

- 1 Article
- 2 Supplementary Materials: Ag-Nanostars for the
- **3** Sensitive SERS Detection of Dyes in Artistic
- 4 Cross-Sections-Madonna della Misericordia of the
- 5 National Gallery of Parma: A Case Study

6 Maria Sole Zalaffi¹, Ines Agostinelli², Najmeh Karimian¹ and Paolo Ugo^{1,*}

- ¹ Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Venezia Mestre, Italy; mariasole.zalaffi@unive.it (M.S.Z.); najmeh.karimian@unive.it (N.K.)
- 9 ² Restoration Laboratory of the National Gallery of Parma, Piazzale della Pilotta 15, 43121 Parma, Italy;
 10 ines.agostinelli@beniculturali.it
- 11 * Correspondence: ugo@unive.it

12 1. Extinction Spectrum of AgNSs

13

14

Figure SM1. UV-Vis extinction spectrum of the AgNSs colloid at pH 8.1.

15 2. Madonna Della Misericordia: Visual and Non-Invasive Analyses

As required by the analytical sequence [S1], the first examination of a painting is the visual one. This analysis revealed many conservation issues (losses of color, woodworm holes, etc.) and evidence of the past restoration interventions (Japanese paper on cracks, re-paintings, etc.) carried out in 1896 [S2] and in 1951 [S3] (Figure SM2).

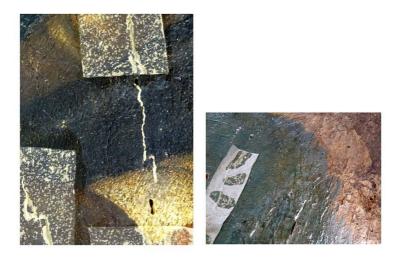
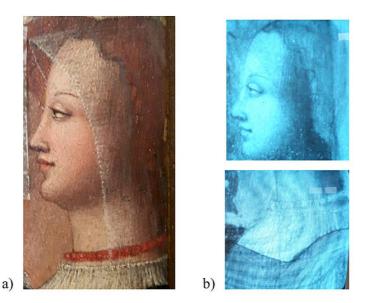



Figure SM2. Picture showing some of the conservation issues of the *Madonna della Misericordia*:
 cracks, losses of color, lifting of the paint layer, woodworm holes.

Thereafter, IR reflectography was carried out by using a Hamamatsu vidicon tube camera, revealing the presence of well-defined underdrawings. Figure SM3 shows the detail of one of the two kneeling ladies: her image was accurately drawn before painting and particular attention was given to the pearls of the necklace, her eyes and the voile which covers her hair.

27

Figure SM3. (a) Detail of one kneeling lady and (b) its IR reflectography image which underlines the
 presence of precise underdrawings (pearls of the necklace, eyes, voile).

30

The observation under UV light by a commercial Wood lamp revealed the accurate location of many re-paintings which appear darker than the original paint and of a thick layer of restoration varnish characterized by the typical yellowish fluorescence [S1] (Figure SM4).

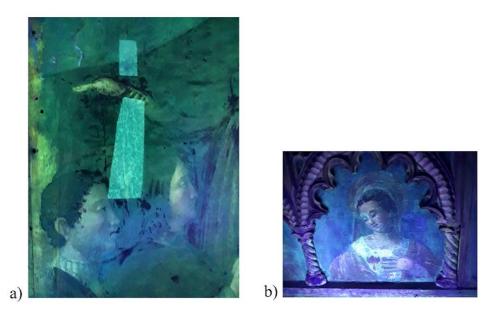
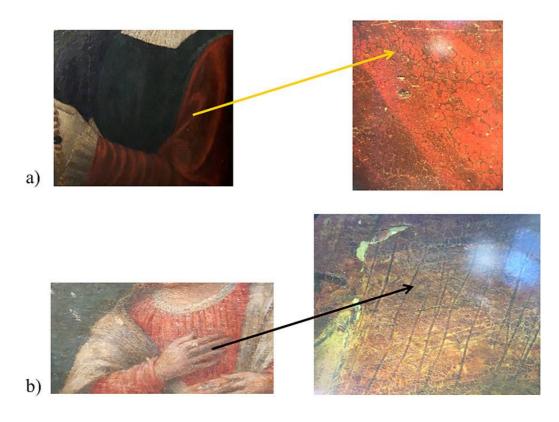



Figure 4. Detail of (a) the two gentlemen and (b) Santa Caterina in the *predella*: several dark areas
 indicate the position of re-paintings and the yellowish fluorescence is due to the presence of
 restoration varnish.

After these assays, some areas of interest of the painting were examined by optical microscopy in reflected light. The repainted details were easily recognized by examining the different kinds of *craquelure*: the original paint shows an homogeneous network of shell-like cracks (Figure SM5-a) while the retouched details, plastered and repainted, present a scratched surface to mimic the aged

42 pictorial layer [S1] (Figure SM5-b).

- 43
- Figure SM5. *Craquelure* of a) the original pictorial layer characterized by shell-like cracks and of b) a
 plastered detail where the ageing of the paint layer was simulated by scratches.

46 3. Raman Spectral Data for Copper Alpha-Phthalocyanine PB 15:2

47 Table S1. Comparison of the experimental and reference spectral bands (s: strong; m: medium;
48 w: weak) of copper alpha-phthalocyanine PB 15:2 [S4], [S5].

Experimental SERS bands (cm ⁻¹); present work	Literature reference bands (cm ⁻¹) [S4, S5]	Attribution
1566 (m)		
1514 (s)	1518 (s)	Out-of-phase stretching of the CNC bridges
1438 (w)	1446 (m)	Out-of-phase benzene rings deformations
1400 (w)		
1379 (m)		Out-of-phase indole rings expansion and benzene rings deformations
1343 (s)	1334 (s)	In-phase Cu-N stretches/ indole and benzene ring deformations
1303 (m)	1303 (w)	
	1181 (w)	
1142 (w)	1140 (m)	Out-of-phase expansions of both the indole and benzene rings.
1104 (s)	1105 (w)	In-phase stretches of the Cu-N bonds/indole rings deformations/benzene rings expansions
1002 (m)	1005 (w)	In-phase expansions of the benzene rings
720 (m)	745 (s)	Out-of-phase deformations of the indole groups

679 (m)	679 (m)	Symmetric stretches of the four CNC bridges/ deformations in the indole and benzene rings
649 (m)		
585 (w)	592 (w)	
479 (w)	483 (m)	
	255 (w)	Ring breathing

50 4. Summary of the Results Obtained from the Analysis of Each Cross-Section

51 In order to make the description of the obtained results clearer, a brief summary of the detected 52 materials in each cross section is presented in Table S2.

Table S2. Summary of the material identified in the cross sections sampled from the *Madonna della Misericordia*.

Sample	Analytical technique(s)	Composition
CS1- upper left part of the bluish background	Optical microscopy, SEM-EDS, Raman spectroscopy and SERS	Preparation: gypsum 1 st paint layer: azurite and lead white 2 nd paint layer: titanium white
CS2- bluish background in the <i>predella</i>	Optical microscopy, SEM-EDS, Raman spectroscopy and SERS	Preparation: gypsum Paint layer: titanium white, copper alpha-phtalocyanine, ultramarine blue
CS3- Virgin Mary's blue mantle	Optical microscopy, SEM-EDS, Raman spectroscopy	Preparation: gypsum Paint layer: azurite, iron oxide and lead white
CS4- Santa Lucia's red tunic in the <i>predella</i>	Optical microscopy, SEM-EDS, Raman spectroscopy	Preparation: gypsum Paint layer: vermilion
CS5- client's red sleeve	Optical microscopy, SEM-EDS, Raman spectroscopy	Preparation: gypsum Paint layer: vermilion
CS6- client's white bonnet	Optical microscopy, SEM-EDS, Raman	Preparation: gypsum Paint layer: lead white

	spectroscopy	
CS7- left lower part of the bluish background	Optical microscopy, SEM-EDS, Raman spectroscopy and SERS	 1st preparation: gypsum 1st paint layer: azurite and lead white 2nd preparation: gypsum 2nd paint layer: titanium white, copper alpha -phtalocyanine, ultramarine blue
CS1F- beige decoration	Optical microscopy, SEM-EDS, Raman spectroscopy	Preparation: gypsum Paint layer: lead white
CS2F- greenish decoration	Optical microscopy, SEM-EDS, Raman spectroscopy and SERS	Preparation: gypsum Paint layer: titanium white and copper alpha -phtalocyanine
CS3F- green decoration	Optical microscopy, SEM-EDS, Raman spectroscopy and SERS	Preparation: gypsum 1 st red paint layer: red lead 2 nd green paint layer: copper alpha -phtalocyanine
CS4F- bluish decoration	Optical microscopy, SEM-EDS, Raman spectroscopy	Paint layer: supposed Scheele's green
CS6F- bluish decoration	Optical microscopy, SEM-EDS, Raman spectroscopy	Paint layer: supposed Scheele's green

56 **References**

- 57 [S1] Pinna D., Galeotti M., Mazzeo R., Scientific examination for the investigation of paintings. A handbook for
- 58 *restorers* **2011**, Centro Di Firenze, Italy.
- 59 [S2] Ricci C., La R. Galleria di Parma 1896, L. Battei, Parma.
- [S3] Fornari-Schianchi L., Galleria Nazionale di Parma, Catalogo delle opere dall'antico al Cinquecento 1997,
 F.M. Ricci, Milano.
- 62 [S4] Scherrer N.C., Zumbuehl S., Delavy F., Fritsch A., Kuehnen R., Synthetic

Heritage 2020, 3 FOR PEER REVIEW

- 63 organic pigments of the 20th and 21st century relevant to artist's paints: Raman
- 64 spectra reference collection. Spectrochim. Acta A 2009, 73, 505-524. [DOI:
- 65 10.1016/j.saa.2008.11.029]
- 66 [S5] Tackley D.R., Dent G., Smith W.E., IR and Raman assignments for zinc
- 67 phthalocyanine from DFT calculations. Phys. Chem. Chem. Phys., 2000, 3949-3955.
- 68 [DOI: 10.1039/b0050911]
- 69

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

70