmed to be a ‘safe haven’ given that the common
movements between the two commodities fall significantly during the recession phases
(both during the period of the global financial crash and the period of sovereign crisis).

The pair soybean–corn (S1,C1) exhibits relatively high co-movements throughout the
sample period. A possible reason for the strong common movements between the two
commodities could be the demand for biofuels, since corn and soybean are the main crops
that are used in the production of biofuels (biodiesel and ethanol) and are good substitutes.

The result further suggests that spikes in co-movements were more marked during the
global financial crisis than in other periods. It also indicates that the joint return dynamics
among energy, agricultural and metal commodities is always positive (excluding very few
negative relations between oil and natural gas). These positive co-movements point to a
reduced possibility of diversification across commodities in the short-run.

Finally, DCC models provide more volatile Gerber estimates than CARML models
owing to the fact that they do not directly produce the probabilities needed for the Gerber
statistic. DCC models indeed focus on the dynamics of the conditional correlation matrix
and the probabilities are subsequently obtained via the integrals reported in Section 2.1.3.
For CARML models, instead, the (logit transforms of) the required probabilities are directly
modeled via the recursions described by Equation (4) or (5).

3.3. Out-of-Sample Analysis

To assess the out-of-sample forecasting performances of the considered models, we
estimate them recursively. We use a moving window of length 1000 and end up with
N = 2500 forecasts for the probabilities appearing in the Gerber correlations. We consider
again the reduced form of CARML models, Equation (5). We compare the forecasting
accuracy of different models using the Brier Scores defined as:

Brier score(M) =
1
N

T+N

∑
t=T+1

∑
(h,k)∈
J \(N,N)

(
p̂hk,t|t−1(M)− Ihk,t

)2
. (13)
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where p̂hk,t|t−1(M) represents the forecast obtained using modelM (conditional on the
information up to t− 1) and Ihk,t is the time t indicator associated to the region (h, k). For
instance, when the investigated commodity returns are ri and rj, the indicator variables for
the regions UD and NU are

IUD,t = I(ri,t ≥ Qi)I
(
rj,t ≤ −Qj

)
INU,t = I(−Qi < ri,t < Qi)I

(
rj,t ≥ Qj

)
.

The Brier score is a tool commonly used to evaluate probability forecasts (see, e.g., [19,31]).
Since the expected value of the score is lowest for the true probability, the Brier score represents
a proper scoring rule [32]. We compare the estimated models with the reference model (HS)
using the Brier skill score defined as

Brier skill score(M) =

(
1− Brier score(M)

Brier score(HS)

)
× 100. (14)

Models that present a Brier skill score larger than zero have a superior forecasting
accuracy compared to the reference model (historical simulation). Brier skill scores can also
be used to compare the three alternative models considered in the present study as models
with larger Brier skill scores are more accurate.

The Brier skill scores for the selected pairs of commodities are reported in Table 3. The
results indicate that CARML models perform better in term of forecasting power when
the thresholds are half the volatility. DCC models are more suitable when forecasting
extreme commodity returns for energy and metals. Moreover, CARML models have higher
forecasting power for agricultural commodities in the case in which the thresholds are set
equal to the 90% quantiles. In all cases, CARML and DCC are more accurate than filtered
historical simulation models. Table 4 instead refers to all 91 pairs of commodities we can
form. In the table, we provide the number of pairs (and frequency, i.e., the number divided
by 91) for which a model has a positive Brier skill score. In the table, we also give the
number (and frequency) of pairs for which a given method presents a Brier skill score larger
than an alternative model. The results confirm that both the CARML and DCC models
outperform FHS. CARML models perform better than DCC models when the threshold
is half the unconditional volatility, whereas the opposite is true when the threshold is set
equal to the 90% quantile. From the analysis of all the possible pairs of commodities, we
notice that CARML models tend to be more accurate when both commodities are of the
agricultural type, while DCC models are more accurate when both commodities are energy
products or metals.

As a robustness check, we consider two additional thresholds for the Gerber correla-
tion. Table 5 reports the Brier skill scores for the six selected pairs of commodities when
the thresholds are chosen as Qi = qi(85%), Qj = qj(85%), Qi = qi(95%) and Qj = qj(95%).
Table 6 summarizes the results for all the pairs of commodities for these thresholds.

Tables 5 and 6 confirm the superiority of all three models with respect to HS. Compar-
ing the two tables, we see that, when we increase the quantile from 85% to 95%, the number
of pairs for which the CARML models outperforms DCC models seems to decrease.

Table 3. Brier skill scores for the selected pairs of commodities.

Qi = σi/2 and Qj = σj/2

Brier skill score(CARML) Brier skill score(DCC) Brier skill score(FHS)
(GC1,CL1) 3.245 1.229 1.152
(CL1,NG1) 3.534 1.805 0.870
(GC1,SI1) 0.461 −0.512 −0.270
(CL1,C1) 3.689 1.979 1.120
(C1,W1) 2.325 0.744 −0.415
(C1,S1) 0.220 0.294 −3.201
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Table 3. Cont.

Qi = qi(90%) and Qj = qj(90%)

Brier skill score(CARML) Brier skill score(DCC) Brier skill score(FHS)
(GC1,CL1) 1.553 2.827 1.149
(CL1,NG1) 0.489 2.885 −0.034
(GC1,SI1) 1.818 0.064 −0.125
(CL1,C1) 3.418 4.242 −0.373
(C1,W1) 2.833 1.425 −0.079
(C1,S1) 0.526 0.873 −2.625

Note: The thresholds correspond to half the unconditional volatilities or to the 90% quantiles of the returns. The
model with the best score is in bold.

Table 4. Brier skill scores for all the pairs of commodities.

Qi = σi/2 and Qj = σj/2

Brier skill score(CARML) >
0

Brier skill score(DCC) >
0

Brier skill score(FHS) > 0

NUM 89 90 84
FREQ 0.978 0.989 0.923

Qi = σi/2 and Qj = σj/2

Brier skill score(CARML) > Brier skill score(CARML) > Brier skill score(DCC) >
Brier skill score(DCC) Brier skill score(FHS) Brier skill score(FHS)

NUM 88 91 73
FREQ 0.967 1.000 0.802

Qi = qi(90%) and Qj = qj(90%)

Brier skill score(CARML) >
0

Brier skill score(DCC) >
0

Brier skill score(FHS) > 0

NUM 89 91 51
FREQ 0.978 1.000 0.560

Qi = qi(90%) and Qj = qj(90%)

Brier skill score(CARML) > Brier skill score(CARML) > Brier skill score(DCC) >
Brier skill score(DCC) Brier skill score(FHS) Brier skill score(FHS)

NUM 89 91 51
FREQ 0.978 1.000 0.560

Note: The thresholds correspond to half the unconditional volatilities or to the 90% quantiles of the returns.

Table 5. Brier skill scores for the selected pairs of commodities.

Qi = qi(85%) and Qj = qj(85%)

Brier skill score(CARML) Brier skill score(DCC) Brier skill score(FHS)
(GC1,CL1) 3.280 2.568 2.125
(CL1,NG1) 3.489 2.885 0.897
(GC1,SI1) 1.270 0.064 0.970
(CL1,C1) 3.418 4.242 1.373
(C1,W1) 2.833 1.425 1.079
(C1,S1) 1.896 2.843 0.297

Qi = qi(95%) and Qj = qj(95%)

Brier skill score(CARML) Brier skill score(DCC) Brier skill score(FHS)
(GC1,CL1) 1.297 2.272 0.791
(CL1,NG1) 0.386 2.269 −0.123
(GC1,SI1) 1.192 0.164 −0.070
(CL1,C1) 2.942 3.722 −0.373
(C1,W1) 2.138 2.675 −0.079
(C1,S1) 0.397 0.973 0.059

Note: The thresholds correspond to the 85% quantiles or to the 95% quantiles of the returns. The model with the
best score is in bold.
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Table 6. Brier skill scores for all pairs of commodities.

Qi = qi(85%) and Qj = qj(85%)

Brier skill score(CARML) >
0

Brier skill score(DCC) >
0

Brier skill score(FHS) > 0

NUM 90 90 87
FREQ 0.989 0.989 0.956

Qi = qi(85%) and Qj = qj(85%)

Brier skill score(CARML) > Brier skill score(CARML) > Brier skill score(DCC) >
Brier skill score(DCC) Brier skill score(FHS) Brier skill score(FHS)

NUM 87 91 89
FREQ 0.956 1.000 0.978

Qi = qi(95%) and Qj = qj(95%)

Brier skill score(CARML) >
0

Brier skill score(DCC) >
0

Brier skill score(FHS) > 0

NUM 86 91 63
FREQ 0.945 1.000 0.692

Qi = qi(95%) and Qj = qj(95%)

Brier skill score(CARML) > Brier skill score(CARML) > Brier skill score(DCC) >
Brier skill score(DCC) Brier skill score(FHS) Brier skill score(FHS)

NUM 54 91 91
FREQ 0.593 1.000 1.000

Note: The thresholds correspond to the 85% quantiles or to the 95% quantiles of the returns.

4. Conclusions

The present study examined the co-movement of price returns for a broad spectrum
of commodities for the years 2006–2020. Common movements across agricultural, energy
and metal prices returns are a concern for consumers, producers, traders, investors and
governments since any shock occurring to a specific commodity can easily propagate to
the other commodities causing disruptive joint events. The issue of co-movement was
addressed using a time-varying Gerber correlation and a set of models comprising historical
simulation, filter historical simulation, DCC and CARML models. The findings reveal that
there is evidence of co-movements across commodity returns and these co-movements
change over time. The correlation appears more noticeable for the pairs wheat–corn,
silver–gold, gold–oil and corn–soybeans. Commodity co-movements tend to rise during
extreme market distress. On the basis of the Brier scores, CARML and DCC models
show stronger forecasting power than the benchmark method (HS) irrespective of the
choice of the thresholds. However, CARML models show higher forecasting accuracy for
agricultural commodities, while DCC models are more accurate for energy products and
metals. The reason can be linked to the ability of GARCH family models to better capture
heteroskedasticity in the series, a feature that is more pronounced for energy and metals
than agricultural products. Our results are important for financial market participants
and portfolio managers in particular for building an optimal portfolio and forecasting
joint futures commodity returns. For instance, the inclusion of gold and silver in the same
portfolio would be redundant from an investment perspective given their high Gerber
correlation. This research could be extended to stock markets or used to analyze the
co-movement among spot and futures markets.
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