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Abstract: The energy sector is moving towards a low-carbon, decentralised, and smarter network. The
increased uptake of distributed renewable energy and cheaper storage devices provide opportunities
for new local energy markets. These local energy markets will require probabilistic price forecasting
models to better describe the future price uncertainty. This article considers the application of
probabilistic electricity price forecasting models to the wholesale market of Great Britain (GB) and
compares them to better understand their capabilities and limits. One of the models that this paper
considers is a recent novel X-model that predicts the full supply and demand curves from the
bid-stack. The advantage of this model is that it better captures price spikes in the data. In this
paper, we provide an adjustment to the model to handle data from GB. In addition to this, we then
consider and compare two time-series approaches and a simple benchmark. We compare both point
forecasts and probabilistic forecasts on real wholesale price data from GB and consider both point
and probabilistic measures.

Keywords: price forecasting; day-ahead forecasting; probabilistic price forecasting; electricity prices;
supply and demand curves; price spikes; wholesale market

1. Introduction

Since the liberalisation of the electricity market, forecasting electricity prices has been
an important factor in decision making for energy suppliers and generators. Day-ahead
wholesale electricity price forecasts are an essential component of the electricity market. In
the wholesale market, electricity is traded between suppliers and generators by placing
offers and bids, respectively, for different volumes of electricity. This is used to set the
wholesale price at which day-ahead electricity is purchased. Energy suppliers generally
hedge (purchase ahead) their best forecast of volumes and refine their positions closer to
delivery, such as in the day-ahead market. The overall cost of wholesale energy is combined
with other cost elements in the tariffs offered to consumers. The wholesale electricity price
forecasts are a fundamental input for an energy company’s decision making. Prices are
relatively volatile, and hence, probabilistic forecasts are more useful, as they describe the
uncertainty associated with different events. In this article, three day-ahead probabilistic
electricity price forecasts are developed and tested for Great Britain’s day-ahead wholesale
electricity market. One of the focuses will be on a recent method developed in [1] called
the X-model, whose focus is on the prediction of spikes in the electricity price.

Until recently, wholesale price forecasting was typically focused on point forecasts.
However, in the last few years, probabilistic price forecasting has been gaining interest.
The comprehensive 2014 review by Weron [2] showed that very few papers at the time
considered probabilistic forecasts. The 2018 review update by Nowotarski and Weron [3],
however, highlighted the importance of probabilistic forecasts due to the introduction of
the so-called smart grid and the increased uncertainty in supply and demand. A more
recent review [4] published after the development presented in this article underlines the
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need for a rigorous approach and sensible benchmarking in the electricity price forecasting
field.

The 2018 review showed that there was an increase in probabilistic electricity price
forecasting papers, but the literature is relatively sparse, especially compared to load
forecasting, with only 38 papers on probabilistic electricity price forecasting for the pe-
riod of 2002–2016. There has not been a dramatic change in the number of probabilistic
electricity price forecasting papers since the review by Nowotarski and Weron [3]. Using
the same search terms as the authors (Scopus query used to find probabilistic electricity
price forecasting publications: (TITLE((“probabilistic” AND “forecasting”) OR interval OR
density) OR TITLE-ABS-KEY(“probabilistic forecast*” OR “interval forecast*” OR “density
forecast*” OR “prediction interval*”)) AND (TITLE (((((“electric*” OR “energy market”
OR “power price” OR “power market” OR “power system” OR pool OR “market clear-
ing” OR “energy clearing”) AND (price OR prices OR pricing)) OR lmp OR “locational
marginal price”) AND (forecast OR forecasts OR forecasting OR prediction OR predicting
OR predictability OR “predictive densit*”)) OR (“price forecasting” AND “smartgrid*”))
OR TITLE-ABS (“electricity price forecasting” OR “forecasting electricity price” OR “day-
ahead price forecasting” OR “day-ahead mar*price forecasting” OR (gefcom2014 AND
price) OR ((“electricity market” OR “electric energy market”) AND “priceforecasting”) OR
(“electricity price” AND (“prediction interval”OR“interval forecast”OR“density forecast”
OR “probabilisticforecast”))) AND NOT TITLE (“unit commitment”)) AND (EXCLUDE
(AU-ID, “[No Author ID found]” undefined))), we found 11 papers in 2018, 10 in 2019, 16
in 2020, and 8 in 2021 so far. So there has only been a small uptick in probabilistic price
forecasting, and much more work in this area is still required. In particular, there was
only one paper found on probabilistic price forecasting within the day-ahead wholesale
market in Great Britain [5]. In this paper, Maciejowska et al. produced prediction intervals
by applying a quantile regression with several individual point forecast methods used as
independent variables and the spot price as the dependent variable. The presented method
also updated this model by using a PCA to extract common factors, which were used as
independent inputs within a quantile regression. A limitation to this work is that they only
considered prediction intervals and, hence, did not produce a detailed description of the
uncertainty. In addition, they did not consider price spikes.

As summarized in the review by Nowotarski and Weron [3], probabilistic forecasts
in the electricity price sector started to appear after 2002 and gained momentum thanks
to the Global Energy Forecasting Competition of 2014. Such models can be characterized
by the family of the modelling technique used (neural network, traditional statistical time
series, hybrid, or other) and the method used to compute the prediction interval. The
prediction interval can be computed from historical simulations (also called empirical or
sample prediction intervals), from distribution-based forecasts (usually approximating
the error distribution with a Gaussian distribution), from bootstrapping, or from quantile
regression averaging. The bootstrapping method [6] is particularly popular for neural
network methods, but is also used in statistical time-series approaches [7]. The quantile
regression averaging method (QRA) proposed by Nowotarski and Weron [8] has gained
popularity in the probabilistic electricity price forecasting field and was used by the top
two winning teams of the Global Energy Forecasting Competition of 2014 [9,10]. More
recently, Uniejewski et al. [11] presented a regularised form of QRA that utilises the LASSO
method. A regularised approach was also considered by Banitalebi et al. [12], but while
using a triple seasonal exponential smoothing model.

As the probabilistic electricity price forecasting field has developed, statistical time-
series approaches have seemed to become proportionally more popular than in the elec-
tricity price point forecasting landscape, but neural network approaches—in particular,
deep learning—have gained interest in the last few years. He et al. [13] considered deep
convolutional neural networks. Brusaferri et al. [14] present a Bayesian deep learning
approach to probabilistic day-ahead price forecasts and demonstrated it on both the Italian
and Belgian markets.
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Statistical time-series approaches, such as linear autoregressive methods and ARIMA
models, are common in price forecasting, and have continued to be developed. Recent
developments from Marcjasz et al. [15] showed that a nonlinear version of an ARX could
outperform its linear counterparts. Uniejewski et al. [16] considered a new class of
probabilistic models called seasonal component autoregressive models (SCARX). Since
their successful application within the Global Energy Forecasting competition in 2014 [10],
generalised additive models have become more popular and have been applied extensively
in load and price forecasting. Bernardi and Lisi [17] use a generalised additive model to
generate point and prediction intervals and applied it to the Italian electricity market.

There are also some newer and more unique approaches emerging, as well as models
that are perhaps common in areas such as load forecasting, but have not been applied as
much in price forecasting. Gaussian processes are common in load forecasting. Mehmood
et al. [18] used a Gaussian process regression for interval forecasting of SPOT prices. An
interesting paper by Taylor [19] considered the generation of prediction intervals by using
a quantile approach versus using the less common “expectile” approach. Finally, a unique
approach was applied by Kath and Ziel [20], who considered a conformal prediction
approach in order to estimate prediction intervals. CP is a framework that considers a
non-conformity score on an out-of-sample dataset, and then a threshold is calculated for
the one-step-ahead forecast to produce the prediction intervals.

Of particular importance is accurately forecasting price spikes, which are large devia-
tions from the mean price that are either big or small. As discussed in [1], many researchers
have considered regime-switching models or jump-diffusion models to predict extreme
values, and these do not typically forecast the entire series. The authors of [3] mentioned a
few forecasting studies that were designed to estimate spikes; for example, [21] considered
an autoregressive conditional hazard model, Ref. [22] used a specific error metric to train
and select models while accounting for spikes, and the authors of [23] used a threshold
forecasting model. However, there is still unexploited potential in terms of investigating
the underlying mechanisms behind price spikes. As pointed out in [1], many studies only
model the individual spike and not the entire price time series, and all of them ignore the
underlying mechanism that generates the prices. Accounting for some of these drawbacks,
Ziel and Steinert developed the so-called X-model, a unique approach that forecasts entire
supply and demand curves to produce a probabilistic price forecast [1]. By forecasting
the supply and demand curves, the model can capture potential price spikes and the
uncertainty around them, since sensitivities to small changes in bids can be modelled. In
particular, the likelihood of price spikes is strongly related to the steepness of the supply
and demand curves near the clearance price. In these cases, a small shift in the bids or
offers could cause a dramatic increase/decrease in the final clearance price. Estimating
the supply and demand curves increases the chances that such price spikes can be esti-
mated. The authors compared their models with a simple weekly persistence model and a
regime-switching model.

The aim of this paper was primarily to bridge some of the gaps in probabilistic price
forecasts applied to day-ahead wholesale market data from Great Britain. In particular, we
applied the X-model to forecast the aggregated supply and demand curves. In addition to
this, we also considered and compared some more traditional time-series-based methods.
Hence, in addition to expanding the literature into probabilistic price forecasting for the
market in GB, we will also be investigating the ability to predict price spikes by focusing
on a particular real-life case study using data from the EPEX SPOT power exchange. To
the authors’ knowledge, there has not been an investigation of probabilistic price spike
forecasting in the British day-ahead market.

The paper is organised as follows. In Section 2, we introduce the background of the
wholesale market in Great Britain (GB); in Section 3, we then introduce the methodology of
the methods that we implement in this paper. In Section 4, we introduce the data that will
be used for our experiment. In Section 5, we investigate some further details of the class
forecasts for the X-model before presenting both point and probabilistic price forecasting
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results in Section 6 using real data from the EPEX SPOT day-ahead market. In particular,
we consider a particular price spike that occurred in the data in January 2019. Finally, we
summarise in Section 7.

2. Background of Wholesale Electricity Price Forecasting

There are two day-ahead electricity power exchange markets operating in the whole-
sale market of Great Britain (GB): APX, which is owned by the EPEX (European Power
Exchange) SPOT SE, and N2EX, which is owned by Nord Pool Spot AS in cooperation with
Nasdaq Commodities. The EPEX SPOT exchange is the focus of the research presented in
this document.

For each hour of the next day, offers of power (in MW) from generators are matched
with bids from suppliers and large consumers within the day-ahead wholesale market
auction operated by the power exchanges. The possible bids have different restrictions
depending on the particular power exchange. Within the market, suppliers and generators
can make bids for specific volumes. For the EPEX SPOT (https://www.epexspot.com/
sites/default/files/download_center_files/20-01-24_TradingBrochure.pdf (accessed on
26 August 2021)) day-ahead market, the maximum/minimum bids are +3000/−500 EUR
per MWh, with a minimum price and volume increment of 0.1 EUR/MWh and 0.1 MW,
respectively.

The auction ends at 12:00 CET before delivery on the next day. This means that there are
35,001 possible prices on the price grid (EUR), which are given byP = {−500,−499.9, . . . , 2999.9,
3000}.

GB’s wholesale electricity market clearance price is the intersection between the supply
and demand curves. However, this is not completely accurate because, prior to Brexit and
before Jan 2021, the EPEX and N2EX markets were coupled via the Pan-European Hybrid
Electricity Market Integration Algorithm (EUPHEMIA) (https://www.n-side.com/pcr-
euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/ (ac-
cessed on 10 August 2021)), which defines the market clearing price from all bids (including
block bids, linked block orders etc.) across all European markets. However, it is expected
that the market clearing price will be closely approximated to the intersection of the aggre-
gated supply and demand curves for the individual exchange market (in this case, EPEX
SPOT). This was confirmed in [1] for the German and Austrian market, where 99.8% of
the estimates were within 1 EUR/MWh of the true clearing price. This was also confirmed
in the research presented here with GB’s EPEX SPOT market with 97% of bids within 2
GBP/MWh (87% within 1 GBP/MWh; see Appendix A.1 for further details). Note that in
this paper, the data will be from before Brexit, so the EUPHEMIA price coupling algorithm
will still apply.

The clearing price can be calculated with the following procedure. First, for the
supply curve, the offered volumes are ordered by price from lowest to highest, and for the
demand curve, the bid prices are ordered from highest to lowest price. The supply and
demand curves are then formed by calculating the cumulative volumes for the offers and
bids, respectively, in the current ordering. An example of the supply and demand curves
and their intersection is shown in Figure 1 for one particular hour from the aggregated
supply and demand data from EPEX SPOT. Note that the markets are more complicated
than presented here. As in [1], all bids will be considered simple bids, and additionally,
the virtual interconnector between the N2EX and EPEX SPOT markets is not considered.
However, these restrictions are not expected to have too much of an impact on the overall
results presented.

https://www.epexspot.com/sites/default/files/download_center_files/20-01-24_TradingBrochure.pdf
https://www.epexspot.com/sites/default/files/download_center_files/20-01-24_TradingBrochure.pdf
https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/
https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/
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Figure 1. Example of the supply (blue) and demand (orange) curves and their intersection (blue dot)
giving the wholesale clearance price.

3. Methodology

This section describes the different models that will considered and includes a recent
innovative model described by Ziel and Steinert [1], the so-called X-model. The X-model is
relatively unique in that it generates a forecast of the entire supply and demand curves, and
then the clearance price is calculated; the intersection of the two is described in Section 2. This
model will be compared to some simpler but common time-series models that forecast
the price directly. The main focus will be on generating probabilistic forecasts, but point
forecasts can also be generated and will be considered briefly.

3.1. X-Model—Outline

The first model considered is the X-model, as developed by Ziel and Steinert [1].
The details will not be repeated here, but the general concepts and adjustments for Great
Britain’s market are presented in this section. Some extra details are given in the Appendix.

The novelty of the model is that the future supply and demand curves are estimated
directly rather than explicitly forecasting the clearance price. However, forecasting every
incremental price would incur an excessive computational cost and is not necessary, since
the supply and demand curves are monotonic functions that can be accurately interpolated
given sufficient points (Appendix A.2.2). For these reasons, the supply and demand curves
for each hour of the dataset are split into a limited number of price bands, as illustrated in
Figure 2.
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Figure 2. Illustration of price classes for the supply (left) and demand curves (right).

The volume of bids in each price band is aggregated for all hours in the dataset to
create an individual time series for each price band, which is then forecasted using a linear
regression model. Once the forecast for each individual class has been produced, the supply
and demand curves are reconstructed, and their intersection and, hence, the clearing price
can be calculated.

The model can be summarised in the following steps:

1. Split the supply and demand curves into price classes and store the volumes of bids

for each price class c, which we label X(c)
S,d,h and X(c)

D,d,h, respectively, for day d and
hour h (see Section 3.1.1);

2. Model each price class using a linear regression model;
3. Find the coefficients for each model using a LASSO model. This both trains the

coefficients and chooses the most appropriate inputs for the model;
4. Using the trained model, produce rolling day-ahead forecasts for each class for each

day of the testing set;
5. Reconstruct the supply and demand curves and find the intersection to estimate the

clearance price (see Section 3.1.2);
6. Develop a probabilistic forecast by bootstrapping the residual time series in daily

chunks (see Section 3.1.3).

The possible inputs for each price class model and the reasons behind the choice are
as follows:

• Historical data from the same price class—past volumes in the current price class may
be related;

• Historical data from other price classes—other price classes are likely to be related—
higher bids for low prices may mean that there are lower bids for higher price classes;

• Historical clearing prices and volumes—as mentioned in Section 2, the clearance
prices and volumes are determined by the intersection of the supply and demand
curves. Hence, the intersection of the curves may be related to the volumes traded in
each price class;

• Daily dummy variables—different days of the week have different bidding behaviours,
and demand is likely to be driven by daily seasonal effects;

• Day-ahead renewable generation forecasts—as discussed in Section 4.2, renewable
generation can have a strong effect on the spot price, particularly through the merit-
order effect, especially for the lower-offer supply classes.

A LASSO model is implemented, since it simultaneously trains the coefficients and
selects the most appropriate inputs. This will allow improved interpretation of the model,
as variables that have little impact on the overall forecasts are not included. The LASSO
therefore acts as a regularisation method by preventing overfitting of the model to the un-
derlying noise in the data signal. The LASSO model is described in detail in Appendix A.2
and follows the procedure defined by Ziel and Steinert in [1].
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The core element of the probabilistic forecasts is a bootstrap method on daily residuals
in the trained data. This ensures that daily interdependencies are maintained in the errors,
and the forecasts should be more realistic. This block bootstrap also ensures that the
different hours of the day are modelled with different levels of variation that are dependent
on historical residuals at the same hour. The details of this are found in Appendix A.2.3.

3.1.1. Deriving the Price Classes

The aim of the X-model is to produce probabilistic forecasts by forecasting the sup-
ply and demand curves. However, for the EPEX SPOT day-ahead market, the max-
imum/minimum bids are +3000/−500 EUR per MWh, with the following minimum
price/volume increments: price tick, 0.1 EUR/MWh; volume tick, 0.1 MW. Hence, there is
a large number of possible prices at which a supplier or generator could place bids, many
of which are often never used. As mentioned above, to simplify the task, price classes
are produced, and for each hour, the bid volumes are aggregated to produce several time
series.

The price classes are developed based on a consideration of all historical supply and
demand curves. In [1], the price classes were chosen to ensure that, on average, each price
class consisted of the same volume (in this case, V∗ = 1000 to produce 16 classes for both
supply and demand). The boundaries of the price classes could be chosen on the grid
at 0.1 EUR/MWh with clearly defined maximum and minimum bids. However, in our
situation, the aggregated sale and purchase curve data for Great Britain are in GBP, which
poses a problem because they are subject to exchange rates and thus do not align with
a well-defined discrete pricing grid. In particular, in GBP, the maximum and minimum
price bids/offers are not fixed for GB’s market data. Another difference from the original
X-model paper is in the sizes of the volumes that are being traded. In [1], the volumes
being traded are of the order of 30,000 MW on average. For GB, the volumes are relatively
small in comparison, with orders of around 3000 MW, i.e., lower by a factor of 10.

For these reasons, rather than choosing the classes based on a uniform volume, the
classes are chosen to ensure that there is a sufficient number of bids per price band. We
create price classes (to the nearest 0.1 GBP) so that there is a uniform number of bids/offers
across the classes, as illustrated in Figure 2. Let PS and PD be the set of prices seen in the
historical data for the supply and demand bids. Suppose that there are N bids through
the entire training period; then, we create 16 classes (to be comparable to [1]) so that there
are N/16 bids in each volume. We denote the price classes for the supply curve as CS and
for the demand curve as CD. Notice that, for this procedure, the lowest (and similarly, the
highest) price class will cover any value less (greater) than a particular price value.

The supply volume for class c at day d and hour h of the day (h = 1, . . . , 24) is given
by X(c)

S,d,h = ∑P∈PS(c) VS,d,h(P) for c ∈ CS, where PS(c) is simply all prices in P that are in
class c for the supply curve, and VS,d,h(P) is the volume bid for supplying at price P at day
d and hour h. Similarly, the demand volume for class c at day d and hour h of the day is
given by X(c)

D,d,h = ∑P∈PD(c) VD,d,h(P) for c ∈ CD, where PD(c) is simply all prices in P that
are in class c for the demand, and VD,d,h(P) is the volume bid for demand at price P at day
d and hour h.

3.1.2. Reconstructing the Clearance Price

Once the price classes are predicted, the intersection of the resultant supply and
demand curves can be used to create a clearance price. However, the supply and demand
curves for the reduced price classes are not granular enough, and this leads to sensitive
intersection points [1]. Instead, the supply and demand curves must be transformed into
a higher-resolution grid. In our case, we use a finer grid with increments of 0.1 GBP. The
volumes in each price class are distributed according to how often the prices on the finer
grid occur in the historical data. There are two main ways to do this:

1. Assign a volume to a price on the finer grid if it occurs frequently enough according
to some threshold.
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2. Assign a volume to a price in a stochastic way, but with increased likelihood the more
frequently it occurs.

The details are given in Appendix A.2.2, but the first approach is used when generating
point forecasts and the second when generating a probabilistic approach. This adds more
variability and takes into account uncertainty in individual bidding prices.

3.1.3. Generating Probabilistic Forecasts

Generating a point forecast is relatively simple. Once the supply and demand curves have
been reconstructed (Section 3.1.2), the intersection produces the clearance price. Generating
a probabilistic forecast is slightly more complicated. The reconstruction uses the stochastic
version (Section 3.1.2) to model the uncertainty when moving to a higher-resolution price grid.
However, the main contribution to modelling the uncertainty comes via block bootstraps of
the historical residuals that are added to each class. However, to retain the interdependencies
in the data, the residuals are sampled as daily blocks across the classes to retain any temporal
or class correlations. The details are given in Appendix A.2.3.

3.2. ARX Model

This model is similar to the X-model in that it is a linear model with similar dependent
variables, and it is solved via LASSO. However, the main differences are that no price
classes are used, nor any volume inputs. Instead, the clearance price is directly estimated
using the same lag template (see Appendix A.2.1) for the price, solar, offshore wind, and
onshore wind variables. In other words, 8 days of lags are used for all hours of all variables,
in addition to 36 days of lags for lags from the same hour of the day. LASSO is used again
to select the features to be included in the model, as well as to train the coefficients of the
linear model.

As with the X-model, the probabilistic forecasts are produced via a bootstrap proce-
dure, which preserves the daily correlation structure of the residuals. This will be referred
to as the AR or ARX model.

3.3. ARIMAX Model

We also consider a traditional time-series model. In this report, an ARIMAX(12, 1,
4) model is used (i.e., autoregressive order p = 12, a single difference d = 1, and an order
q = 4 moving average term). The lagged values are treated as the exogenous variables, with
price values at lags of 24, 48, 196, and 336 h. Technically, using a lag of 24 breaks the rules
of not using any price data from the day of interest, but this is only for the final hour of the
day over a less volatile period (midnight), and it is not expected to make much difference
in the overall result. Note that no generation inputs are used in this model.

The prediction intervals are based on a standard normal distribution (for more details,
see: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.mlemodel.
MLEResults.conf_int.html#statsmodels.tsa.statespace.mlemodel.MLEResults.conf_int (accessed
on 10 August 2021)). This model will be referred to as the ARIMAX model. Unlike the ARX
model and X-Model, the coefficients are not trained using the LASSO model, but rather
through a maximum likelihood estimation.

3.4. Daily Seasonal Persistence Model

There are strong daily patterns in the data. A very basic forecast model is therefore
simply a daily seasonal persistence model. In other words, today’s forecast is simply
yesterday’s price. No exogenous variables, such as wind generation, are used in this model.

https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.mlemodel.MLEResults.conf_int.html#statsmodels.tsa.statespace.mlemodel.MLEResults.conf_int
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.mlemodel.MLEResults.conf_int.html#statsmodels.tsa.statespace.mlemodel.MLEResults.conf_int
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3.5. Error Measures

This report focuses on probabilistic forecasts, but will also briefly consider point
forecasts. For point forecasts, the root-mean-squared error (RMSE) is used. Consider a
point forecast fk at time steps k = 1, . . . , N and actual observations ak defined at the same
time steps k = 1, . . . , N. Then, the RMSE is defined by

RMSE( fk, ak) =

√
∑N

k=1( fk − ak)2

N
(1)

The smaller the RMSE is, the more accurate the forecast will be. The choice of RMSE over
other common measures, such as mean absolute error or mean absolute percentage error,
is that the others are based on the 1-norm, rather than the 2-norm, which means that they
are less representative of measurements of errors in peaks [24].

To assess a probabilistic forecast requires a proper scoring function [25]; this guarantees
that the minimum of the score is achieved by the true underlying distribution. Since this
paper considers quantiles, the pinball (or quantile) scoring function was deemed to be
appropriate [26]. Given a quantile forecast qτ

k for some probability value τ ∈ [0, 1] (called
the τ-quantile), then for an observation ak, the pinball loss score for the quantile τ is
defined as

Pinballτ(qτ
k , ak) =

{
(qτ

k − ak)(1− τ) if ak < qτ
k

(ak − qτ
k ) τ if ak ≥ qτ

k
(2)

The pinball score is an asymmetric function that penalises the difference between the quantile
and the observation and weighs this difference depending on the sign of the difference.

The pinball measure produces an average score that measures how well the model is
calibrated in terms of matching the observations, as well as how wide the distributions are
(a thinner spread means that the estimates are more precise). However, they are limited in
terms of assessing biases in the probabilistic forecasts. Here, we consider the probability
integral transform (PIT) to understand how well calibrated the forecasts are. The PIT is
simply a histogram that counts how many observations fall between each quantile. For
example, for ventiles, 20 buckets are used, and hence, one would expect one observation in
every 20 to fall into each bucket (or between each ventile/quantile), unless the quantiles
are not accurately estimated for the underlying data. As will be shown in the results, the
PIT can also show whether the forecast is biased or the quantiles are too wide or narrow in
places.

4. Data

This section outlines the data used. As discussed in Section 3, the following are the
datasets used to develop the models:

• Hourly historical aggregated supply and demand curves.
• Historical clearing prices and volumes.
• Historical day-ahead solar, offshore wind, and onshore wind forecasts.

4.1. Pricing and Volume Data

The core inputs for the model are the aggregate supply and demand curves for the
GB’s market through EPEX SPOT (https://webshop.eex-group.com/epex-spot-public-
market-data (las accessed on 10 August 2021)). The clearing price and volumes are created
through the intersection of these curves, as described in Appendix A.1. The data were
available for this trial from 11 April 2018. The estimated clearing price and volumes,
as calculated via the interpolation method described in Appendix A.1, are presented in
Figures 3 and 4, respectively, for the period 11 April 2018 to 17 August 2019.

As noted in Section 2, there are specific rules for the bids in the EPEX market, such as
maximum bids of 3000 EUR per MWh and a minimum of−500 EUR, as well as a minimum
price and volume increment of 0.1 EUR/MWh and 0.1 MW. However, the data provided

https://webshop.eex-group.com/epex-spot-public-market-data
https://webshop.eex-group.com/epex-spot-public-market-data
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for this research are in GBP, which means that some modifications to the original X-model
implementation are required (see Section 3.1 and Appendix A.2).
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Figure 3. Estimates of the clearing price for the period 11 April 2018 to 17 August 2019.
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Figure 4. Estimates of the clearing volumes (in MWh) for the period 11 April 2018 to 17 August 2019.

4.2. Solar and Wind Generation Forecasts

The other core dataset consists of the solar, offshore wind, and onshore wind gen-
eration forecasts. This was extracted from the Balancing Mechanism Reporting Service
(BMRS) website (provided under the BMRS data license: https://www.elexon.co.uk/data/
balancing-mechanism-reporting-agent/copyright-licence-bmrs-data/ (last accessed on 10
August 2021)). These are a key component of the “merit-order effect” (this is a lowering
of the electricity prices due to increasing renewables, since they have no operation costs
and, hence, produce relatively cheap electricity compared to other forms of generation).
For example, in the supply curve (Figure 1), the first bids in the ordered list of bids are
often associated with renewable generation and push more conventional generation further
down in the ordered list of bids.

The hourly day-ahead solar, offshore wind, and onshore wind generation data are
available through the balancing mechanism reports provided by Elexon (https://www.
bmreports.com/bmrs/?q=generation/ (last accessed on 26 August 2021)). These were
collected using a BMRS wrapper tool (available here: https://pypi.org/project/ElexonData
Portal/1.0.0/ (last accessed on 26 August 2021)). A sample of each of these time series is
shown in Figure 5 for the same period as that of the price estimates in Figure 3. These are
transparency data and are therefore available for the purposes of balancing; they must be
received no later than 17:00 GMT on the day before the actual delivery. The day-ahead
wholesale market auction closes at 11 a.m., which means that these data may not be
available, although there are also generation forecasts with longer forecast horizons that
could be used, but they would be less accurate. For this report, these forecasts are sufficient

https://www.elexon.co.uk/data/balancing-mechanism-reporting-agent/copyright-licence-bmrs-data/
https://www.elexon.co.uk/data/balancing-mechanism-reporting-agent/copyright-licence-bmrs-data/
https://www.bmreports.com/bmrs/?q=generation/
https://www.bmreports.com/bmrs/?q=generation/
https://pypi.org/project/ElexonData
Portal/1.0.0/
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for illustrating the models. The practicality of including the day-ahead generation forecasts
can be considered in future work.
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Figure 5. Day-ahead forecasts for the solar (top), offshore wind (middle), and onshore generation
(bottom) for the period of 11 April 2018 to 17 August 2019.

4.3. Data Pre-Processing

The clearing prices in the wholesale market data were checked to confirm that they
were consistent with the Nordpool data (https://www.nordpoolgroup.com/Market-data1
/GB/Auction-prices/UK/Hourly/?view=table (last accessed on 26 August 2021)). The
wholesale price data were available from 1 January 2017 and did not have any gaps or
obvious errors. The renewable day-ahead generation forecasts had some gaps after 18
August 2019. For this reason, it was decided not to use any data after 17 August 2019,
which was where the best-quality data were available. This gave a total of 959 days, which
should be sufficient for splitting the data into reasonably sized training and testing sets
(Section 4.4).

The main pre-processing required was the transformation of the data into 24 hourly
settlement periods by correcting for the daylight savings periods. For this, a standard
technique was employed: Extra hours were deleted, and missing hours were inserted by
repeating the following available hour.

4.4. Splitting the Data for Training and Testing

The data were split so that the training data were any data prior to January 1 2019,
and the test set was anything on or after 1 January 2019. This provided eight months of
testing data and 2 years of training data. This also allowed the analysis of some of the peak
prices that occurred in January 2019. Ideally, the training should be rolling and, hence,

https://www.nordpoolgroup.com/Market-data1/GB/Auction-prices/UK/Hourly/?view=table
https://www.nordpoolgroup.com/Market-data1/GB/Auction-prices/UK/Hourly/?view=table
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updated with the forecasts. However, this was too computationally expensive for this
particular trial. If the model is developed further, methods for making it more efficient will
be necessary.

5. Developing the X-Model
5.1. Volume Classes and Class Forecasts

In this trial, an example was considered that used 16 classes each for the supply and
demand. This allowed the trial to be analogous to the application used in [1]. The data
spanned the period of 1 January 2017 to 17 August 2019. The training set was defined to be
all of the data prior to 1 January 2019, and the test set was anything from and including 1
January 2019.

The final price classes (GBP/MWh) are defined as follows.

For demand

Class D_C0 D_C1 D_C2 D_C3 D_C4 D_C5 D_C6 D_C7

Value (GBP) 100.1 74.5 64.9 59.1 54.8 51.2 48.1 45.0

Class D_C8 D_C9 D_C10 D_C11 D_C12 D_C13 D_C14 D_C15

Value (GBP) 41.9 38.6 34.8 30.1 23.1 8.1 −195.0 −466.3

For supply

Class S_C0 S_C1 S_C2 S_C3 S_C4 S_C5 S_C6 S_C7

Value (GBP) 22.9 33.9 38.7 42.3 45.7 49.1 52.3 55.6

Class S_C8 S_C9 S_C10 S_C11 S_C12 S_C13 S_C14 S_C15

Value (GBP) 59.4 63.7 68.6 75.0 86.1 123.9 1499.0 2798.0

The first class (D_C0) for demand is the aggregated volume for prices greater than
or equal to 100.1 GBP, and the next is anything between 100.1 and 74.5 GBP, etc. Similarly,
for supply, the first class (S_C0) is anything less than 22.9 GBP, and S_C1 is the aggregated
volume between 22.9 and 33.9 GBP, etc.

There is a drawback to the count method for producing the classes. Although this
guarantees that there are enough volumes in each class, it means that the majority of the
volumes of bids are in the first class. However, this is a minor issue because the first classes
(S_C0, D_C0) are quite important for determining the overall clearing price [27].

Notice that the average prices are 50 GBP and that there are several price classes close
to this value, showing the high number of bids in these intervals.

5.1.1. Examples of Class Curves

The first class D_C0 is shown in Figure 6, and selected data for other classes for the
demand are shown in Figure 7. The first thing to notice is that the first class has much
larger volumes than those of the other classes. In Figure 6, the largest demands are over
6000 MWh, whereas for the other classes in Figure 7, they never reach above 1500 MWh.
The other things to notice are the regularities in the data; there are daily and weekly
periodicities, as confirmed by considering the autocorrelation and partial autocorrelation
function plots (an example for D_C0 is shown in Figure 8).

Notice that there seems to be a less periodic structure in the large classes, which is
expected, as they are likely less important for the final clearance price.
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Figure 6. Sample of the volume time series for the first class, D_C0, for the demand.
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Figure 7. Samples of the volume time series for other demand classes.
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Figure 8. Autocorrelation and partial autocorrelation for the first demand class, D_C0.

The first price class for the supply data is shown in Figure 9, and selected classes are
shown in Figure 10. Again, there are daily and weekly seasonalities in the data, as expected
(autocorrelation plots not shown). This supports the inclusion of the day-of-the-week
dummy variables in the model.
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Figure 9. Sample of the volume time series for the first supply class.
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Figure 10. Selected classes for the supply volume time series.

5.1.2. Examples of Class Forecasts

Day-ahead forecasts were produced for each of the price class using the method described
in Appendix A.2.1. The class forecast for the first demand and supply classes are shown
in Figures 11 and 12, respectively, for the first two months (January and February 2019) of
the test set. The other classes are shown in Appendix B.1. The first price classes are more
regular than the other classes and, as shown in the plots, this behaviour appears to have been
accurately captured. However, it is worth nothing that there are still large deviations and
errors. The additional smaller volumes in this price class seem to be more accurately captured
by the forecast than larger volumes. This highlights that a probabilistic approach is preferable,
since it will capture more of the variations in the volumes. Some of these deviations will be
captured in the residual bootstrap implementation (see Appendix A.2.3).
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Figure 11. Example of day-ahead forecasting for the first demand class for the first two months of
the test set. The actual values are in black and the forecast values are in red.
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Figure 12. Day-ahead forecast for the first supply class for the first two months of the test set. The
actual values are in black and the forecast values are in red.

6. Results

This section will briefly describe some of the results for both the point and probabilistic
forecasts, as well as their comparison with the benchmarks. As mentioned in Section 5.1,
for the X-model, the supply and demand volumes were split into 16 price classes each, and
linear day-ahead forecast models were trained on the hourly data from 1 January 2017 to 1
January 2019; these were then applied in a rolling manner to the testing dataset from 1 January
2019 to 17 August 2019, starting at midnight on 1 January. The price classes are presented in
Section 5.1 and the methods for generating the X-model forecasts are explained in detail in
Appendix A.2. The other methods only use the historical prices and, in the case of the ARX
model, wind and solar generation forecast data.

6.1. Point Forecasts

Although point forecasts are not the aim of the models, it is worth investigating
them to begin to better understand some of the features of the models. An X-model point
forecast model was produced by reconstructing the supply and demand curves from their
class forecasts and then calculating the intersection of the two lines. An example of the
day-ahead price forecasts is shown in Figure 13 for the X-model and the ARX model for
the first month of the training set. As can be seen, the forecasts appear to be closely aligned
to the actual data, although some of the peaks are inaccurately estimated.
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Figure 13. Example of the X-model’s and ARX model’s rolling day-ahead point forecasts for the first
month of the test set. Black is the actual, red is the X-model forecast, and blue is the ARX model
forecast.

For later months, the forecasts still appear to be doing a decent job of capturing the
main shape of the demand, but there is a slight deviation from the average level of demand.
This is illustrated for the fifth month of the test set (May 2019) in Figure 14. The main cause
of this is that the models need retraining. Both the X-model and ARX model potentially use
a large number of inputs, many of which can be relatively old (up to 36 days). Hence, these
models can be improved by retraining on more recent data with respect to the periods
being forecasted. Due to time constraints, these were not applied for this test case.
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Figure 14. Example of the day-ahead price forecasts of the X-model’s (red) and the ARX model’s
point forecasts (blue) for one of the later months of the testing set (May 2019). This was obtained
using the training data from 1 January 2017 to 1 January 2019.

The RMSE (for the definition of the RMSE, see Section 3.5) for the daily seasonal
persistence (Section 3.4) for each forecast model is shown in Table 1. It is clear now that
the ARIMAX model produces the best error measures, but is very similar in accuracy to
the ARX model. The X-model even has larger RMSE values than the daily persistence.
As will be shown later, this is due to the bias in the data, especially for the later months.
Although this paper was applied to the German and Austrian electricity market, we can
compare the performance of the X-model with the performance in the original X-model
paper relative to a simple persistence model [1]. In the original paper, the X-model was,
in fact, better in comparison with the weekly persistence model and was 44% of the size.
In contrast, our X-model is actually larger than the daily persistence model. In addition,
our autoregressive model is 80% of the persistence model, but it was 57% in the original
X-model paper. One reason for the lower performance of both the ARX model and X-model
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compared to the persistence model is likely the lack of use of conventional generation as
an input. In addition, more frequent retraining of the model parameters could be another
reason for the difference.

Table 1. Average RMSE score of each method over the entire test set.

Method RMSE

Daily Persistence 7.61
ARX Benchmark 6.13

X-Model 9.51
ARIMAX 6.03

The errors broken down by month are shown in Table 2. The ARX model performs the
best in the earliest month, but is the second-best model for the later months of the test set.
Similarly, the X-model also has a decrease in accuracy in the later months, highlighting the
need to retrain the model. In fact, the average error over the January and February months
shows that, in this case, the X-model is at least as competitive as the persistence benchmark.

Table 2. Average RMSE scores for each method per test month. The best scores per month are in
bold.

RMSE Jan 19 Feb 19 Mar 19 Apr 19 May 19 Jun 19 Jul 19

Persistence 10.6 7.1 8.4 6.3 6.4 7.9 5.8
ARX 8.11 5.15 6.18 5.42 5.54 6.59 4.97

ARIMAX 8.46 6.01 6.11 5.32 4.90 6.38 4.54
X-Model 10.65 6.72 8.90 8.56 9.40 11.64 8.88

The ARIMAX model has relatively few parameters that use only quite recent informa-
tion. This means that it is not unduly affected by seasonal effects or old data. In contrast,
the ARX model and X-model not only use generation data, but they potentially also use
large amounts of lagged data—up to 36 days in some cases. In a future study, it would be
worth experimenting with reduced input variables to make these models more accurate
when the training data are scarce (another experiment was performed with the ARX model
with fewer lags, which did indeed improve the accuracy of the point forecast; however, this
reduced the probabilistic accuracy, as it likely reduced the sample of residuals, the source
of variation in the bootstrap forecast method.).

6.2. Probabilistic Forecasts

Probabilistic forecasts contain estimates about the distribution of the prices rather
than giving a single estimated value. There are two stochastic elements that contribute to
the generation of the probabilistic forecasts in the X-model. One component is Bernoulli
random number generation in the reconstruction of the supply and demand curves. On its
own, this is not expected to play much of a part in modelling the uncertainty. For one, the
available data are currently relatively small, and hence, many of the prices will have no
volumes offered or bid upon in the auction; thus, there may be very few changes based on
the Bernoulli random draws (see Appendix A.2.2 for details). Secondly, the reconstruction
has a limited effect, as it only influences the classes that are close to the intersection price. To
illustrate this, an example of three reconstructions of the price forecasts is given in Figure 15
over 15 days of the test set. In black are the actual prices, the threshold reconstruction is
in blue (in other words, that which was used to produce the point forecasts in Section 6.1
and described in Appendix A.2.2), and two examples of reconstructed curves using the
Bernoulli random sampling are shown, as described in detail in Appendix A.2.2. As the
figure shows, they are all quite similar, with minimal deviations from each other.
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Figure 15. Reconstructed day-ahead forecasts for prices with the fixed threshold method (i.e., the
point forecast in blue) and two Bernoulli random draws (red) for selected days in the test set. These
are compared to the actual prices (black).

The main contributor to the probabilistic forecasts is from bootstrapping from the
residuals (i.e., the deviation of the observations and the trained model) in the historical
dataset. As described in Appendix A.2.2, full days are sampled (as well as across classes
for the X-model) to retain any interdependencies in the data. The bootstraps are calculated
for the 0.05-quantiles (ventiles) for each time step in the test set. The error score for each
time step in the test set is then calculated using the pinball loss score (see Section 3.5 for
details). In this example, 2000 bootstraps are used.

An example of the 0.05-quantiles (or ventiles) for the day-ahead forecasts for nine
days for the three methods is presented in Figures 16–18 for the ARIMAX model, ARX
model, and X-model, respectively. The different shades represent the different predictive
intervals between ventiles, where the darkest shade is for the middle ventiles (50–55
percentile and 45–50 percentiles), with gradually lighter shades until the outer ventiles
(90–95 percentile and 5–10 percentiles). Comparing the ARIMAX and ARX models, one
of the most clear differences is that the bounds of ARIMAX are a little bit wider, which is
likely due to the restriction on the bounds being from a Gaussian distribution, which is
relatively broad. However, compared to the X-model, the distributions for the ARIMAX
and ARX models are much more regular and similar from one day to the next. These plots
highlight some interesting features. First, it is clear that the ARIMAX and ARX models
provide the most stable forecasts and express regularity from one day to the next. The
X-model in Figure 18 shows much more varied distribution shapes, such as the low-cost
spike that occurs between 7 and 9 January. This is likely due to the incorporation of the
sensitivities in the intersection point of the supply and demand curves, which will be
shown in more detail in the next section.
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Figure 16. Sample of the ARIMAX model’s forecast for the first nine days of the test set. The different
confidence bounds are given different shades, with the darkest representing the prediction interval
for the middle ten percent. The actual prices are given by the black line.
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Figure 17. Sample of the ARX model’s forecast for the first nine days of the test period. The different
confidence bounds are given different shades, with the darkest representing the prediction interval
for the middle ten percent. The actual prices are given by the black line.
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Figure 18. Sample of the X-model’s forecast for the first nine days of the test periods. The different
confidence bounds are given different shades, with the darkest representing the prediction interval
for the middle ten percent. The actual prices are given by the black line.

The average pinball scores over the entire test period are shown in Table 3. The
ARX model is the best-scoring method. Once again, the ARIMAX model is one of the
best-scoring models, and its score is slightly higher than that of the ARX model, although
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they are not significantly different. The X-model’s pinball score is about 50% higher than
that of the ARX model, and is hence considered the least accurate when using this measure.
As we will show later, this is likely due to bias in the estimate.

Table 3. Average pinball scores for the three main methods. The best-scoring method is shown in bold.

Model Average Pinball Score

ARIMAX 1.72
ARX Model 1.71

X-Model 2.59

For completeness, the average pinball scores are also shown in Table 4 for each
complete month in the test set and for each of the three methods. Notice that the scores
of all three methods are similar for January 2019. This is the month right after the end
of the training set. Further, the X-model is relatively competitive with the other models
for January and February 2019. This again suggests that a large factor in the X-model’s
reduction in accuracy is the requirement of more frequently retraining on more recent data.
The ARX model is the most accurate model for the first four months of the test data, but
then decreases in accuracy relative to the ARIMAX model starting in May 2019. This again
suggests that retraining is necessary, but since the ARX model has much fewer parameters
than the X-model, the reduction in accuracy occurs much later in the test set.

Table 4. Monthly average pinball score for each method. In bold is the best-scoring method for each
month.

Pinball Scores Jan 19 Feb 19 Mar 19 Apr 19 May 19 Jun 19 Jul 19

ARIMAX 2.32 1.77 1.79 1.59 1.48 1.79 1.40
ARX 2.20 1.47 1.76 1.56 1.56 1.85 1.41

X-Model 2.95 1.93 2.45 2.35 2.54 3.23 2.36

As shown in Section 6.1, the ARX model and X-model need retraining, as the models
begin to drift for later months. Hence, the results investigated here will be for the first two
months of the test set (January and February 2019). The results for the full dataset are given in
Appendix B for completeness, but they confirm the bias introduced into the X-model and
ARX-model for the later test data.

The PITs for the ARIMAX model, ARX model, and X-model are shown in Figures 19–
21 for the first two months of the test dataset. Additionally included is a red line with
which the bars should be level if the models were to be calibrated (i.e., if all observations
were evenly divided into the 20 boxes, (31 + 28)× 24/20, where (31 + 28)× 24 is number
of observations in January and February).
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Figure 19. PIT for the ARIMAX model for the first two months of the test set.
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Figure 20. PIT for the ARX model for the first two months of the test set.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Probability integral transform

0

20

40

60

80

100

120

Co
un

t

X-Model

Figure 21. PIT for the X-model for the first two months of the test set.

It is clear that the ARX model is the best calibrated of the three models, as the PIT
is closer to a uniform distribution than in the other models. The ARIMAX model and
X-model both have some biases, but the ARIMAX model also appears to be a little over-
dispersed, which suggests that the quantiles are more spread out than the underlying
distribution [28]. The X-model, on the other hand, has more observations in the larger
quantiles than in the smaller quantiles. This suggests that the overall distribution estimated
by the X-model is slightly shifted so that more observations fall into the larger quantiles.
One explanation of the bias in the X-model is due to the use of the LASSO regressor, which
is a bias estimator. This is exacerbated in the X-model, since the biases will accumulate
by summing across each class forecast when producing the supply and demand curves.
Comparison of the probabilistic forecasts of the original X-model papers [1,27] is difficult, as
there is no proper scoring function evaluation included. However, a qualitative comparison
with the probabilistic integral transforms is possible. The PIT in [1] shows that the X-model
is under-dispersed with over-representation in the lower quantiles. In [27], both the X-
model and the autoregression are biased and over-represent the lower quantiles. This is
similarly the case for our ARX model and X-model for the entire dataset (see Appendix B.2).
However, for the smaller test dataset, our models actually have an over-representation of
data in the upper quantiles. The difference between the X-model in this paper and the
ones in [1,27] could be because they only include renewable generation as an input rather
than conventional generation, hence the bias towards lower prices (e.g., the merit-order
effect). We do not produce a comparison of these results with those of the only other paper
while considering the probabilistic forecasts of GB’s market [5], since they only consider
prediction intervals, whereas we are interested in a wide range of quantiles—from 5% to
95%.
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The PIT suggests that methods should be used to try to improve the models, such as
by using a reducing bias or by scaling or shifting the estimated distributions [28]. This will
be explored in future work.

6.3. Ensembles and Peak Forecasts

The quantile regressions are good for showing the uncertainty around the values
produced by each model. However, each time step in the day ahead is a univariate
distribution and does not explain the interdependencies in the data. The interdependencies
may be more useful for an aggregator who needs to understand how the prices in one part
of the day may affect other periods. The ARIMAX model does not have the capability of
modelling this; hence, only the ARX and X-model are compared here.

Understanding interdependencies requires estimates of a multivariate distribution for
the following day. In the forecasts of the ARX model and X-model, each individual bootstrap
can be viewed as an individual draw from the multivariate distribution. An example using
the ARX model is shown in Figure 22, for which 50 bootstraps were randomly selected (in red).
Note that the bootstraps are based on randomly sampled full daily residuals and, therefore,
maintain the daily interdependencies. A similar process was performed for the X-model in
Figure 23.
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Figure 22. Example of 50 ensembles (red) for the ARX method for the first day of the test set. The
actual price is in black.
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Figure 23. Example of 50 ensembles (blue) for the X-model method for the first day of the test set.
The actual price is in black.
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Now consider the large peak at 5 p.m. on 3 January 2019 with a size of 134.24 GBP/MWh
(this can be seen in Figure 18). In addition, the surrounding hours of 4 p.m. and 6 p.m.
are also very large at over 100 GBP/MWh. As indicated in Figure 24, the peak is higher
than the estimates for the 95 percentile for all of the models considered, and the quantile
estimates do not appear to capture the potential peak, since this extreme behaviour likely
lies in the larger quantiles of the distribution (for example, the 99th percentile). Notice that,
just using ventiles, the methods all score relatively poorly (in terms of the pinball score)
for the peak period, as shown in Table 5. It does appear that the X-model does encompass
some of the uncertainty around the higher demands surrounding the main peaks within
its quantiles.
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Figure 24. Quantile estimates (red) for 3 January 2019 for each of the forecast models. The actual is
shown in black.

Table 5. Pinball scores for the peak hours on 3 January 2019 for the three forecast models. In bold
are the best scores for that time period.

Time Period on 3 Jan Pinball Score

X-Model ARX ARIMAX

2pm 4.02 1.72 0.87
3pm 5.55 5.78 4.04
4pm 14.18 11.78 9.46
5pm 26.46 19.03 18.55
6pm 12.68 14.15 12.61
7pm 4.94 2.27 1.71
8pm 4.84 1.73 0.99

Since peaks are relatively rare, we may not expect the peaks to be captured very well,
especially for the broad buckets defined by the ventiles, which were created from relatively
few bootstraps (2000 bootstraps means that each bucket would only have about 100 points
on average). The individual ensembles/bootstraps themselves may give more insight into
these rare events.

To demonstrate the forecasts of the peaks, all 2000 bootstrap forecasts are shown for
both the ARX model and the X-model in Figures 25 and 26, respectively. Notice that the
X-model has some ensembles with more extreme peak predictions (and note that they were
not visible in the prediction interval estimates in Figure 18, since they were in the top 5% of
values). Additionally notice that the adjacent time periods also have larger estimates with
the X-model.
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Figure 25. All 2000 bootstrap ensembles (red) for the ARX method for 3 January 2019. The true price
is in black.
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Figure 26. All 2000 bootstrap ensembles (blue) for the X-model method for 3 January 2019. The true
price is in black.

Hence, both models make it clear that there is potential for a price spike at 5 p.m.,
and many of the ensembles indicate a peak. An explanation for the peaks (especially the
larger ones) in the X-model is offered in the original X-model paper [1], which suggests
that the steepness in the gradient of the supply curve produces a sensitivity to the final
clearance price.

In fact, this is seen to be the case for the 5 p.m. peak on the 3 January 2019, as shown
in Figure 27 for the peak hour and selected hours around the peak period. Notice the large
rate of change in the demand curve near the intersection point. A small change in the bids
and offers could shift the curves, so the intersection and, hence, the clearance price could
change quite dramatically. In addition, for the same hour, peaks as high as 400 GBP/MWh
are predicted by the X-model (Figure 26). As shown by the supply–demand curves, such
a peak is, in fact, quite possible, as a small change in the supply or demand curve could
easily shift the intersection point to this extremely high price.
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Figure 27. Supply and demand curves for the hours around the peak price on 3 January 2019. The
demand curves are in blue and the supply curves are in orange.

The potential peak of 400 GBP/MWh was not reproduced in the ensembles of the
ARX model. This method only utilises the final clearance prices, so very large deviations
will only be included in the residual bootstrap if they are observed as historical deviations
from the model. This means that the ARX will model the typical behaviours, but is unlikely
to include features due to the sensitivities in the supply and demand curves.

In contrast, the X-model is designed to forecast the supply and demand curves. The
bootstrapping of the residuals is added to the forecasted price classes, creating several
reconstructed supply and demand curves. Some of these pairs of curves will produce small
changes, which will result in a high clearance price, as shown in this example.

The X-model process has both positive and negative implications for practitioners.
On the one hand, it can highlight moments that are particularly sensitive to potential price
spikes. However, at the same time, it may give a false impression of how often these
occur. This suggests that one of the best usages of the X-model is in conjunction with other
techniques and methods. If the X-model suggests a price spike, this should suggest to the
practitioner to look deeper into the supply and demand curves estimated by the method.
These should be further compared to findings with other models, such as the ARX model,
to see what the typical behaviour is likely to be in order to better inform the business
decisions to be made.

7. Conclusions and Discussion

The aim of this paper is to present the first implementation of a relatively new day-
ahead probabilistic forecasting method for electricity prices with X-model specifically for
Great Britain’s market, as well as to discuss its performance in comparison to two more
common methods that were implemented in the same context and also presented in this
paper. The research presented here suggested the X-model could be useful for predicting
price spikes and the uncertainty around them, and a particular example from January 2019
that was examined in this report showed that the X-model correctly indicated a spike and
highlighted the sensitivity of the prices at that period of time.

In addition to the X-model investigation, two other models were also tested and
introduced. A simpler version of the X-model—labelled ARX here—was found to be
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the most accurate model, especially for probabilistic forecasting, although it may not be
as useful in predicting price spikes as the X-model. An ARIMAX-type model was also
introduced. This model also performed well with a small number of parameters and
required less training. This suggests that if data are limited, this model would be the most
suitable for standard probabilistic forecasts. However, if more data are available, then
the ARX model is preferable, as it can also produce ensemble forecasts that capture the
intraday day-ahead price dependencies, which could help inform decision making and
could be useful for other applications.

The study of data-driven probabilistic forecasts has important implications for future
energy markets and the policies that support them. Firstly, increasing numbers of trades
are being algorithmically implemented (65% of EPEX SPOT trades in 2019) [29]. Hence,
there is a requirement for more data-driven models, such as those presented in this paper.
Secondly, localised energy markets are being emphasised as a potential solution in many
marketplaces as a way to coordinate an increasingly complex decentralised energy system
[30]. This will require more advanced probabilistic modelling, such as that demonstrated
in this paper, in order to cope with the increasing uncertainty and irregularity in pricing at
the localised level. This will also require increased data availability for the more granular
demand and distributed generation. At a policy level, this may require changes in how
markets are regulated. These will be important areas of investigation and research, but are
beyond the scope of this paper.

Some limitations of this study include:

• Only one specific price spike event has been studied in detail, but if additional price
spike events would have been identified and studied, a more quantitative conclusion
on the benefits of the X-model for price spike events with respect to more traditional
modelling techniques could have been reached;

• Two more traditional modelling techniques were used as benchmarks. However, these
techniques were not specifically designed to handle price spike events. Additional
benchmarks that consider price spike events could be informative;

• Only means of renewable energy generation (solar and wind) were considered as
exogenous variables. In other studies, such as [27], conventional energy generation
was also considered as an input, and it would be informative to compare the current
results with those of the same techniques when including these variables.

There are several useful extensions of the models and analyses that could be included
in future work. One useful extension of the research presented here is the expansion of the
model to longer-term forecasts. This would improve the planning and understanding of
the impact of higher proportions of renewables on the network. A medium- and long-term
extension of the X-model is described in [27].

Since there are multiple components of the X-model, the algorithm presented here
was not optimised for computational efficiency. Most of the components are relatively
efficient, and many are only implemented once—for example, identifying the supply and
demand classes. The LASSO model and, hence, the class forecasts are all relatively quick to
implement. There are only two main elements that are quite computationally expensive:

1. Generating the probability and average volumes for each price class.
2. Generating the bootstrap forecast. This is expensive because each bootstrap also

includes a stochastic reconstruction of the supply and demand curves.

The first operation is not an issue, as this can be derived offline and is only updated
at irregular intervals. The second, however, is quite computationally expensive, since
it requires two expensive steps for each bootstrap: first, a Bernoulli random draw for
all elements in the forecast vector, and second, a calculation of the intersection of the
reconstructed curves. However, each bootstrap can be calculated on its own, and hence,
the code can be easily parallelised. This will be considered in future work.

Future work can also focus on the more recent evolution of the market in Great Britain.
The current paper analysed a dataset collected prior to January 2021. After January 2021,
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the application of Brexit will slightly modify Great Britain’s individual exchange market,
particularly regarding the algorithm coupling the GB’s and EU’s prices.
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Appendix A. X-Model Details

The X-model is fully detailed in the original paper [1]; however, for completeness,
some of the main features are included in more detail here.

Appendix A.1. Deriving the Prices and Volumes

As described in the main text, the market clearing price is derived from a complex
EUPHEMIA algorithm that is owned by the power exchanges and calculates the prices for
25 European countries (see https://www.n-side.com/pcr-euphemia-algorithm-european-
power-exchanges-price-coupling-electricity-market/ (accessed on 10 August 2021)). The
details are not available, but it is known to be a relatively complex algorithm that joins the
simple, block, and smart orders across multiple markets.

Since this algorithm is not available, an approximation of the true clearance price
would use the intersection of the aggregated supply and demand curves from the EPEX
SPOT auctions [1]. This section briefly outlines a comparison of the two methods for
calculating the clearing prices and volumes using different ways of approximating the
intersection of the supply and demand curves. The results of the methods are compared to
the actual clearing prices.

Two different methods were considered to calculate the intersection price:

1. A clearance price procedure that checks—in order—each supply offer volume to see
if the corresponding bids can purchase all of the offers with the given price. The
maximum of these prices is used to define the clearing price. This will be referred to
as the clearing procedure, and the resultant price and volumes are referred to as the
“clearance price” and “clearance volume”.

2. A linear interpolation. The volumes of the supply and demand curves are interpolated
to a 0.1 GBP resolution grid, and the intersection is then calculated by identifying
where the price differences change signs. This gives one price estimate and two

https://webshop.eex-group.com/epex-spot-public-market-data
https://www.elexonportal.co.uk/category/view/10701
https://github.com/OSUKED/ElexonDataPortal
https://github.com/OSUKED/ElexonDataPortal
https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/
https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/
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volume estimates (one above and one below the intersection, since this is based on a
grid). This will be referred to as the interpolation method or procedure. The resultant
prices and volumes will be referred to as the “interpolated price” and “interpolated
volumes”.

Using the actual clearing prices and volumes, as provided through EPEX SPOT, the
errors (estimated minus the actual) were calculated for each method for a sample of dates
(11 April 2018 to 17 August 2019). Some statistics of these errors are shown in Table A1,
including the average error, the average absolute error, maximum and minimum error, and
average relative error.

Table A1. Some statistics on the errors for the two interpolation methods for April 2018 to August 2019.

Clearance Price (GBP) Interpolated Price
(GBP) Clearance Volume Interpolated Volume 1 Interpolated Volume 2

Average error 0.30 0.02 −4.17 11.52 11.59
Average abs error 0.43 0.48 9.84 12.94 13.06
Maximum error 36.29 7.97 834.3 877.13 875.8
Minimum error −14 −14.93 −1060.3 −999.82 −1001.52

Standard deviation of error 1.07 0.81 40.62 28.93 29.04
Average relative error (%) 0.59 0.07 −0.09 0.24 0.24

Beginning by considering the price errors, the interpolation method appears more
accurate in terms of both the average error and the maximum absolute error (36.29 GBP for
the clearance algorithm vs. 14.93 GBP for the interpolation method). The average error and
average relative error show a large improvement for the interpolated method compared to
the clearance method, with average errors of 2 pence compared to 30 pence, respectively.
The average absolute errors are similar, since the clearance methods are skewed toward
overestimating the price, as shown by comparing the histogram of the errors in Figure A1.
There are a few large errors in the price, with a maximum absolute error of 14 GBP for
the interpolation method and an error of over 36 GBP for the clearance algorithm. This is
actually caused by an unusually large price on 31 March 2019. Despite the large errors that
both methods have, on average, quite accurate estimates were obtained with only 0.6% and
0.07% relative errors for each method.
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Figure A1. Histograms with 50 bins of the errors for the two intersection methods: the clearance
algorithm (left) and interpolation method (right).

In [1], the authors found that in 89% of the cases the difference between their price
estimate and the actual clearing price, was less than 0.1 EUR/MWh (the smallest bidding
unit) and less than 1 EUR/MWh for 99.8% of the time. A similar comparison was made for
the two methods presented above, and the results are shown in Table A2. The methods
are not quite as accurate, but for both methods, the difference in price was less than
1 GBP/MWh for 87% of the time and less than 2 GBP/MWh for 94% of the time for the
clearance method and 97% for the interpolation method. The difference in accuracy could
be due to the Euro-focused bidding structure of the EPEX SPOT market, where bids are
made with increments of 0.1 EUR/MWh.
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Table A2. Showing the number of estimates whose errors are less than the different price amounts. Additionally included are
the percentages.

Errors Less than Clearance Algorithm Interpolation Method Clearance Algorithm (Percent) Interpolation Method (Percent)

£0.1 6235 3517 53% 30%
£0.5 9358 8093 79% 68%
£1 10,273 10,275 87% 87%
£2 11,170 11,509 94% 97%
£5 11,763 11,841 99% 99.9%

£10 11,853 11,856 99.97% 99.99%

Next, we consider the estimates of the volumes. Although the volumes are of less
interest, their accuracy should give confidence in the methods and help in deciding on
which of the two methods to use. This time, the clearance algorithm gives the smallest
errors on average, but also tends to underestimate the value. In contrast, the interpolation
algorithm tends to overestimate the value. More details are shown in the histogram in
Figure A2.
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Figure A2. Histogram for the clearing volumes for the clearing algorithm (left) and the interpolation
method (right).

Given the analysis above, the decision was made to use the interpolation method. This
was for several reasons. Firstly, although the clearance volume is more accurately predicted
by the clearance method, the most important variable is the clearance price, which is much
more accurately predicted using the interpolation method. Secondly, the interpolation
method is much easier to implement than the clearance method.

Appendix A.2. X-Model

This section briefly describes the X-model [1] that was used as the basis for one of the
core probabilistic day-ahead electricity price forecasting models presented in this report.

The model is split into several components:

1. Deriving the clearance price from the supply and demand curves—this will be used
as the actual price, as described in Appendix A.1.

2. Deriving the price class time series from the supply and demand curves.
3. Producing forecast models for each price class.
4. Reconstructing the supply and demand curves from the price class forecast.
5. Estimating the price from the intersection of the reconstructed supply and demand

curves—this uses the same method to derive the clearance price and is described in
Appendix A.1.

6. Producing a probabilistic forecast from a residual bootstrap.
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Each of the steps is elaborated upon in the individual sections below. The notation
used throughout will be similar to that used in [1].

Appendix A.2.1. Producing Day-ahead Forecasts for Each Price Class

The model is only trained once for simplicity and to reduce the computational cost.
This can be updated in future work. To model day d and hour h, the main variables for the
model are denoted as follows:

Xd,h =((X(c)
S,d,h)c∈CS , (X(c)

D,d,h)c∈CD , Xprice,d,h, Xvolume,d,h,

Xwindoff,d+1,h, Xwindon,d+1,h, Xsolar,d+1,h)
(A1)

where X(c)
S,d,h and X(c)

D,d,h are the volumes within each price classes at hour h for the supply
and demand, respectively, where the price classes were defined in Section 3.1.1. Addition-
ally included is the price and volume Xprice,d,h, Xvolume,d,h (found from the intersection of
the original supply and demand curves) and the offshore wind, onshore wind, and solar
generation forecasts, Xwindoff,d+1,h, Xwindon,d+1,h, and Xsolar,d+1,h.

The dimension of Xd,h for each hour and day is M = MS + MD + MX = 16+ 16+ 5 = 37,
where MS = MD = 16 are the numbers of price classes for the supply and demand,
respectively, and MX = 5 is the number of other variables. Note that only the first
MS + MD variables are to be forecast for each hour h of the next day. At present, the
forecast is made from midnight of the day before. This is not strictly accurate, but is likely
to make little difference in the forecast results. This should be considered in future work.

The first step is to reduce the data to a zero-mean time series Yd,h = Xd.h − E(Xd,h),
where E(Xd,h) is estimated using the sample mean. Further, since the LASSO model is a
regularised least squares method, each variable is normalised to have unit variance. This
assists with the training of the weights.

A linear model is considered for each hour, and m ∈ {1, 2, . . . , MS + MD} is given by

Ym,d,h =
M

∑
l=1

24

∑
j=1

∑
k∈Jm,h(l,j)

φm,h,l,j,kYl,d−k,j +
7

∑
k=2

ψm,h,kWk(d) + εm,d,h (A2)

with parameters φm,h,l,j,k and ψm,h,k for the autoregressive coefficients and the day-of-the-
week-effect coefficients, respectively. The day-of-the-week dummy variable Wk(d) is equal
to one if k is equal to the same day of the week as d, and zero otherwise. The errors
εm,d,h are assumed to be independent and identically distributed across days with constant
variance σ2

m,h.
A large number of lags are considered for the price components, and they are defined

by

Jm,h(l, j) =


{1, 2, . . . , 36}, m = l and h = j
{1, 2, . . . , 8}, (m = l and h 6= j) or (m 6= l and h = j)
{1}, m 6= l and h 6= j

(A3)

These represent the maximum size of the lags for different input variables. If the
variable is the same class, then 36 days of lags are used for the same hour of the day,
whereas only 8 days of lags are used if it is a different class but the same hour of the day, or
the same class but a different hour. If the hour and class are different, only data from one
day of lags are used.

The coefficients are found via a LASSO approach, which not only trains the variables,
but also selects the best variables. Suppose that there is a linear model (written in matrix
form for simplicity):

Ỹm,d,h = X̃m,d,h β̃m,h + ε̃m,d,h (A4)
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with a parameter vector

β̃m,h = (β̃m,h,1, β̃m,h,2, . . . , β̃m,h,pm,h
)T (A5)

and a pm,h-dim vector of regressors:

X̃m,h = (X̃m,h,1, X̃m,h,2, . . . , X̃m,h,pm,h
)T (A6)

The LASSO estimator is

˜̂βm,h = argmin
β∈Rpm,h

n

∑
d=1

(Ỹm,d,h − X̃m,d,hβ)2 + λm,h

pm,h

∑
j=1
|β| (A7)

with penalty λm,h ≥ 0 (λm,h = 0 means that there is no penalty on the number of variables,
and hence, this is likely to lead to overfitting). If the penalty is too large, then the coefficients
will simply be set to zero. The best penalty is found by maximising the Bayesian Informa-
tion Criterion by implementing the least-angle regression implementation of LASSO, a
very quick method for solving a highly parameterised LASSO optimisation.

Once the parameters are found, they can be rescaled to apply to the mean zero series
and then re-centred to give the forecast for the original time series.

Appendix A.2.2. Reconstructing the Full Supply and Demand Curves

The forecasts produced are just for the price classes chosen by the method described
in Section 3.1.1. To produce a price forecast, the supply and demand curves must be
reconstructed, and then the wholesale price is simply the intersection of these curves. This
is done on a price grid with 0.1 GBP increments, as in the X-model paper (but in GBP rather
than EUR). This is slightly complicated, as a choice needs to be made regarding how the
volumes from the price class will be distributed to the higher-resolution price grid.

The choice is made by looking at the historical data and calculating the most frequent
probability that a volume is bid upon at each price level (rounded to the nearest 0.1 in our
case), i.e., counting the proportion of bids made at price P. These are denoted π̂S(P) and
π̂D(P) for the supply and demand, respectively (note that they are independent of the time
period). The reconstructed volumes for supply and demand for hour h and day d are then
given by

V̆S,d,h(P) =
RS(P)V̄S(P)

∑Q∈PS(c) RS(Q)V̄S(Q)
X(c)

S,d,h (A8)

and

V̆D,d,h(P) =
RD(P)V̄D(P)

∑Q∈PD(c) RD(Q)V̄D(Q)
X(c)

D,d,h (A9)

where V̄S(P) and V̄D(P) are the average volume curves for supply and demand, respec-
tively, X(c)

S,d,h and X(c)
D,d,h are the current volumes forecast for price class c for hour h and day d

for supply and demand, respectively, and RS(P) ∼ Ber(πS(P)) and RD(P) ∼ Ber(πD(P))
are Bernoulli random variables for supply and demand, respectively, with the associated
probabilities generated from the available sample of historical data (although, as men-
tioned before, the combined training and test datasets are used instead due to the relatively
small amount of data—this is not expected to change the results too dramatically, as the
probabilities are likely to be similar).

The reconstruction probabilities (i.e., the Bernoulli random variables) are assumed to
be independent in each price and also from the errors, εm,d,h, in the LASSO fit. This will
enable a simple construction of the bootstrap forecasts (see Appendix A.2.3).
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The way that the Bernoulli random variables are selected is dependent on whether a
point or probabilistic model is being chosen.

• If a point forecast is being generated, then the value is set to RS(P) = 1 if πS(P) ≥ 1/12.
In other words, if a price is seen, on average, twice a day, then it is included in the
reconstruction. A similar process is used for the reconstruction of the demand curve.
This is the same threshold as that used in [1].

• If considering a probabilistic forecast, then, instead of a fixed threshold as with the
point forecast, for each bootstrapped price class forecast (see Appendix A.2.3), the
supply and demand curves will be reconstructed by sampling from the Bernoulli
distributions with their prescribed probabilities.

Once the supply and demand forecast curves have been reconstructed, then the forecast
price is given by the intersection using the interpolation method described in Appendix A.1.

Appendix A.2.3. Probabilistic Forecast Generation

This section describes how a probabilistic forecast is created. Given the parameters
found from the LASSO model (Appendix A.2.1), a point forecast for each normalised class
time series is generated. Then, the sample means are re-added to obtain the bid volume
forecasts X̂1,n+1,h, X̂2,n+1,h, . . . , X̂MS+MD ,n+1,h for the following day.

A basic method for modelling the uncertainty around the forecast is produced by
a residual bootstrap [1] from the training data. In other words, the residuals (εm,d,h),
which are the difference between the values from the model and the actual values in
the training data, are randomly sampled with replacements and added to the current
forecast vector to model the expected deviations from the mean. This can be repeated
to produce B bootstrapped samples, with X̂b

m,n+1,h for b = 1, . . . , B for each price class.
Then, the bootstrapped classes are reconstructed as supply and demand curves using
the Bernoulli sampling method in Appendix A.2.2. The intersection of the supply and
demand curves is then calculated for each bootstrap pair by using the interpolation method
described in Appendix A.1. Note that the independent bootstrapping and Bernoulli random
sampling are valid, since the price probabilities and the residual errors are assumed to be
uncorrelated.

An adjustment to the simple bootstrap that randomly samples from the set of residuals
for the entire training set but takes into account the correlation structure of the residuals
is used instead. Let ε̂d,h = (ε̂1,d,h, . . . , ε̂MS+MD ,d,h)

′ be a vector of residuals for day d and
hour h for each of the price classes. Then, a daily residual vector can be defined as
Êd = (ε̂d,0, . . . , ε̂d,23)

′. The bootstrap is made from (Ê1, . . . , Ên) (i.e., from the n historical
days) and is then applied to the current time series. This ensures that the correlation
between price classes and the daily residual correlations are included in the model.

Appendix B. Extra Results

This appendix contains some extra results that did not fit within the main content of
the paper, and these are given here as supporting material.

Appendix B.1. Price Class Forecasts

Figures A3 and A4 show some day-ahead price class forecasts for the first two months
of the test set for selected demand and supply classes, respectively. It is clear that some are
more regular than others and are, hence, likely to be easier to accurately forecast.
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Figure A3. Examples of day-ahead forecasts for several classes for demand. The forecasts are in red
and the actuals in black.
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Figure A4. Day-ahead forecasts for selected supply classes in the test set. The forecasts are in red
and the actual values are in black.
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Appendix B.2. Probability Integral Transforms

In Section 6.2, some probability integral transforms are presented for the first two
months of the test set. For completeness, the PIT for the entire test set is given here for each
of the main models. These are given in Figures A5–A7. Additionally note that the level
for a uniform PIT is given in red, and this shows how the PIT would be distributed if the
models were well calibrated over the entire test set.

In this case, unlike with the first two months, it is clear that the ARX model and
X-model are both biased [28]. This means that the quantiles for these models are shifted
too high for the observations. This is easily explained by the drift of the models, as seen in
Figure 14 for the later months of the test set. As shown for the shorter test set, this bias is
moved (in fact, it shifts to the other side) from the PIT. The bias is worse for the X-model,
and this could be due to the accumulation of the forecast bias for each class. One way to
reduce the bias in the ARX model and X-model would be to retain them at regular intervals.
Other methods that have less bias than the LASSO model used here should be considered.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Probability integral transform

0

100

200

300

400

500

Co
un

t

X-Model

Figure A5. PIT for the X-model for the entire test set.
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Figure A6. PIT for the ARX model for the entire test set.

For the ARIMAX model, the PIT in Figure A7 shows an over-dispersion, which
means that the quantiles are perhaps too wide for the actual underlying distribution. The
underlying model for this method is a Gaussian distribution, which is clearly too wide, at
least for this larger test set. As before, this is reduced in the shorter test set of two months,
as shown in Figure 19, which is now more uniform, but has a slight bias.
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Figure A7. PIT for the ARIMAX model for the entire test set.
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