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Abstract: This work proposes and evaluates a method for the nowcasting of solar irradiance variabil-
ity in multiple time horizons, namely 5, 10, and 15 min ahead. The method is based on a Convolutional
Neural Network structure that exploits infrared sky images acquired through an All-Sky Imager to
estimate the range of possible values that the Clear-Sky Index will possibly assume over a selected
forecast horizon. All data available, from the infrared images to the measurements of Global Hor-
izontal Irradiance (necessary in order to compute Clear-Sky Index), are acquired at SolarTechLAB

in Politecnico di Milano. The proposed method demonstrated a discrete performance level, with
an accuracy peak for the 5 min time horizon, where about 65% of the available samples are attributed
to the correct range of Clear-Sky Index values.
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1. Introduction

Power generation from a renewable energy source (RES) is becoming increasingly
popular to meet the ever-growing global energy demand and to limit fossil fuel-related
greenhouse gas emissions. In detail, over the last few decades, solar and wind have
experienced significant growth in terms of installed capacity together with continuous
technological improvement [1].

Regarding solar energy and, more specifically, photovoltaic (PV) technology, its rapid
growth has faced multiple technical obstacles, such as low solar cell efficiency, and economic
problems, such as high cost of materials [2]. Theoretical analyses show that solar energy
alone, with adequate technology to collect and store it, could meet the energy demand of
the entire world [3]. For example, global energy consumption recorded in 2017 was around
18.1 TW and is projected to be around 28 TW by 2050, while land-based solar energy in
one year is estimated at 23,000 TW. Furthermore, solar energy is a renewable source, and
its exploitation for energy production does not cause polluting emissions and greenhouse
gases [4].

The energy produced by a RES is characterized by fluctuations, which are dependent
on various environmental and meteorological parameters. Hence, a high penetration
of this type of source into the electrical system is challenging [5]. In a scenario where
renewable energies play a fundamental role in the energy supply, a reliable forecast of
energy production is essential to properly manage the electrical system [6]. For this reason,
RES energy production forecasting is one of the most popular topics within the scientific
community today [7]. Solar energy forecasting is useful for regulating the routine operation
of electrical grids and microgrids with integrated solar power generation [8,9], enabling
imbalances in energy production and consumption to be minimized [10]. Furthermore, it is
a fundamental tool during the identification of the potential location for the photovoltaic
installation and the subsequent planning phase [11].
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Different forecasting horizons can be identified. They are highly dependent on the
forecasting target. In particular, for power production, two different classifications can be
identified: the first one is related to the operation and maintenance of the grid, while the
second one is closely related to electricity market definitions [12,13]. By analyzing [14], it is
possible to identify three main horizons: the long-term forecasting, corresponding to the
day-ahead forecast, the mid-term from 1 day down to 6 h, the short-term from 6 h to 30 min,
and nowcasting, which includes the forecast horizons under 30 min. The nowcasting time
horizon, the central topic of the present work, is crucial in solving grid stability issues
and optimizing the microgrid’s energy management systems [15]. Moreover, it is vital in
regulating the electricity market whenever a solar power production facility is connected to
the electrical grid [16]. In nowcasting, the object of the solar forecast is the solar irradiance,
which directly influences the power produced by PV modules.

Nowcasting methods can be roughly classified into physical and data-driven mod-
els [17]. Three main types of solar radiation forecasting methods are considered in the
scientific literature: numerical weather forecasting (NWP) models, appropriate for long-
term forecasting; satellite techniques, appropriate for time horizons up to 8 h ahead; ground
techniques, appropriate for nowcasting. NWP models are based on a set of differential
equations that describe the physical phenomena of interest. In order to achieve an accurate
forecast, they require a proper definition of initial conditions [18]. Furthermore, images cap-
tured from a satellite are useful for forecasting tasks, providing an overview of large-scale
weather systems and their movement. Ground-based techniques exploit All-Sky Imagers
(ASIs), cameras capable of acquiring pictures of the sky through an hemispherical mirror,
which are helpful in estimating cloudiness [19]. The ASI can be configured for different
operational environments and network designs, from a standalone edge computing model
to a fully integrated node in a distributed, cloud-computing-based microgrid [20].

The most challenging part of nowcasting is the analysis of transient clouds and hence
the estimation of type, cover, and movement [21]. These challenges are addressed by
computer vision [22], a branch of computer science dedicated to the emulation of human
visual system capabilities that allows computers to recognize elements in pictures and
videos in the same manner as people. In recent years, thanks to the development of artificial
intelligence and deep learning, this field took great leaps forward that enabled the ability
to perform several tasks that previously could not be accomplished without artificially
complex methods [23]. A deep-learning tool that achieved excellent results in several works
from scientific literature is the Convolutional Neural Network (CNN) [24]. In computer
vision tasks, CNNs have several advantages over traditional Neural Networks because
they are specifically optimized in extracting and learning features from images [17].

The aim of this work is to exploit full-sky infrared images to predict, by means of
a CNN, the Clear-Sky Index (CSI) in different time horizons, namely 5, 10, and 15 min.
In this work, all available images are acquired by an ASI installed at the SolarTechLAB in
Politecnico di Milano. Images are acquired in RGB format once per minute: this sampling
rate is limited by the available hardware. In order to reduce the dataset required for the
training of convolutionary neural networks, here, it was, therefore, decided to crop the
images in the portion around the sun. This helps the applicability of the method because in
many cases it is not possible to have a sufficiently large dataset.

The structure of the present article is organized as follows: Section 2 describes the
available data and the characteristics of the forecast model developed; Section 3 reports the
performance level achieved in irradiance nowcasting; Section 4 draws conclusions from the
presented work.

2. Solar Irradiance Forecasting Procedure

In this section, all the steps of the procedure adopted to perform the forecast of solar
irradiation are discussed, from preprocessing the dataset to the development of the deep-
learning model. This section is structured as follows: Sections 2.1 and 2.2 describe the
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available data and the preprocessing stages, and Section 2.3 describes the structure of the
adopted CNN.

Available data consist of infrared sky images captured by specific ASIs and Global
Horizontal Irradiation (GHI) measurements. In detail, they are acquired for all the days
comprised between September 2019 and April 2020, with a one-minute time step and
considering only the daylight hours.

2.1. Image Processing Techniques

The available images undergo a specific pre-processing procedure with two objectives.
The first is to obtain a format suitable for processing with a CNN template. The second goal
is to be able to reduce the number of samples required for CNN training.

The instrumentation in SolarTechLAB is capable of acquiring sky images with a multi-
spectral approach. Figure 1, for instance, reports an example of a same sky view acquired
by two different sensors in optical and infrared spectral regions, respectively. However,
only the infrared images are included in the dataset exploited in the present work since
they are less prone to saturation issues and allow effectively identifying the sun position.

Figure 1. Same sky view acquired through different sensors in optical and infrared spectral regions.

From previous studies, it appears that the most significant areas for nowcasting are
those around the sun. In fact, these areas are the ones responsible for direct radiation. Start-
ing from this consideration, in the available infrared images, a square region surrounding
the position of the sun is cropped, as shown in Figure 2. This operation allows reducing
the computational burden of the training phase, both for the number of images required
and the computational time.

Figure 2. The infrared images are cropped based on the sun’s position in a way that the sun is located
in the middle of each image in a square shape. The images are cropped since only the area around
sun is relevant.

The available infrared images undergo specific preprocessing that aims to isolate the region
surrounding the sun’s location and a cleaning procedure that aims to exclude rainy conditions
from the data involved in the CNN development, and then the forecast model is tested.

2.2. Classification Phase

Once the images are properly treated, they are classified according to two different criteria.
The first criterion aims at dividing the images according to the presence of precipitation.
Specifically, two different groups of images can be identified, representing, respectively:
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• Dry conditions: clear sky conditions, characterized by the absence of significant cloud
coverage, and covered sky conditions, characterized by the presence of significant
cloud coverage without precipitation, are considered together as a single group.

• Rainy conditions, characterized by significant cloud coverage and the presence of
water droplets on the hemispherical mirror surfaces of ASIs.

In Figure 3, examples of clear sky (a), covered sky (b), and rainy (c) conditions are reported.

(a) 09:15 19/03/2020 (b) 12:46 23/09/2019 (c) 11:45 21/12/2019

Figure 3. Examples images from each of the three defined groups: (a) dry conditions—clear sky;
(b) dry conditions—covered sky; (c) rainy conditions.

Images related to rainy conditions are identified thanks to a rain gauge installed in the
weather station of the SolarTechLAB and are removed from the dataset involved in the solar
irradiance forecast.

The second classification criterion consists of dividing the images into five different
groups on the basis of the Clear-Sky Index value, defined as [25,26]:

CSI
∣∣
t =

GHIm
∣∣
t

GHIcs
∣∣
t

(1)

In the equation, GHIm is the the measured Global Horizontal Irradiation, while GHIcs
is the Global Horizontal Irradiation in clear sky conditions. In other words, CSI corresponds
to a normalized GHI, which allows removing the effects of seasonal changes from the GHI
itself [27].

In more detail, images are grouped into five distinct classes based on strict threshold
values of CSI, as reported in Table 1. “Over-irradiance” is a particular condition where solar
radiation multiple reflections between the ground and direct beam could result in greater
solar radiation levels on the pyranometer with respect to Clear Sky conditions.Hence, the
CSI, which is the ratio of measured irradiance at ground level to the estimated irradiance
in clear sky conditions at ground level, could go beyond 1, as shown in [28].

Table 1. Threshold values of CSI for classes definition.

Class CSI Range Sky Condition

1 0 < CSI < 0.2 Overcast
2 0.2 < CSI < 0.45 Partially cloudy
3 0.45 < CSI < 0.75 Partially cloudy
4 0.75 < CSI < 1 Clear
5 CSI > 1 Over-irradiance

Figure 4 depicts the overall double-step classification scheme that allows preprocessing
the data.
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Figure 4. Double-step classification scheme.

2.3. Model Development

In the present work, a deep-learning model for image classification, namely a CNN, is
developed. The idea of CNNs is derived from studies on the brain’s visual cortex. Each
of the neurons dedicated to vision processes information derived from a limited region of
the visual field only. Moreover, the receptive fields of different neurons may overlap, and,
all together, they cover the entire visual field. This structure, capable of detecting complex
patterns in any region of the visual field, inspired the researcher to develop a Neural
Network architecture that gradually evolved into the current CNN [29].

In further detail, the typical CNN structure is capable of learning features from input
images through a sequence of convolutional and pooling layers [30]. The convolutional
layer is the crucial building block of CNNs: neurons in this type of layer are not connected
to every pixel in the input image, only to pixels in their corresponding receptive fields. The
weight of a neuron is represented by a filter (or convolution kernel) that, when applied to
the image, is able to extract features from it. During the training phase, the convolutional
layer learns which is the best-suited convolution kernel to fulfill a specific task [31]. On
the other hand, the pooling layer has the goal of subsampling the input image in order to
reduce the computational load, the memory usage, and the number of network parameters
to be tuned. As in convolutional layers, each neuron is connected to a restricted region
of the previous layer. Moreover, neurons in this layer do not have weights: all they do is
aggregate the inputs according to a specific aggregation function, such as “max” or “mean”.
After being processed in the cascade of convolutional and pooling layers, the information
flow is flattened, i.e., it is structured in a suitable format to be further processed.

After the feature learning step, the flowing information is flattened (properly struc-
tured in order to be further processed) and delivered to a fully connected layer that performs
the classification step.

The structure of the CNN adopted in the present work is presented in Figure 5. Hidden
patterns are extracted from images by means of two couples of convolutional and pooling layers.
Then, a flattening layer and a fully connected layer perform the feature-based classification.
Each convolutional layer adopts 30 convolution kernels with a 4 × 4 squared shape and a stride
equal to 1, while each pooling layer exploits pooling kernels with a 4 × 4 squared shape and
a stride equal to 4. The number of kernels, their shape, and the number of neurons in the
fully connected layer are chosen through a sensitivity analysis procedure that allows selecting
a proper configuration capable of achieving reasonable performance.

Concerning the available infrared images, 70% are exploited as the training set, while
another 15% constitutes the validation set. The remaining 15% of data is used as the test set.

Figure 5. Architecture of the adopted CNN model.
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3. Results and Discussion

In this section, the forecasting performance achieved with the proposed method is
reported considering all three different forecasting horizons considered, i.e., 5, 10 and
15 min, respectively.

Firstly, the instrumentation used in this case study is described, then the numerical
results are presented.

3.1. Case Study

Weather parameters are monitored at the SolarTechLAB with a meteorological station
equipped with a solar irradiance sensor, temperature and humidity sensors, a wind speed
and direction sensor, and a rain collector. Solar irradiance is measured with two secondary
standard pyranometers for the measurement of the total irradiance on horizontal and 30◦

tilt planes. In addition, a pyranometer with a shadow band is available for measuring the
diffuse irradiance.

The main characteristics of the sensors, together with the temperature measuring
equipment, are described in Table 2.

Table 2. Detailed characeristics of weather station.

Irradiance sensors Pyranometer (LSI, DPA252)
Standard Secondary standard ISO 9060

Measurements range (W m2) <2000
Spectral range 300–3000 nm

Total achievable daily uncertainty <2%
Directional response <±5.4 Wm2

Thermal drift <2%

Temperature sensor Pt100 1/3 B (DIN EN 60751)
Measurements range [−30 ◦C, +70 ◦C]

Uncertainty 0.2 ◦C (at 0 ◦C)
Resolution 0.04 ◦C

Response time (T90) 3 min: with filter;
20 s: without filter

The meteorological station performs ambient conditions measurements every ten
seconds. The average, maximum, minimum, and standard deviation of the values measured
by the sensors are calculated every minute, and these values are stored in a database.

The SkyCam system comprises a long-wavelength infrared camera placed over a hemi-
spherical mirror reflecting the sky. It thus provides full-sky coverage, equivalent to
a 180◦ × 360◦ field-of-view. The SkyCam uses a curved mirror with a diameter of 35 cm,
coated with chrome. It is designed to be dust-tight, to resist liquid ingress, and to operate
in the −20 to +60 ◦C ambient temperature range. The resolution of the raw images is
640 × 480 pixels. The sky-imager possesses its own mechanical-optical arrangement and
orientation once deployed. A geometrical calibration is therefore performed at each site to
retrieve the optical intrinsic parameters of the sky-imager. The calibration process is fully
automated and uses an automatic algorithm based on the solar position captured during
clear-sky days over full sun paths to calibrate the pixels. In addition to the geometric
calibration, automated detection of the mask is performed to distinguish between useful
pixels and useless pixels obstructing the field-of-view of the imager. The mask detection
procedure automatically distinguishes between cold clear sky areas and hot radiant ob-
jects. The entire geometric calibration/mask detection procedure generally takes at most
seven days—the average time needed to gather enough clear-sky image statistics.

Finely determining where each pixel points to on any given part of the sky (in terms
of azimuthal and zenithally angles) is mandatory to detect possible shading obstacles. In
our case study, the chosen location is the Department of Energy rooftop at Politecnico di
Milano University campus; therefore, shading objects (as trees and buildings) are avoided
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as the location is in the middle, and the surroundings have no shading objects. Finally,
technical features of the camera, such as ISOs, maintenance procedures, and calibrations,
are industrial property of the manufacturer, and we are not allowed to disclose them.

3.2. Numerical Results

The confusion matrices for all the forecasting horizons are presented in Figures 6–8. In
each matrix, a generic cell in row i and column j reports the number of samples belonging
to class i that are assigned to class j during classification. The diagonal cells (green in the
Figure) represent the correctly classified samples, while the cells outside the diagonal (red
and orange in the Figure) represent samples assigned to the wrong class. The orange cells
represent an error of one single class, which is more acceptable because, in many cases, it is
due to the sharp divisions of the classes. The right vertical line represents the precision of
the method, while the bottom line the recall. Finally, the cell in the bottom right contains
information on the accuracy of the prediction.

Figure 6. Confusion matrix corresponding to a time horizon of 5 min.

Figure 7. Confusion matrix corresponding to a time horizon of 10 min.
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Figure 8. Confusion matrix corresponding to a time horizon of 15 min.

Figure 6 represents the confusion matrix calculated over a time horizon of 5 min. The
overall accuracy level achieved is equal to 65.79% of samples correctly classified. Figure 7
represents the confusion matrix calculated over a time horizon of 10 min. The accuracy
obtained over this time horizon is equal to 65.02%. Figure 8 represents the confusion matrix
calculated over a time horizon of 15 min. Considering this time horizon, only 56.25% of
the total number of samples are correctly classified. It is observable that class 1 (the most
populated one) is always recognized without committing any error, while class 5 (the
least populated one) is not recognized at all by the model. As expected, the accuracy of
classification decreases when the time horizon considered increases. In further detail, the
recorded performance drop is very limited when increasing the time horizon from 5 to
10 min (lower than 1%), while it is significant when increasing the time horizon from 10 to
15 min (almost 9%).

Figures 9–11 report the sorted daily classification performances for each of the con-
sidered time horizons (5, 10, and 15 min), from the best to the worst. Therefore, all the
daily classification performances, from the best to the worst, can be observed. In all the
diagrams, the average performance level is highlighted by an orange dotted line. In this
way, the daily performances above and below the average level can be clearly identified.

Figure 9. Sorted daily forecasting performance corresponding to a time horizon of 5 min.
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Figure 10. Sorted daily forecasting performance corresponding to a time horizon of 10 min.

Figure 11. Sorted daily forecasting performance corresponding to a time horizon of 15 min.

As observed, in a few cases, all the samples are correctly classified, reaching peaks of
100% in the daily classification accuracy. On the other hand, there are days characterized by
a very low classification accuracy, where only a bunch of samples are correctly classified.

4. Conclusions

The present work proposed a new nowcasting method to calculate the variability
of solar irradiation over multiple time horizons, namely 5, 10, and 15 min ahead. The
method was implemented through a Convolutional Neural Network (CNN) that uses the
infrared sky images captured by an All-Sky Imager (ASI) installed at the SolarTechLAB,
Politecnico di Milano, as input. The implemented system requires two main input elements:
the full-sky camera and a computer capable of processing the images. The SkyCam costs
EUR 60 k (EUR 45 k for the purchase of a second-hand instrument), while 1 year’s rental
costs about EUR 15–20 k. The computer with GPU for image processing costs about EUR
1.5–3 k considering the required technical characteristics. The network’s output consists
of a range of possible values of the Clear-Sky Index (CSI), a parameter that considers the
effect of transient clouds on the Global Horizontal Irradiation (GHI) only. The available
infrared images undergo specific preprocessing, aimed at isolating the region surrounding
the position of the sun. In addition, a cleaning procedure has been implemented to exclude
rainy conditions from the data involved in the development of the CNN, then the forecast
model was tested. The CNN exhibited a discrete performance level, with an accuracy peak
over the 5 min time horizon, where 65.79% of the available samples are attributed to the
correct range of CSI values. Considering larger forecast horizons, as expected, the overall
classification accuracy decreases to 65.02% (10 min forecast horizon) and 56.25% (15 min
forecast horizon).

Future works in this area can analyze the effect of introducing some meteorological
input parameters. These data, in fact, can help nowcasting because they provide informa-
tion, such as the current irradiation, very correlated with the CSI to be predicted, and the
current wind direction, which can help CNN identify when clouds can cover the sun.
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