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Abstract: Overnight forecasting is a crucial challenge for revenue managers because of the uncertainty
associated between demand and supply. However, there is limited research that focuses on predicting
daily hotel demand. Hence, this paper evaluates various models’ of traditional time series forecasting
performances for daily demand at multiple horizons. The models include the seasonal naïve, Holt–
Winters (HW) triple exponential smoothing, an autoregressive integrated moving average (ARIMA), a
seasonal autoregressive integrated moving average (SARIMAX) with exogenous variables, multilayer
perceptron (MLP) artificial neural networks model (ANNs), an sGARCH, and GJR-GARCH models.
The dataset of this study contains daily demand observations from a hotel in a US metropolitan city
from 2015 to 2019 and a set of exogenous social and environmental features such as temperature,
holidays, and hotel competitive set ranking. Experimental results indicated that under the MAPE
accuracy measure: (i) the SARIMAX model with external regressors outperformed the ANN-MLP
model with similar external regressors and the other models, in every one horizon except one
out of seven forecast horizons; (ii) the sGARCH(4, 2) and GJR-GARCH(4, 2) shows a superior
predictive accuracy at all horizons. The results performance is evaluated by conducting pairwise
comparisons between the different model’s distribution of forecasts using Diebold–Mariano and
Harvey–Leybourne–Newbold tests. The results are significant for revenue managers because they
provide valuable insights into the exogenous variables that impact accurate daily demand forecasting.

Keywords: daily roomnights demand prediction; GARCH models; GJR-GARCH; SARIMAX; deep
learning; ANN-MLP; time series analysis; neural networks forecasting; volatility forecast;
hospitality; tourism

1. Introduction

Over the past several years, the rapid development of information technology has
been instrumental in the growth of demand in the hospitality sector. The new marketplace
is becoming more competitive, which causes pricing pressure on the traditional service
industries as the market supply increases. Moreover, with this increase in prominent
destinations supply, and the number of new accommodation listings beyond the traditional
purchasing options (e.g., sharing accommodation), new challenges on overnight demand
related to forecasting have been created. These new business models brought dramatic
changes to the sales processes. Consequently, forecasting demand as an essential function
for the hospitality industry stakeholders has developed new interesting forecasting models.
To this point, although accurate forecasting is a critical component that affects revenue max-
imization when selecting a specific model, the model choice within forecasting is crucial in
itself. For example, a reduction of the forecasting error might generate incremental revenue.

This study focuses on forecasting overnight demand by studying approaches to
predict daily demand. Recent literature, see [1–3], has looked at various techniques to ex-
amine the accuracy of hotel occupancy forecasts. Historically, each recommended method
demonstrates drawbacks [4] since many estimates use historical patterns to predict future
estimation. At the same time, the market challenges the standards for determining forecast-
ing techniques and accuracy indicators, the length of the forecast horizon, and the level
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of accuracy uncertainty [5]. This leads to strong irregularity, along with seasonal patterns.
The overnight demand exhibits variant arrival behavior that may contain outliers due to
factors such as promotions, holidays, and citywide events. In this context, the different
types of datasets often incorporate daily, intra-week, weekly, monthly, and even intra-
year irregular behavior that provides curves with trend and seasonality. Therefore, daily
demand structures are influenced by the strong effects of outliers, which, adjusting and
transforming to simplify the pattern, can often lead to a more accurate forecast.

The models employed in most of the existing hospitality and tourism literature for
the demand modeling and forecasting purposes include the vector autoregressive models
(VAR and VECM) or Bayesian technique (BVAR), autoregressive moving average (ARIMA),
exponential smoothing (ETS), time-varying parameter models (TVP), TBATS, choice model-
ing, and, recently, more advanced machine learning (ML) models (see [3,6–16]). Genuinely,
in modeling, seasonality is usually examined by the seasonal autoregressive integrated
moving average (SARIMA) model, which has been proven to have better performance [5].
There is applied research on forecasting daily or intraday high-frequency data in the opera-
tion of call centers and finance (see [17,18]). Call centers face daily high call volumes, while
arrival calls demonstrate complex trends and seasonal cycles [19]. Nowadays, consumer
behavior and market observations justifying those daily forecasting procedures should be
adjusted to trends and demand variations incorporating data that strongly affect demand.
Hotel demand exhibits high trends and seasonal patterns with an annual seasonal pattern
influenced by external factors, and from a first view, traditional hotel revenue management
forecasting is no longer entirely applicable. Likewise, daily hotel demand exhibits several
seasonal effects such as weekly pattern, intra-week, and weekend pattern with a period of
seven days and low, medium. Therefore, due to the nature of complexity, there is limited
research on the hotel demand topic while employing high-frequency daily data.

This paper aims to form an understanding for revenue managers of the existing
forecasting methods and reveal what can be implemented in practice. A short theoreti-
cal outline about the implemented forecasting methods will be represented in detail to
show the revenue managers that only a small portion is implemented in the daily hotel
operations. This shows the gap present between the theory and practice used in the hotel
operation. Therefore, due to the great interest in advanced forecasting models, the goal
is to measure how successful neural network models (ANN), seasonal ARIMAX (SARI-
MAX), GARCH (sGARCH), and Glosten–Jagannathan–Runkle GARCH (GJR-GARCH)
models perform comparably to simple alternatives. Asymmetric GARCH models such the
GJR-GARCH [20] have shown superior predictive out-of-sample performance. We eval-
uate the performance of these models with alternative prediction approaches, including
a seasonal naïve method, a Holt–Winters (HW) triple exponential smoothing model, and
an autoregressive integrated moving average (ARIMA) model. In addition, we implement
exogenous indicators (temperature, holidays, and hotel competitive set ranking) to the
SARIMAX and the multilayer perceptron (MLP) model, a neural network model (ANN).
Moreover, we conduct pairwise comparisons between the different model’s distribution
of forecasts using Diebold and Mariano (1995) [21] and Harvey–Leybourne–Newbold
(1997) [22].

We recall that demand levels typically exhibit multiple fluctuations daily due to the
strong effects of the exogenous indicators. Accurate forecasts are essential for revenue
managers as the entire hotel operation of each department depends heavily on their estima-
tions of demand and prices. Hence, an analysis of specific metrics has been introduced to
measure forecast accuracy, namely, the Mean Absolute error (MAE), the Root Mean Square
Error (RMSE), and the Mean Absolute Percentage Error (MAPE). Mainly, we evaluate if
the improvements achieved in the empirical results will indicate more robust predictions
for the overnight demand as the revenue management team relies on accuracy improve-
ments. Lastly, we considered the ANN-MLP as the benchmark forecasting model; thus,
we measure the accuracy along each model forecasts using the Relative Mean Absolute
Percentage Error (rMAPE) and the Relative Root Mean Square Error (rRMSE) measure.
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More specifically, we evaluate if the proposed model will confirm the literature, imply-
ing the effectiveness of neural network models towards comparative statistical models.
A dataset of 1484 daily demand observations from a major hotel throughout December
2015 to December 2019 is examined. Our results show that the multilayer perceptron
neural network model, including exogenous variables, is not favorable compared to the
SARIMAX model, including the same exogenous variables such as temperature, holidays,
competitive set ranking, or the GARCH models.

The study results can be summarized as follows: (i) the SARIMAX model with external
regressors is generally favorable and yields better results than the other models, including
the ANN-MLP model with similar external regressors, in every one horizon except one
out of seven forecast horizons; and (ii) the sGARCH-sttd and GJR-GARCH-sged shows a
superior predictive accuracy at all horizons. Both GARCH models have a high predictive
ability at the short and long horizons.

The paper is organized as follows: Section 2 presents a short review of the current
literature, while Section 3 follows an explanation of the model estimation and analysis
of the study results, highlighting the applied techniques and further discussion. Finally,
Section 4 summarizes the paper’s conclusions and possible future research.

2. Evaluation of Forecasting Methods

Before describing the empirical study results of the dataset, this chapter outlines
the various forecasting methods employed in the study. It provides an explanation and
details of each method. This is an empirical study, and it is crucial to show to the revenue
managers how the forecasting methods have developed and evolved during the last several
years and the advantages and disadvantages of each method.

Different types of econometric models are frequently employed to perform demand
forecasting. The traditional methods of quantitative forecasting include the time-series
domain, which is a set of observations generated sequentially in time and can be described
by its stationarity (mean, variance, and autocorrelation function) [23,24]. Forecasts made
at t time are needed at some future time t + l, that is, at lead time l, which vary with each
problem and properties on an objective to obtain a probability accuracy small as possible
based upon the actual and forecasted values [23].

In particular, several methods have been proposed in the hotel forecasting litera-
ture. Traditional time-series models such as exponential smoothing, moving averages,
and regression and more advanced models such as ARIMA in various forms have been
applied for forecasting and are well proved to be efficient. These statistical models usually
exercise historical databases; however, the outcome is under the prerequisite that selects
the appropriate parameters. In light of the advanced algorithm modeling, artificial neural
networks (ANN) have shown impressive results in developing forecasting models for other
industries; hence, we also implement this study.

2.1. Seasonal Naïve Method

The seasonal naïve approach is an advanced naïve benchmark model for forecasting
series with highly seasonal data. It states that each forecast should be equal to the last
observed value from the same season. The forecast for time T + h is written as ŷT+h =
yT+h−m, where yT is the demand at the hotel at period T = 1 . . . , n, h is the forecast horizon,
m is the seasonal period, and ŷT is the forecasted demand [24]. For example, with daily
data, the forecast for all future days within a specific month value equals the last observed
similar monthly day value. Even nowadays, the naïve method is the most applicable
method in the hospitality industry, referred to by revenue managers as the “Same day, last
year” forecasting approach. A recent study by [3] indicated that the performance of the
naïve approach was corresponding similarly to advance methods in all cases.
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2.2. Holt–Winters’ Triple Exponential Smoothing

The exponential smoothing (ETS) approaches are utilized to model time series various
components such as the trend, cycle, seasonal, and irregular or error (E) components [25].
ETS is an extension to the moving average method except that it is forecasting using a
weighted average of all past values. The choice of the proper ETS model is determined by
information criteria, such as the Akaike Information Criterion (AIC). For ETS models, AIC
is defined as AIC = −2 log(L) + 2k, where L is the likelihood of the model and k is the
total number of parameters.

Although the ETS framework refers to the three components: error, trend, and season-
ality, fitting a model with a daily seasonal cycle would need to be highly optimized, which
leads to high optimization challenges. The Holt–Winters method is an extended exponen-
tial smoothing method for the time series dataset, including trends and multiple seasonal
cycles. There are two types of seasonality, that is, additive and multiplicative. Ref. [26]
proposed a Holt–Winters exponential smoothing designed to capture triple seasonal cycles,
which are used in this paper:

`x = α(yx − sx−L) + (1− α)(`x−1 + bx−1) level (1)

bx = β(`x − `x−1) + (1− β)bx−1 trend (2)

sx = γ(yx − `x) + (1− γ)sx−L seasonal (3)

ŷx+m = `x + mbx + sx−L+1+(m−1) forecast (4)

where y is the observation, `, b, and s model the respective series components of level,
trend, and seasonality at time x and ŷ is the forecast for m periods ahead. The value of the
parameters α, β, and γ are estimated from the fitting of the smoothing equation with the
training data.

2.3. ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model expresses an ARMA
linear model class in statistical forecasting, even though exponential smoothing models
are built on a capture of the trend and seasonality in the data [18], with ARIMA models
defining stationary, non-stationary, and seasonal processes of order (p, d, q).

A common barrier in adopting Autoregressive Integrated Moving Average (ARIMA)
models for forecasting is that the order selection process is usually treated as subjective
and challenging to apply [24]. In this context, there have been several attempts to automate
ARIMA modeling in the last years. Specifically, in the hospitality industry, seasonality also
produces significant sales volatility. As a result, the forecasting procedures include the
autoregressive integrated moving average (ARIMA) process as:

(1− φ1B) (1−Φ1B4)(1− B)(1− B4)yt = (1 + θ1B) (1 + Θ1B4)εt, (5)

In the ARIMA model, to deal with multiple seasonality, external regressors need to be
added [27]. In addition, to incorporate multiple seasonality Fourier terms, various external
regressors are added to the ARIMA model, where Nt is an ARIMA process:

yt = α +
M

∑
i=1

Ki

∑
k=1

[α sin(
2πkt

pi
) + β cos(

2πkt
pi

)] + Nt, (6)

In this study, we have determined seasonality while considering external variables.
A SARIMA model with external regressors is referred to as SARIMAX (p, d, q)(P, D, Q)s,
where p, d and q are the order of AR autocorrelation, the degree of difference, and the order
of the moving average part, respectively, extended by P, D and Q to handle seasonality,
which is referred to as the seasonal part of the model, and s is the number of periods per
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season [28]. Moreover, we consider s = 7 because the period is one (1) week. SARIMAX
models’ general form can be modeled as:

φp(B)Φp(Bs)∇d∇D
s yt = βkxk,t′ + θq(B)ΘQ(Bs)εt, (7)

where B refers to the backward shift operator Bj zt = zt−j, the integer s is the seasonal
period, xk,t′ is the vector including the kth explanatory input variables at time t, and βk is
the coefficient value of the kth exogenous input variable. ∇d and ∇D

s are the non-seasonal
and seasonal difference operators of order d and D, respectively.

ARIMA models can be fitted to both seasonal and non-seasonal data. Seasonal ARIMA
demands a more detailed specification of the model composition. Therefore, before deter-
mining the estimation of the time series models, we performed the augmented Dickey–
Fuller (ADF) [29] test, which could determine whether the dataset series are stationary; if
the series is non-stationary, a data transformation is necessary. The ADF statistic is obtained

by ∆xt = α0 + b0xt−1 +
k
∑

i=1
c0∆xt−1 + wt where ∆ is the difference operator, α0, b0, and

c0 are coefficients to be estimated, and x is the variable whose time series properties are
examined and w is the white-noise error term. In addition, the null and the alternative
hypotheses are respectively b0 = 0 (series is non-stationary) and b0 < 0 (series is stationary).
The ADF test results indicates that the data are non-stationary (7-day seasonality) with
p-value being 0.076690, test statistic = −2.684889, Lag order = 24. Therefore, to generate a
robust model estimation of the SARIMAX models, we should differentiate our variables,
including the exogenous. Following the differentiation, we conclude that the process is
stationary; thus, the null hypothesis is rejected at the 1% level.

In order to supplement the above, we followed the methodology by computing a
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (KPSS Level = 2.665255, Truncation lag
parameter = 22, p-value = 0.01). In addition, we followed the methodology by [30] by
computing an Osborn, Chui, Smith, and Birchenhall (OCSB) test of seasonality [31] to
determine whether it needs seasonal differencing. Test statistic: −22.7428, 5% critical value:
−1.6662 Lag order 7 was selected using AIC. Finally, we employed the Shapiro–Wilk (SW)
test for normality, showing that none of the variables are normally distributed [32]. The
determination method of the seasonal (P, D, Q) and non-seasonal (p, d, q) terms was based
mainly on specific information criteria (AIC). In addition, the autocorrelation function
(ACF) and partial autocorrelation function (PACF) plots were also observed and could help
us determine the orders we choose in ARMA; therefore, the most fitting candidate models
were selected.

2.4. Artificial Neural Network

Artificial Neural Networks (ANN) describe a fundamental class of nonlinear models.
The big-data era and computational capacity have been successfully implemented into the
advancement of the ANN model forecasting applications for the estimation of demand [33].
An empirical application of ANNs has demonstrated satisfactory forecasting performance
with evidence mainly published in other industries than in hospitality. Therefore, ANN
models have been popular in forecasting literature in various industries, with several
examples coming from electricity forecasting and forecasting tourism demand between
the researchers. Specifically, in hotel demand literature, the work by [34] has been one
of the earliest using such models. Several ANN models have been applied to tourism
and hotel forecasting practices. For a detailed presentation of an overview, the reader
is referred to work by [35], which is a review of published studies from 2007 to 2015 on
tourism and hotel demand modeling and forecasting methods, including studies in the
neural network’s method. Nevertheless, the studies focused on hotel demand are relatively
limited in employing the ANN model in relation to tourism studies.

This section and the rest of the paper focus on the most common type of ANN model,
a feedforward neural network, the Multilayer Perceptrons (MLP). The MLP networks
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contain a set of inputs (ρi . . . ρn), three or more layers of neurons with a nonlinear activation
function while being used in a variety of problems, especially in forecasting because of
their inherent capability of arbitrary input–output mapping [33]:

ŷt = β0 +
H

∑
h=1

βhg

(
γ0i +

I

∑
i=1

γhiρi

)
, (8)

where ŷt is the output vector at time t, I refers to the inputs ρi number, as lags of the
series, and H indicates the hidden nodes number in the neural network. The weights
w = (β, γ), with β = [β1, . . . , βH ] and γ = [γ11, . . . , γH1] are for the hidden and output
layer, respectively. Similarly, the β0 and γ0i are the biases of each node, while g( · ) is the
transfer function, which might be either the sigmoid logistic or the tanh activation function.

In the first steps to prepare a forecast using ANNs modeling, we need to determine
the applicable input variables, hidden layers, and nodes number, and select a suitable
database. Finally, the neural network is trained by modifying the network is hidden and
output weights to reduce the output errors on a set of training data.

2.5. GARCH Models

The ARCH (autoregressive conditional heteroscedasticity) introduced by Engle
(1982) [36] and the GARCH (generalized autoregressive conditional heteroscedasticity)
family of models proposed by Bollerslev (1986) [37] have been extensively utilized in the
field of financial modeling to model the volatility of financial returns. The GARCH model
is a continuation of the ARCH model that supports the conditional variance to change over
time as a function of past errors leaving the unconditional variance constant [37]. In the
hospitality industry, the application is limited to a few studies to model the demand for
hotel rooms. For example, Divino and McAleer (2010) [38] used the generalized ARCH
(GARCH) and the exponential GARCH to estimate the increased rate of daily arrivals to
Peru. Among these studies, for example, the GARCH and Glosten–Jagannathan–Runkle
GARCH (GJR-GARCH) volatility models have been applied to estimate monthly interna-
tional tourism arrivals in Chan et al. (2005), Shareef and McAleer (2008), and Liang (2014)
(see [39–41]).

A GARCH(m,s) model extends the ARCH model with a recursive term on σ̂2
t :

σ̂2
t = ω̂ +

m

∑
i=1

α̂iw2
t−i +

s

∑
j=1

β̂ jσ̂
2
t−j (9)

where m is the model order, and ω > 0, αi ≥ 0, β j ≥ 0 were the parameters with uncondi-
tional variance given ∑m

i=1 αi + ∑s
j=1 β j ≤ 1.

The Glosten–Jagannathan–Runkle GARCH (GJR-GARCH) model assumes a specific
parametric form for this conditional heteroskedasticity. Specifically, the εt GJR-GARCH
indicates εt = σtzt, where zt is standard Gaussian and:

σ2
t = ω + (α + γIt−1)ε

2
t−1 + βσ2

t−1 (10)

It−1 :=

{
0 if rt−1 ≥ µ

1 if rt−1 < µ
(11)

The common restrictions on the parameters are ω, α, γ, β > 0. The GARCH model is a
restricted version of the GJR-GARCH, with γ = 0. We have chosen the best model (p and
q) using the Akaike Information Criterion (AIC).

3. Empirical Evaluation and Results
3.1. Forecasting Specification and Dataset

The dataset of this study contains daily demand observations for a major hotel in a
US metropolitan city (Boston) over the period of 9 December 2015 to 31 December 2019.
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The study covers a period of 211 weeks and 4 days, including overnight demand and a set
of exogenous social and environmental features (weekday, holidays, temperature, and com-
petitive hotel ranking). Figure 1 exhibits periodic behavior of seven periods within the week
and a yearly cycle. We divided the dataset into two segments, one employed for fitting the
model and another for testing the out-of-sample performance following an approximate
ratio of 94:6. The training set (i.e., 1391 days from 9 December 2015 to 29 September 2019)
and the test set (i.e., 93 days from 29 September 2019 to 31 December 2019). We used the
test set data from the end of September 2019 to December 2019 for testing the various
forecasting model’s performance. The forecast horizon to observe the demand is defined
from 1 to 28 days ahead forecast. In Table 1, we report some descriptive statistics for
the dataset.

Figure 1. Daily totals for demand and temperature.

Table 1. Descriptive statistics for dataset (December 2015–December 2019).

n Mean sd Median Min Max Skew Kurtosis se SW(p)

Demand 1484 66.90 14.10 66.43 33.67 95.00 0.10 −0.59 0.37 <0.01

Temperature 1484 57.44 18.66 57.00 1.90 97.00 −0.03 −0.87 0.48 <0.01

Holidays 1484 0.17 0.38 0.00 0.00 1.00 1.74 1.02 0.01 <0.01

Compsetrank 1484 4.90 2.53 5.00 1.00 10.00 −0.21 −1.16 0.07 <0.01

Note:. sd: Standard Deviation; min: Minimum; max: Maximum; skew: Skewness; se: Standard Error; SW: Shapiro–Wilk Test. Demand in %;
Temperature in Fahrenheit scale.

In addition, to measure the accuracy of the forecasting methods, an analysis of specific
metrics has been applied: the Mean Absolute error (MAE), the Root Mean Square Error
(RMSE), and the Mean Absolute Percentage Error (MAPE):

MAE =
1
h

h

∑
j=1

∣∣yt+j − ŷt+j
∣∣, (12)

RMSE =

√√√√1
h

h

∑
j=1

(
yt+j − ŷt+j

)2, (13)

MAPE =
1
h

h

∑
j=1

yt+j − ŷt+j

yt+j
, (14)

The principal means of forecasting accuracy to assess hotel demand performance,
and the easiest to interpret, is the mean absolute percentage error (MAPE). RMSE is a
scale-dependent measure that compares errors of different calculation models for the same
forecast dataset and the eventual outcomes, while MAE is popular because of its simplicity
to understand.
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Finally, because we compare each model to the ANN-MLP Neural network technique,
which is considered the benchmark forecasting model, we measure the accuracy of the
forecasts using the Relative Root Mean Square Error (rRMSE) and the Relative Mean
Absolute Percentage Error (rMAPE) measure. This way, we present a direct benchmarking
between the different forecasting models to the chosen benchmarking model:

Relative Root Mean Square Error: rRMSE =
RMSEMethoda

RMSEMethodb

(15)

Relative Mean Absolute Percentage Error: rMAPE =
MAPEMethoda

MAPEMethodb

(16)

To measure the performance of ANN-MLP forecasts, we denote the MAPE of ANN-
MLP as a denominator for all evaluations. For example, the rMAPE measure is based on
relative errors, and it is not scale-dependent. Therefore, when rMAPE > 1, Method 2 is
more accurate; when rMAPE < 1, the opposite is true, while, if rMAPE = 1, methods are
equally accurate [42].

Moreover, to assess the statistical significance of improvements in each forecast’s
forecasting accuracy, we conducted the test of predictive accuracy proposed by Diebold
and Mariano (1995) [21]. Although Diebold and Mariano’s test is considered an essential
measurement of forecast comparisons, it becomes less accurate for longer forecast hori-
zons. Therefore, [22] proposed a modified Diebold–Mariano test, the Harvey–Leybourne–
Newbold (HLN) test that applies to forecasts beyond one step ahead and establishes a
more robust approach to assessing the differences between the performance of forecasts
distribution.

3.2. Working with Outliers and Seasonality

Forecasting models can capture different types of trends or seasonal patterns. There-
fore, we should examine seasonality, stationarity, and autocorrelations to propose an
appropriate time series forecasting model based on specified criteria. However, forecasting
models can also be affected by the magnitude outliers that produce irregularities with an
impact on the state of the fitted model. Ordinarily, hotel demand is presenting with high
fluctuations daily. Due to observing seasonality, for example, during the low winter and
summer-fall, high season demand produces irregular pick and low patterns.

Moreover, external variables such as citywide events, promotional activities, holidays,
and weather conditions can produce irregular patterns because sometimes it is difficult
to identify and predict. These irregular variations presented in the form of outliers could
bias the model statistics. Systematic detection and estimation to ascertain the outliers’
magnitude in historical trends can smooth the effects of the model re-estimation [43].

It can be seen that, when an outlier is observed, the forecasting model needs to be able
to identify and remove such time series outliers. Referring to the work by [44], outliers
vary in level or when an outlier occurred. They identified that forecasters during the
detection procedure might not be able to identify the type correctly due to the nature
of origin. For example, outliers that occurred near the last period of the series can not
be empirically determined, and, similarly, if outliers occurred within the range of one or
two periods before the forecast origin. In such cases, the behavior of outliers during the
detection period, if identified, may or may not be correct.

The occupancy demand time series’s primary characteristic is irregular behavior
because of seasonality, trend, and cycle. To treat such irregular curves, if they are present,
the data can be seasonally deconstructed. This procedure of extracting the data behavior
components is referred to as decomposition. We can decompose the series by employing
either an additive or multiplicative model:

Y = St + Tt + Et

Y = St ∗ Tt ∗ Et



Forecasting 2021, 3 588

where St is the seasonal component, T is the trend and cycle, and E is the remaining error.
Following the dataset decomposition and, since ARIMA models require a smooth trend
series to generate accurate results, further differentiation of the dataset is implemented.
We can then determine p, d, and q values to fit the ARIMA model.

Finally, we ran a rolling h-step-ahead forecast, moving the estimation one step ahead
of each variable to measure the out-of-sample performance. The one-step-ahead forecast
continuously re-estimates the model and provides two-step-ahead forecasts, and the pro-
cess continues for h periods. Based on these, we forecast the daily demand for one-day
ahead prediction and continue two days to 28 days following this rolling approach. Thus,
a set of h = 1- to 28-steps-ahead daily forecasts was generated.

3.3. Empirical Study

Figure 2 shows the daily demand for the entire dataset over a time period. The results
indicate a stable demand over time but with a significant increase trend presented by
the black line trend line. The trend shows periodic behavior within a month and year
cycle. The overall mean for the monthly occupancy was 66.43% (µ = 66.43%), and the
variance is 1.98%. The shaded periods show a substantial decrease in demand due to
the winter period in the city. The period between March 2018 to November 2018 shows
a significantly increasing trend compared to the same period last year with an average
demand of 65%. The same trend continues in the year 2019. This time is considered as a
low season with limited demand in any customer segment. In addition, the mean daily in
the day of the week is quite similar on a daily basis, and the ratio between the variance to
mean is significantly greater than one (1) every day.

Figure 2. Hotel daily total demand.

In addition, Figure 1 shows the periodic behavior of temperature comparable to the
series demand period. The seasonality displays a similar seasonality pattern with increases
and decreases based on each period. It turns out that the temperature variable trend tends
to be close to the demand series trend. Temperature is one of the exogenous factors which
affects the daily demand.

Figure 3 provides the average weekly plot of the dataset on the day of the week.
The weekly seasonality indicates intraweek demand patterns. The trend shows demand
fluctuation similar to business hotels, where the demand performance is higher in the
middle of the week (Tuesday, Wednesday) and adjusted slightly downward on Thursday,
while demand on weekends shows a decrease. In addition, the intraday of the week
demand shows a considerably similar pattern with dataset demand over time. This pattern
suggests that the daily demand is related to hotel type and market segment, corporate
retail customers.
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Figure 3. Day of the week demand for the entire data set.

Figure 4 presents the correlation relationship among the dataset variables on each
axis. The correlation values range from −1 to +1. The relationship is also symmetrical
and diagonal, which can be seen because the same two variables are matched mutually in
those squares.

Figure 4. Dataset variables’ correlation.
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3.4. Forecasting Methods Results

The forecast accuracy results for the four different forecast models are summarized in
Table 2. An initial review of the forecasting accuracy estimates disclosed that the differences
in forecast accuracy within the models are moderate. On the other side, the gap between
the first and the last horizon and the remaining forecast horizons (i horizons) generated
substantial differences. It is obvious that accuracy measures generate conflicting results not
only between the forecasting methods but also within the examined horizons. The model
with the highest performance is highlighted in boldface across the horizons. The various
forecasting models out of sample performance was measured for multi-step forecasts from
1 to 28 horizons considered necessary for the hotel revenue manager (horizon: 1, 2, 3, 7, 14,
21, 28 days ahead) using a rolling approach.

Table 2. Forecasting methods’ accuracy.

Accuracy Forecast Forecasting Method

Measure Horizon SNaïve HW ARIMA SARIMAX sGARCH-sttd gjrGARCH-sged ANN-MLP

MAE h = 1 6.240 8.005 5.871 8.398 2.000 2.010 3.869
h = 2 8.650 5.009 6.799 12.131 6.465 6.455 5.269
h = 3 9.143 6.299 7.220 16.690 5.107 5.087 5.696
h = 7 12.031 4.354 7.570 9.864 4.761 4.761 6.009
h = 14 11.681 4.963 7.903 11.572 4.865 4.869 8.632
h = 21 11.099 6.142 7.535 8.371 6.547 6.537 8.456
h = 28 11.536 7.328 7.355 12.305 7.133 7.122 8.488

RMSE h = 1 6.240 8.005 7.313 10.365 2.000 2.010 3.869
h = 2 7.610 7.505 8.617 14.579 4.929 4.924 4.661
h = 3 8.199 7.338 9.290 18.866 5.473 5.463 5.054
h = 7 9.588 7.027 9.664 12.362 5.983 5.980 6.063
h = 14 11.595 6.562 9.963 14.437 6.042 6.039 7.388
h = 21 12.274 6.420 9.792 10.288 6.541 6.536 8.059
h = 28 12.683 6.527 9.201 15.214 7.259 7.251 8.341

MAPE h = 1 9.905 12.706 12.101 8.159 2.595 2.608 6.005
h = 2 12.134 7.661 7.379 5.961 7.914 7.902 7.305
h = 3 12.207 8.716 9.823 5.346 6.363 6.337 7.503
h = 7 17.781 6.080 8.008 4.146 6.649 6.652 8.374
h = 14 16.724 6.647 9.405 5.116 6.498 6.507 11.706
h = 21 15.622 8.100 10.563 5.093 8.213 8.204 11.277
h = 28 15.997 9.232 11.912 5.988 8.855 8.844 11.210

Note:. MAE: Mean Absolute Error; RMSE: Root Mean Square Error; MAPE: Mean Absolute Percentage Error. MAE, RMSE in points, MAPE
in percentage (%).

Results presented in Table 2 show inconsistency along with the forecasting meth-
ods and accurate estimates. The above confirms the work of [4], which noted that each
model demonstrates drawbacks, besides the criteria for choosing forecasting methods,
accuracy measures, and forecast-horizon [5]. The findings indicate that forecasting with
the Holt–Winters Seasonal Exponential Smoothing including a trend component and a
seasonal component state-space additive model and additive errors with a no Box–Cox
transformation was the best model minimized the AIC statistic with parameterization
results as α = 0.9590, β = 0.0046, γ = 0.0324, and AIC = 6178.4534. In addition, the model
reported more robust results in MAE and RMSE for four out of seven horizons.

According to the Akaike information criterion (AIC), ARIMA (3, 0, 5) is the best
model, whose AIC is 10,784.483. Although the model partially generated promising
results, the other forecasting methods such as SARIMAX, Holt–Winters, and, in some
cases, the ANN-MLP models outperformed the ARIMA model. The initial analysis further
showed that the Seasonal Naïve method was the least accurate approach overall.
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Interestingly, the SARIMAX(1, 0, 1)(0, 1, 2, 7) model, whose AIC is 10,143.059, includes
the exogenous variables as external regressors, namely temperature weekday, holidays,
and competitive set ranking, it turns out that it is the best one. We employed our fitted
SARIMAX model on the test set and obtained that the test MAPE is 7.333%, which is
significantly more robust than any other proposed model. Table 2 reports that, based on the
mean absolute percentage error (MAPE) accuracy, the SARIMAX model outperforms the
others while ANN-MLP and Holt–Winters are second best. This is a significant observation
considering that the ANN-MLP models are typically regarded as models that outperform
most traditional models.

In addition, we considered the multilayer perceptron (MLP) model. In the neural
network training, we have tried different models with hidden layers, and the number
of hidden neurons ranges from 2 to 12. We run our neural network and generate our
parameters multiple times to find hidden layers that generate better accuracy results.
Finally, we selected the best model based on the cross-validation error (17.4564) with
two hidden layers. In addition, we used all exogenous variables fitted into the ANN-
MLP model similar to SARIMAX. We yielded 92.19% classification accuracy in this neural
network model using a (7, 2) hidden configuration. We observe that ANN-MLP mostly
outperformed all other models according to the RMSE measure for the first four out of seven
horizons. It seems that, for short-term horizons (h: 1, 2, 3, 7), the ANN-MLP generates more
robust results. Similarly, for MAE and MAPE, the model forms better accuracy on horizons
1 and 3 for the former and horizon 1 for the latter. Table 2 summarizes the indicative ANN
model accuracy results on the three measures.

Estimation of the GARCH models was conducted via the AIC criterion. Akaike
information criterion (AIC) aims to find the best prediction. For GARCH models, the results
are superior to any other models in terms of the accuracy measures, including the ANN-
MLP benchmark model at almost every horizon, except between sGARCH-sttd, GJR-
GARCH-sged, and SARIMAX models considering the MAPE measure. These findings
are in line with Divino and McAleer (2010) [38] that the GARCH models fit the data
extremely well, and the estimated models were able to observe the volatility persistence of
international tourist arrivals in Peru. The GARCH models are providing better forecasts
among each model at h = 1 step-ahead. Moreover, in the long-term forecasts, the GARCH
models are significantly better than the Seasonal Naïve, ARIMA, and ANN-MLP models
(see Table 2).

In this context, observations from the average rMAPE revealed that ANN-MLP out-
performed the various models only in one (h = 1) out of seven forecast horizons, except the
GARCH models while, for the remaining periods, SARIMAX following by the GARCH
family models, and partially ARIMA and the Holt–Winters method perform best, verifying
that seasonal methods can outperform more advanced as examined by [26]. The overall
accuracy for the out-of-sample performance is demonstrated in Table 3. In this study,
ANN-MLP performed better between horizon 1 and 7 than the other methods when
we compare among other models according to RMSE in Table 2. Figure 5 provides an
additional comparison of each model’s results according to rMAPE.

Similarly, Table 4 provides an additional comparison of relative accuracy measures of
horizons 1 to 28 ahead forecast by the forecasting method according to rRMSE. We assess
the out-of-sample forecasts for statistically significant differences using the DM and HLN
tests. Figure 6 shows the relevant out-of-sample accuracy while a narrow examination
makes it clear that the ANN-MLP forecast based on the raw data outperforms the other
models, between horizon 2 to 7, except for the GARCH models for h = 1 and GARCH
models for horizons 7 to 28 and the Holt–Winters method for horizons 14, 21, and 28, which
are more accurate.
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Table 3. Average rMAPE of forecasting methods.

Forecasting
Method h = 1 h = 2 h = 3 h = 7 h = 14 h = 21 h = 28

Seasonal Naïve 1.649 1.661 1.627 2.123 1.429 1.385 1.427
HW 2.116 1.049 1.162 0.726 0.568 0.718 0.824
ARIMA 2.015 1.010 1.309 0.956 0.803 0.937 1.063
SARIMAX 1.359 0.816 0.712 0.495 0.437 0.452 0.534
sGARCH-sttd 0.432 1.083 0.848 0.794 0.555 0.728 0.790
gjrGARCH-sged 0.434 1.082 0.845 0.794 0.556 0.727 0.789
ANN-MLP 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Figure 5. Average rMAPE of forecasting methods.

Table 4. Average rRMSE of forecasting methods.

Forecasting
Methods h = 1 h = 2 h = 3 h = 7 h = 14 h = 21 h = 28

Seasonal Naïve 1.613 **,• 1.633 * 1.622 **,• 1.582 **,‡ 1.570 ***,† 1.523 ***,† 1.520
HW 2.069 1.610 * 1.452 **,† 1.159 ***,‡ 0.888 0.797 ***,† 0.783 ***,†

ARIMA 1.890 1.849 * 1.838 ***,† 1.594 1.349 1.215 ***,† 1.103
SARIMAX 2.679 **,• 3.128 **,• 3.733 ***,† 2.039 ***,† 1.954 1.277 ***,† 1.824
sGARCH-sttd 0.517 * 1.057 **,• 1.083 ***,† 0.987 ***,† 0.818 0.812 ***,† 0.870 †

gjrGARCH-sged 0.520 * 1.056 **,• 1.081 ***,† 0.986 ***,† 0.817 0.811 ***,† 0.869 ***
ANN-MLP 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: statistically significant difference between the ANN-MLP forecast and the various forecast models based on the DM test at * p = 0.10,
** p = 0.05, and *** p = 0.01. A statistically significant difference between the distribution of forecasts based on the HLN test at • p = 0.10,
‡ p = 0.05, and † p = 0.01.
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Figure 6. Average rRMSE of Forecasting Methods.

4. Conclusions

In this study, we have examined various forecasting methods for hotel demand.
We introduced a framework and its application to estimate the hotel demand based on
daily disaggregate data and numerous exogenous variables. Forecasting accuracy is
regarded as a significant determinant of the revenue manager’s daily work to revenue
maximization. Therefore, it is vital to identify a model which might generate more robust
estimation accuracy that is easily applicable. In this study, using empirical results, we
examine if the results will indicate more robust predictions for different models, including
a SARIMAX model with exogenous variables compared to ANN-MLP and the other
statistical models. Moreover, we incorporated symmetric and asymmetric conditional
volatility models, GARCH and GJR-GARCH. Following the literature, neural network
models tend to outperform forecasts from other forecasting models [45]. To measure the
performance achieved by ANN-MLP, we have indicated ANN-MLP as the benchmark
model for all evaluations.

Observations from the relative mean absolute percentage error (rMAPE) revealed
that SARIMAX outperformed the various models in every seven forecast horizons except
for the one-step horizon (h = 1), where ANN generated more robust results. In addition,
the GARCH-sttd and GJR-GARCH-sged models showed significant evidence of effective-
ness when seeking to forecast daily hotel demand. The empirical results indicated that the
models were able to outperform every other one. Specifically, the findings reveal significant
gains in accuracy levels when examining the daily demand time series. This confirms
the work by Divino and McAleer (2010) [38]. We also found that the Holt–Winters and
the ARIMA method perform best in four out of seven horizon periods (horizon: seven to
28), verifying that simple techniques can outperform more advanced [26]. Our results are
in line with the study of [4], who indicated that each forecasting method demonstrates
drawbacks in addition to the market challenges, the forecasting horizon, and the level of
accuracy uncertainty [5].

Finally, hotel demand exhibits several seasonal effects with weekly patterns (intra-
week and weekend patterns) with a seven-day, low, medium, and high seasonal pattern
with an annual seasonal pattern. Therefore, considering that hotel demand exhibits high
trends and seasonal patterns influenced by external factors that impact the performance,
this study’s results provide a valuable tool for revenue managers. Therefore, we believe that
the empirical results of the SARIMAX, including exogenous factors such as temperature,
holidays, competitive set rank, and weekday, or the GARCH models create an enormous
potential framework to support revenue management decisions.

The hotel demand market shows substantial volatility daily due to various events;
thus, the current study is based on the specific hotel data and location. Hence, using a
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different dataset and location might boost the model’s performance and provide more
accurate estimations. Further work might develop different results by using the same or
other forecasting techniques. In addition, the exogenous variables used in the study impact
the forecasting accuracy. While some broad qualitative conclusions about the importance
of various features and the use of SARIMAX and ANN-MLP in daily demand observations
can be drawn from our results, the particular choice of exogenous variables, etc. may not
be universally applicable across other studies. Similarly, we might control the number of
outliers more efficiently while understanding machine learning algorithms’ limits.
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ARIMA Autoregressive Integrated Moving Average
ETS Exponential Smoothing
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GJR-GARCH Glosten–Jagannathan–Runkle GARCH
h Horizon
HW Holt–Winters (Triple Exponential Smoothing)
KPSS Kwiatkowski–Phillips–Schmidt–Shin
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
OCSB Osborn, Chui, Smith, and Birchenhall
PACF Partial Autocorrelation Function
rMAPE Relative Mean Absolute Percentage Error
RMSE Root Mean Square Error
rRMSE Relative Root Mean Square Error
SARIMAX Seasonal Autoregressive Integrated Moving Average
TVP Time-Varying Parameter
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