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Abstract: We propose a functional time series method to obtain accurate multi-step-ahead forecasts
for age-specific mortality rates. The dynamic functional principal component analysis method is used
to decompose the mortality curves into dynamic functional principal components and their associated
principal component scores. Machine-learning-based multi-step-ahead forecasting strategies, which
automatically learn the underlying structure of the data, are used to obtain the future realization
of the principal component scores. The forecasted mortality curves are obtained by combining the
dynamic functional principal components and forecasted principal component scores. The point
and interval forecast accuracy of the proposed method is evaluated using six age-specific mortality
datasets and compared favorably with four existing functional time series methods.

Keywords: direct prediction strategy; dynamic functional principal component analysis; long-run
covariance; machine learning; recursive prediction strategy

1. Introduction

In many developed countries, increases in longevity and an aging population have
led to concerns regarding the sustainability of pensions, healthcare, and aged-care systems
(Organization for Economic Co-Operation and Development (OECD), 2013) [1]. These
concerns have resulted in a surge of interest among government policymakers and planners
to accurately model and forecast age-specific mortality rates. In addition, forecasted
mortality rates are an important input for determining fixed-term or lifelong annuity
prices and are very important to the pension and insurance industries (see, e.g., Shang
and Haberman, 2017) [2]. In demography, many statistical methods have been proposed
for forecasting age-specific mortality rates (see, Booth and Tickle, 2008, Shang et al. 2011,
for reviews) [3,4]. Of these, the most famous benchmark model is the Lee and Carter’s
(1992) [5] model. This model uses a principal component method to extract a single time-
varying index from the data to model the age-specific mortality rates. Then, the forecasts
are obtained via a random walk with drift. The LC method has the characteristics of
simplicity and robustness when the age-specific loge mortality rates have linear trends (see,
e.g., Booth et al., 2006) [6]. On the other hand, it uses only one principal component and its
associated scores to capture the mortality patterns in the data. The use of only one principal
component to decompose mortality rates may not capture the majority of variability in
data. Thus, the optimal forecasts may not be obtained by the LC method. To overcome this
problem, several methods, which are the extensions of the LC method, have been proposed
(see, e.g., Booth et al., 2002, Renshaw and Haberman, 2003, Cairns et al., 2006, Renshaw and
Haberman, 2006, Cairns et al., 2009, Plat, 2009, Hatzopoulos and Haberman, 2009, Hunt
and Blake, 2014, Wi´sniowski et al., 2015) [7–15]. In addition to the classical time series
methods, several machine learning and deep learning methods have been extended to the
mortality forecasting (see, e.g., Deprez et al., 2017, Richman and Wüthrich 2021, Perla et al.,
2021) [16–18].
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In addition to the aforementioned LC-based models, several functional time series
(FTS) methods have been proposed to obtain improved forecasts for the age-specific mortal-
ity rates (see, e.g., Hyndman and Ullah, 2007, Hyndman et al., 20013, Gao and Shang, 2017,
Shang and Haberman, 2018, Shang, 2019, Shang, 2020, Shang and Yang, 2021 [19–25] and
references therein). In the FTS method, contrary to the LC-based methods, the age-specific
mortality curves, where age is treated as a continuum, are analyzed. In more detail, the
FTS method decomposes the smooth mortality curves into a set of functional principal
components and associated scores via a functional principal component analysis (FPCA)
method. Then, the principal component scores are modeled using a classical time series
method to obtain their future realizations. Finally, the forecasted mortality curves are
obtained by combining the future realizations of the principal component scores and the
functional principal components. Obtaining accurate forecasts for the future realizations of
the principal component scores is crucial for the FTS methods to have improved forecasting
results. All the existing FTS forecasting methods for mortality curves use classical linear
time series methods to obtain future realizations of the principal component scores. How-
ever, classical time series methods are data-dependent and require several assumptions
for the distribution of the error process. In addition, such classical time series methods
assume that the principal component scores belong to a true data-generation process.
Thus, different principal component scores for different mortality datasets may require
different estimation strategies for the parameters of the assumed model. Moreover, in
most existing FTS methods, the majority of attention has been paid to a one-step-ahead
forecast of the mortality curves. On the other hand, the one-step-ahead forecast may not be
informative because the decision-makers and policymakers may need long-term forecasts
of mortality rates to manage risks properly. Therefore, in contrast to the one-step-ahead
forecast, h-step-ahead (h > 1) mortality forecasts may be more useful for policymakers
to make long-term plans easily. In this paper, we propose a machine-learning-based FTS
method, which automatically uses learning algorithms to learn the underlying structure of
the principal component scores to obtain h-step-ahead forecasts of mortality curves.

In our proposed method, contrary to most of the FTS methods that use the static FPCA,
we consider a dynamic FPCA (DFPCA) method to decompose the mortality curves into the
principal components and the corresponding scores. In DFPCA, the principal components
are extracted based on an estimated long-run covariance, including the variance function
as a component. It also measures temporal cross-covariance at different positive and
negative lags. Thus, compared to the static FPCA, the DFPCA produces more consistent
principal components (see, e.g., Shang, 2019, Shang, 2020 [23,24]). To obtain the future
realizations of the principal component scores, we consider three machine-learning-based
multi-step-ahead time series forecasting strategies: (1) recursive strategy, which iteratively
uses the one-step-ahead forecast procedure for all the forecast horizons; (2) direct strategy,
which considers different models for a forecast horizon; and (3) DirRec strategy, which
combines the recursive and direct strategies to obtain h-step-ahead forecasts effectively.
Consult Sorjamaa et al., 2007, Taieb et al., 2012, Taieb and Hyndman, 2014 [26–28] for more
information about the multi-step-ahead time series forecasting strategies. In addition to the
point forecast, we adopt the proposed method into the bootstrap method of Hyndman and
Ullah 2007 [19] to construct pointwise prediction intervals for the mortality curves.

The remaining part of this paper is organized as follows. Section 2 summarizes the
FTS and DFPCA methods and introduces the multi-step-ahead forecasting strategies. The
datasets used to evaluate the forecast accuracy of the proposed methods are presented in
Section 3. In Section 4, we revisit the expanding-window approach and forecast accuracy
measures to evaluate the accuracy of the proposed methods. The results are presented in
Section 5. Section 6 concludes the paper, along with some ideas on how the method can be
further extended.
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2. Functional Time Series Forecasting Method

Let X (u) = {X1(u), . . . ,Xn(u)} denote a functional time series of the log mortality
rate of age u, where u denotes the age continuum. It is assumed that the functions Xi(u),
for i = 1, . . . , n, are the elements of L2(I) Hilbert space defined on the closed and bounded
interval I , i.e., u ∈ I . The direct modeling and forecasting of functional time series are
difficult tasks because the elements of such time series belong to an infinite-dimensional
Hilbert space. A common practical solution to overcome this problem is the projection of
the infinite-dimensional time series into a finite-dimensional space of basis functions. The
commonly used approach for this purpose is dimension reduction method.

Let µ(u) = E[X (u)] denote the mean function and C(u, s) = Cov[X (u),X (s)] rep-
resents the covariance function of X (u) satisfying

∫
I
∫
I C2(u, s)duds < ∞. By Mercer’s

Theorem, the covariance function has the following representation

C(u, s) = ∑
k≥1

λkφk(u)φk(s), u, s ∈ I ,

where φk(u) and φk(s), for k = 1, 2, . . ., denote the orthonormal principal components cor-
responding to the non-negative eigenvalues λk. Then, by the Karhunen–Loève expansion,
a stochastic process X (u) can be expressed as

X (u) = µ(u) +
∞

∑
k=1

βkφk(u), (1)

where βks are the principal component scores obtained by the projection of X (u)− µ(u) in
the direction of the kth eigenfunction φk, i.e., βk = 〈X (u)− µ(u), φk(u)〉.

Dimension reduction can be achieved by truncating the infinite series expansion
in Equation (1) to the first K functional principal components. The main feature in the
original functional time series can be captured by K-dimensional vector (β1, β2, . . . , βK),
leading to an approximation as

X (u) = µ(u) +
K

∑
k=1

βkφk(u) + e(u), (2)

where e(u) denotes the error term containing those principal components and their asso-
ciated scores, excluded from the first K truncation. The forecasting performance of the
functional time series methods is significantly affected by choice of K. In statistics, several
approaches, such as cross-validation (Ramsay and Silverman, 2006) [29], Akaike informa-
tion criterion (Akaike, 1974) [30], and explained variance (Chiou, 2012) [31] can be used
to determine the optimum value of K. In our analyses, we consider the cross-validation
approach to determine the optimum value of K.

2.1. Dynamic Functional Principal Component Analysis

In Equations (1) and (2), the principal components are obtained by maximizing the
variance information from the data. They enjoy optimality features (see Shang, 2014 for
independent and identically distributed functional data). For FTS with moderate-to-strong
temporal dependence, the variance information may not be an adequate criterion as it does
not incorporate autocovariance at different lags in an FTS. As an alternative, we apply
a DFPCA constructed from an eigendecomposition of an estimated long-run covariance
function. The long-run covariance function includes the variance and autocovariance at
lags greater than zero.

To estimate the long-run covariance function from an FTS, we consider a kernel
sandwich estimator

Ĉh,q(s, u) =
∞

∑
`=−∞

Wq

(
`

h

)
γ̂`(s, u), (3)
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where ` denotes the lag operator, γ̂`(s, u) denotes an estimator of the empirical autocovari-
ance function at lag `

γ̂`(s, u) =

{
1
n ∑n−`

i=1 [Xi(u)−X (u)][Xi+`(s)−X (s)] if ` ≥ 0,
1
n ∑n

i=1−`[Xi(u)−X (u)][Xi+`(s)−X (s)] if ` < 0,

and Wq(
`
h ) represents a weight function. The weight function depends on the order of

kernel function and bandwidth parameter h. The bandwidth parameter plays an impor-
tant role in estimating the long-run covariance function. In this study, we consider the
plug-in algorithm proposed by Rice and Shang (2017) [32] to select the optimal value of
the bandwidth.

With the estimated long-run covariance function Ĉh,q(s, u), the eigen-decomposition is
used to extract the principal components and their associated scores. Let {λ̂i : i = 1, 2, . . .},
for λ̂i > λ̂i+1, denote the sample eigenvalues of Ĉh,q(s, u) and Φ̂(u) = [φ̂1(u), φ̂2(u), . . . , ]
denotes the corresponding orthogonal sample eigenfunctions. By the Karhunen–Loève
expansion, we have the following representation for the stochastic process X (u)

X (u) = µ̂(u) +
∞

∑
k=1

β̂kφ̂k(u),

where µ̂(u) = 1
n ∑n

i=1 Xi(u) and β̂k is the k
th

estimated dynamic principal component score.
After the DFPCA decomposition of the FTS (with first K dynamic principal components),
the conditional expectation results in the h-step-ahead point forecast of Xn+h(u) as follows

X̂n+h|n(u) = E[Xn+h(u)|µ̂(u), Φ̂(u),X (u)]

= µ̂(u) +
K

∑
k=1

β̂n+h|n,kφ̂k(u),

where β̂n+h|n,k denotes the h-step-ahead point forecast of βn+h,k.

2.2. Multi-Step-Ahead Time Series Forecasting Strategies

To obtain the forecasts of principal component scores [β̂n+h|n,1, β̂n+h|n,2, . . . , β̂n+h|n,K],
we consider three multi-step-ahead time series forecasting strategies, i.e., recursive, direct,
and DirRec. For each strategy, we assume that the time series of principal component
scores,

{
βk,1, . . . , βk,n

}
for k = 1, 2, . . . , K, follows an autoregressive process with a function

f , a lag order d, and an error process εn with mean zero and variance σ2

βk,n = f (ηk,n−1) + εk,n, (4)

where ηk,n−1 = [βk,n−1, . . . , βk,n−d]
> and > denotes matrix transpose. To measure the

forecast errors, we consider the mean squared error (MSE). Let g(ηk,n; θ̂; h) denote the
h-step-ahead forecast obtained from ηk,n with the estimated parameter vector θ̂. Then, the
MSE is given by

MSEh(ηk,n) = Eε,βk

{[
βk,n+h − g(ηk,n; θ̂; h)

]2
|ηk,n

}
. (5)

From Equation (5), the optimal h-step-ahead forecast, i.e., the forecast having the
minimum MSE at forecast horizon h, is given by E(βk,n+h|ηk,n).
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The h-step-ahead forecasts are obtained in recursive strategy by applying a one-step-
ahead forecast procedure at each forecast horizon. This procedure is repeated until all the
forecasts are obtained. This method is of the form as in Equation (4) and aims to minimize
the one-step-ahead forecast variance. In other words, the recursive method estimates the
following model

βk,n = m(ϑk,n−1; κ) + ek,n,

where ϑk,n−1 = [βk,n−1, . . . , βk,n−s]
>, s is the estimate of true lag parameter d, κ = [ρ, τ] is

the vector of hyperparameter ρ and model parameter τ, and

ek,n = f (ηk,n−1)−m(ϑk,n−1; κ) + εk,n

denotes the forecast error. In this method, the estimates of d and ρ are obtained by minimiz-
ing the one-step-ahead forecast variance

(s, ρ̂) = arg min
s,ρ ∑

(ϑk,n−1,βk,n)∈D
[βk,n −m(ϑk,n−1; ρ̂, τ̂)]2. (6)

In Equation (6), τ̂ denotes an estimate of model parameter τ using the validation
set D. Based on the one-step-ahead forecast given above, the h-step-ahead forecasts are
obtained as

m(h)(ϑ; κ) =


m(ϑ; κ̂), h = 1,
m[m(h−1)(ϑ; κ̂), . . . , m(1)(ϑ; κ̂), βk,n, . . . , βk,n−s+h, κ̂] 1 < h ≤ s,
m[m(h−1)(ϑ; κ̂), . . . , m(h−s)(ϑ; κ̂); κ̂] h > s.

Note that in recursive strategy, different sets of parameter estimates are used at each
forecast horizon h

(sh, ρ̂) = arg min
s,ρ ∑

(ϑk,n−h ,βk,n)∈Dh

[
βk,n −m(h)(ϑk,n−h; ρ, τ̂h)

]2
.

In direct strategy, different forecasting methods are fitted for each forecast horizon.
More precisely, for each forecast horizon, the direct strategy aims to fit a model of the form

βk,n = mh(rk,n−h; γk,h) + ek,n,h,

where rk,n−h = [βk,n−h, . . . , βk,n−h−sh
]>, sh is the estimate of the true lag parameter d at

forecast horizon h, γh = (ρh, τh) is the vector of hyperparameter ρh and model parameter
τh at horizon h, and ek,n,h is the forecast error obtained from model mh at forecast horizon h.
In this method, the estimates of the lag parameter and hyperparameter for model mh are
obtained by minimizing the forecast error as

(sh, ρ̂h) = arg min
s,ρ ∑

(rk,n−h ,βk,n)∈Dh

[βk,n −mh(rk,n−h; ρ, τ̂h)]
2, (7)

where τ̂h denotes the estimate of model parameter using the validation set Dh at forecast
horizon h.

When comparing these two strategies, the recursive strategy tries to match the forecast-
ing and assumed models as much as possible. On the other hand, the direct strategy does
not. In addition, contrary to the recursive strategy, which minimizes one-step-ahead forecast
errors, the direct strategy considers minimizing h-step-ahead forecast errors. Moreover, the
direct strategy requires more computing time than the recursive strategy, since the former
one estimates h models rather than the one model that the recursive strategy estimates.
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The DirRec strategy combines the recursive and direct strategies to obtain accurate
forecasts. In this method, as in the direct strategy, different forecasting models are used
for each forecast horizon h, but the forecasts obtained from the forecast horizon h− 1 are
included in the model constructed at horizon h as input as in recursive strategy. In this
strategy, the parameters are estimated as

(sh, ρ̂h) = arg min
s,ρ ∑

n

{
βk,n − [mh(m̂h−1, . . . , m̂1, rk,n−h; ρ, τ̂h)]

}2,

and the h-step-ahead forecasts are obtained as

m(h)(ϑ; κ) =

{
m(ϑ; κ̂), h = 1
m[m(h−1)(ϑ; κ̂), . . . , m(1)(ϑ; κ̂), βk,n, . . . , βk,n−s+1, κ̂] h > 1

Throughout this study, the standard neural network is used for the recursive and
direct strategies as the learning algorithm

m(η) = τ0 +
N

∑
j=1

τjg(w>j η), (8)

where η denotes the vector of inputs, wj is the weight vector for the jth hidden node,
{τ0, τ1, . . . , τn} are the weights for the output node, and N is the number of hidden nodes.
Here, g(·) denotes the output for the hidden note and is obtained via the logistic function,
i.e., g(v) = 1

1+e−v . In Equation (8), the number of hidden nodes N controls the complexity
of the model, and the corresponding weights are estimated using optimization techniques,
such as backpropagation (see, e.g., Taieb et al., 2012 [27]). The weights are initially chosen
close to zero and updated by the backpropagation to minimize the prediction errors. In
this method, the results depend on the initial value; thus, the neural network is trained
for different initial values. The outputs are obtained by taking the average of different
models’ outputs. In this study, the neural networks are performed using the R package
”nnet“ (Venables and Ripley, 2002 [33]). For the DirRec strategy, on the other hand, the
linear regression, which is a parametric model, is used as a learning algorithm

m(η) =
p

∑
j=1

τjηj.

Here, the parameter estimates are obtained using the ordinary least squares method.

2.3. Construction of Prediction Interval

We consider the nonparametric bootstrap method proposed by Hyndman and Shang
(2009) [34] to obtain pointwise prediction intervals for the mortality rates. In this method,
two sources of errors are taken into account: (1) the errors in estimating the regression
coefficient estimates; and (2) the errors in the model residuals. Using the multi-step-ahead
forecasting strategies, we can obtain multi-step-ahead forecasts of the scores, {β̂k,1, . . . , β̂k,n}
and their associated forecast errors

ξk,i,h = β̂k,i − β̂k,i|i−h, i = h + 1, . . . , n.

These forecast errors allow us to construct multi-step-ahead bootstrap samples of
principal component scores

β̂b
k,n+h|n = β̂k,n+h|n + ξ̂b

∗,k,h, b = 1, . . . , B,

where ξ̂b
∗,k,h is a random drawn from ξ̂∗,k,h and B denotes the number of bootstrap replica-

tions. The residuals in the functional principal component regression can be sampled with



Forecasting 2022, 4 400

replacement to form the bootstrap samples êb
n+h(u). Adding these two sources of errors,

we have

X̂ b
n+h|n(u) = µ̂(u) +

K

∑
k=1

β̂b
k,n+h|nφ̂k(u) + êb

n+h(u).

The 100(1− α)% prediction intervals can be constructed by taking α/2 and (1− α/2)
empirical quantiles of {X̂ 1

n+h(u), . . . , X̂ B
n+h(u)}.

3. Age-Specific Mortality Data Sets

We study the age-specific mortality rates of three countries; Australia (from 1921 to
2018), Canada (from 1921 to 2019), and the United Kingdom (UK) (from 1922 to 2018),
obtained from the Human Mortality Database (https://www.mortality.org/ (accessed on
31 January 2022)). The Human Mortality Database includes age-specific mortality rates
for 41 countries. These three countries (i.e., Australia, Canada, and the UK) are selected
because they have high data quality. In the datasets, the observations are yearly mortality
curves from ages 0 to 110+ (110+ denotes ages at and beyond 110). Here, age is treated as
the continuum in the mortality curves. For each dataset, we only consider the data from
1950 to 2018 to avoid possible abnormal death rates before 1950 due to the two world wars
and the Spanish flu pandemic. There are some years where missing values occur for ages
between 96 and 100. In addition, erratic death rates can be observed at and beyond age 95.
Thus, we only consider ages from 0 to 95+, where the last age group includes those at and
beyond 95. For each sex in a given year, the observed log mortality curves are smoothed via
the penalized regression splines with a monotonically increasing constraint after the age of
65 (see, e.g., Hyndman and Ullah, 2007, Hyndman and Shang, 2010 [19,35]). In more detail,
we assume that each observed log mortality curve Xi(u), for i = 1, . . . , n, is characterized
by a smooth function Fi(u) and a random error term with mean zero and unit variance
εi as

Xi(uj) = Fi(uj) + σi(uj)εi,j, j = 1, . . . , J,

where j denotes the number of observed ages and εi,j is a component that allows us to
model heteroskedasticity, which can be estimated by

σ̂i(uj) =
1

eXi(uj)Ai(uj)
,

where Ai(uj) denotes the exposure-at-risk. With the penalized regression spline with
monotonic constraint, the smoothed log mortality curves are obtained as

Fi(uj) = argmin
θi(uj)

J

∑
j=1

wi(uj)|Xi(uj)− θi(uj)|+ δ
J−1

∑
j=1
|θ′i(uj+1)− θ′i(uj)|,

where δ is the smoothing parameter, θ is the smooth function approximated from the
B-splines, and θ′ denotes the first derivative of θ.

The rainbow plots of the smoothed mortality and log mortality rates are present in
Figure 1, where the red-colored curves denote the mortality rates for distant-past years and
the mortality rates for more recent years are given by violet. From the log mortality plots,
for both females and males, it is evident that the mortality rates decrease sharply in infant
ages, climb the 20 s, and then linearly increase with age on the log scale.

https://www.mortality.org/
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Figure 1. Functional time series plots of smoothed mortality and log mortality rates for Australia
(rows 1–2), Canada (rows 3–4), and the UK (rows 5–6): female (left panels) and male (right panels).

4. Forecast Evaluation
4.1. Expanding-Window Approach

We consider an expanding-window approach to evaluate the forecast accuracy of the
proposed methods. We split the entire data into two parts for each dataset: a training
sample comprising years from 1950 to 1998 (48 years in total) and a test sample consisting
of years from 1999 to 2018 (20 years in total). Using the entire training sample, we obtain
h = 1, . . . , 20-step-ahead forecasts of log mortality rates in 1999–2018. Then, we obtain
h = 1, . . . , 19-step-ahead forecasts of log mortality rates in 2000–2019 by increasing the
training sample one year. We keep iterating until the training sample covers the entire
data sample. This procedure produces 20 one-step-ahead, 19 two-step-ahead, . . ., and one
20-step-ahead forecast from 1999 to 2018. To evaluate the forecasting accuracies of the
methods, we compare the obtained forecasts with the holdout samples.
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4.2. Measures of Forecast Accuracy

We compute the point forecast accuracy by mean squared forecast error (MSFE) and
mean absolute forecast error (MAFE) for each forecast horizon, which measures the squared
and absolute differences between forecasts and holdout samples in the testing data, respec-
tively. The MSFE and MAFE can be expressed as

MSFEi =
1
J

J

∑
j=1

[Xi(uj)− X̂i(uj)]
2,

MSFE =
1
n

Ntest

∑
i=1

MSFEi,

MAFEi =
1
J

J

∑
j=1
|Xi(uj)− X̂i(uj)|,

MAFE =
1
n

Ntest

∑
i=1

MAFEi,

where J denotes the number of discrete ages in a log mortality curve, and Ntest is the
number of observations in the forecast horizon.

To measure the pointwise interval forecast accuracy, we consider the interval score
of [36]. The interval scores can be expressed as

Sα

[
X̂ lb(uj), X̂ ub(uj);X (uj)

]
=
[
X̂ ub(uj)− X̂ lb(uj)

]
+

2
α

[
X̂ lb(uj)−X (uj)

]
1
{
X (uj) < X̂ lb(uj)

}
+

2
α

[
X (uj)− X̂ ub(uj)

]
1
{
X (uj) > X̂ lb(uj)

}
,

where [X̂ lb(uj), X̂ ub(uj)] denote the lower and upper bounds of a prediction interval, 1{·}
denotes the binary indicator function, and α represents a level of significance, customarily
α = 0.95. Averaging over all observations in the forecasting period, we use the mean
interval scores Sα,i to evaluate and compare interval forecast accuracy.

5. Mortality Data Analyses

This section presents the forecast accuracy of the proposed machine learning-based
FTS methods. Compared with the recursive and DirRect strategies, the direct strategy has
the worst forecasting performance, requiring more computing time. Thus, we only present
the results for the recursive and DirRect strategies. We compare the forecast accuracy of the
proposed methods with four commonly used traditional time series-based FTS methods;
exponential smoothing (ETS), random walk (RW), and random walk with drift (RWD)
using the R package ftsa Hyndman and Shang (2021) [37] and autoregressive integrated
moving average (ARIMA) using the R package demography Hyndman (2019) [38]. RW fails
to produce good forecast accuracy results compared with other methods (its results are
even worse than those of direct strategy); thus, its results are discarded from the paper. The
R code for the proposed methods can be obtained from the authors upon request.

The point forecast accuracy results computed for each method and all six datasets are
presented in Figures 2 and 3. This figure shows that the machine learning-based methods
produce similar forecasts (i.e., similar MSFE and MAFE values) to that of the ETS, RWD,
and ARIMA-based methods for short and moderate-term forecasts horizons. On the other
hand, the use of both multi-step-ahead forecasting strategies results in better forecasts
than the classical time series methods for long-term forecasts horizons. Among others,
the ETS-based FTS method produces the worst results, i.e., it produces higher MSFE and
MAFE values, especially for the long-term forecast horizons. While the RWD- and ARIMA-
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based FTS methods produces better MSFE and MAFE results than the ETS-based method,
machine learning-based FTS methods generally produce improved forecasts than the RWD-
and ARIMA-based method. When the proposed methods are compared, while it seems
that the superiorities of the recursive and DirRec strategies over each other vary from data
to data, the recursive-based method generally produces improved MSFE and MAFE results
than those of the DirRec-based method. In a nutshell, the results reported in Figure 2
indicate that all the methods generally produce similar forecasts up to a five-eight-step-
ahead forecast horizon. On the other hand, the proposed machine-learning-based FTS
methods produce better forecasts than the classical FTS methods.
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Figure 2. Computed MSFE values of log mortality rates for Australia (first column), Canada (second
column), and UK (third column). The results for the female group are given in the first row while
the results for the male group are given in the second row.
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Figure 3. Computed MAFE values of log mortality rates for Australia (first column), Canada (second
column), and UK (third column). The results for the female group are given in the first row while
the results for the male group are given in the second row.

To support our findings, we present 20-step-ahead forecast errors functions and the
histograms of pointwise 20-step-ahead forecast errors obtained from the Australian female
log mortality dataset in Figures 4 and 5, respectively. From these figures, the error functions
obtained by the recursive strategy are closer to zero than those of other methods. In other
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words, the proposed recursive-based FTS method comparably produces smaller forecast
errors than other methods. The proposed DirRec and the existing RWD- and ARIMA-
based methods produce similar error functions, resulting in the second-best methods. The
ETS-based FTS method produces the worst (i.e., furthest from zero). In addition, from
Figure 4, it is evident that the error functions obtained from the proposed recursive-based
FTS method follow a more similar structure compared with those of other methods. In
addition, compared with other methods, the error functions of the recursive-based FTS
method for the age range 0–20 show less variation. These results indicate that the proposed
recursive-based FTS method produces a more consistent forecast than the other methods.
From the histograms of the pointwise forecast errors (see Figure 5), the distribution of the
pointwise error terms obtained from the proposed methods shows a more similar structure
to the normal distribution with mean zero than the distribution of the pointwise errors
obtained by the classical FTS methods. Given that the error process in an FTS is assumed to
follow a normal distribution with mean zero (see, e.g., Section 3), the results presented in
Figures 4 and 5 indicate that the proposed methods not only produce improved forecast
(i.e., smaller forecast errors) than the traditional FTS methods, but they also fulfill the
underlying model assumption.
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Figure 4. Plots of the 20-step-ahead forecast errors functions (gray lines denote the error functions
and black lines denote the mean of the forecast error functions) were obtained by all the methods for
the log mortality dataset of Australia (female).
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Figure 5. Histograms of pointwise 20-step-ahead forecast errors (black vertical lines denote the mean
of the pointwise forecast errors) were obtained by all the methods for the log mortality dataset of
Australia (female).

The difference between the forecast accuracy of the methods in the results in Figures 2–5
is mainly based on the forecasts of the principal component scores. A graphical display
of the forecasted principal component scores obtained by all the methods from the log
mortality datasets is presented in Figure 6. This figure shows that the overall trend of the
principal component scores is better captured by the forecasts obtained from the machine
learning-based methods than those of the classical time series methods. This result, in
turn, causes the proposed methods to produce improved forecasts than the traditional
FTS methods. In more detail, the forecasted principal component scores in Figure 6 can
be seen as an indication of the point forecast accuracy results of the methods presented in
Figures 2 and 3. For example, from Figure 6, the forecasted principal component scores of
the ETS-based FTS method are far from those of other methods (and far from the general
trends of the time series of principal component scores) for datasets from Australia and the
UK. These results lead to worse forecasting accuracy for the ETS-based FTS method, as can
be seen from Figure 6. On the other hand, the ETS-based method produces relatively closer
forecasts for the principal component scores to those of the other two traditional FTS meth-
ods for the datasets from Canada. The reflection of this result can be seen in Figures 2 and 3
so that all the traditional FTS methods produce similar forecast accuracy results.
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Figure 6. Computed principal component scores (solid black lines) for the first functional principal
component and their 20-step-ahead forecasts (colored lines). The principal component scores and
their forecasts are obtained from the log mortality datasets (female-first row and male-second row) of
Australia (left panel), Canada (middle panel), and UK (right panel).
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The results for the interval forecast accuracy of the methods are presented in Figure 7.
All the methods produce similar interval score values for short and mid-term forecast
horizons from this figure. In contrast, the proposed methods generally produce smaller
interval score values than those obtained by the classical FTS methods for long-term
forecast horizons. The interval forecast accuracy performance of the methods is similar to
their point forecast accuracy performance as presented in Figures 2 and 3. The superior
long-term interval forecast accuracy of the proposed methods over the traditional FTS
methods is more apparent for Australia and the UK. In contrast, all the methods generally
produce similar interval forecast accuracy for the Canadian age-specific mortality rate
dataset. Similar to the discussions presented in the previous paragraph, this result can also
be explained by the forecasted principal component scores presented in Figure 6. Because
the forecasted principal component scores obtained from the proposed methods (especially
from the recursive-based FTS method) better capture the overall trend of the time series of
the principal component scores, they produce improved interval score accuracy than those
of other methods.

5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Australia

S
α

ETS
ARIMA
RWD
Recursive
DirRec

5 10 15 20

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Canada

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

UK

5 10 15 20

1
2

3
4

5
6

h

S
α

5 10 15 20

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

h

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

h

Figure 7. Computed Sα values of log mortality rates for Australia (first column), Canada (second
column), and the UK (third column). The results for the female group are given in the first row,
while the results for the male group are given in the second row.

6. Conclusions

Mortality modeling and accurate forecasting of age-specific mortality rates are impor-
tant problems for governments and insurance industries to manage long-term plans, such
as sustainability of pensions and determining fixed-term or life annuity prices (see e.g.,
Shang and Haberman, 2020 [39]). FTS method is one of the more attractive methods used to
obtain mortality forecasts. As an extension of LC-based methods, several FTS methods have
been proposed. However, all the existing FTS methods are based on the traditional time
series models, which are data-dependent, so different estimation strategies and univariate
time-series forecasting models may be required for different datasets. In addition, most of
the existing FTS methods are suitable for short-term forecasts. However, multi-step-ahead
mortality forecasts may be more useful for policymakers to make long-term plans.

This paper proposes an FTS method based on machine-learning-based multi-step-
ahead forecasting strategies. The smooth mortality curves are decomposed using the
DFPCA method in the proposed methods. Automatic learning algorithms are used to obtain
the future realizations of the extracted dynamic principal component scores. One-to-twenty-
step-ahead point and interval forecast accuracy of the proposed methods are evaluated
using six datasets from three countries (Australia, Canada, and the UK) compared with four
existing FTS methods. Our results demonstrate that the proposed methods produce similar
point and interval forecast results to traditional FTS methods for short and moderate-term
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forecast horizons. On the other hand, they produce improved point and interval forecast
accuracies compared with existing FTS methods for long-term forecast results.

The proposed methodology can be extended further, and here, we briefly mention
three ways: (1) In this study, we only present the usefulness of the proposed method for
forecasting age-specific mortality rates. The proposed method can be used for forecasting
subnational age-specific mortality rates as an alternative to the methods proposed by
Shang and 270 Haberman (2020) [39] and Shang and Yang (2021) [25]; (2) the proposed
methods can also be applied to other types of mortality, such as cause-specific mortality
rates; (3) finally, the performance of the proposed methods can be further improved by
using other multi-step-ahead forecasting strategies, such as multi-input–multioutput and
its combination with direct strategy (see, e.g., Taieb et al., 2012 [27] for details).
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