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Abstract: Graphene-like nanoribbons (GLNRs) were fabricated (length—20 µm; width—2 µm) and
subjected to blast-like pulsed pressure >1.5 GPa (pulse speed ≈1 Mach, impulse duration, ≈µs) to
examine the amount of absorption. GLNRs prepared by the chemical vapor deposition technique via
controlled biomass combustion were subjected to investigate the structure–property characteristics
using microspectroscopic techniques. Following this, GLNRs were employed to high strain rate
(HSR) studies with the help of the technique known as split Hopkinson pressure bar (SHPB) to
evaluate numerous dynamic parameters. The parameters were extracted from variations in the stress
and strain rates. Their analysis provided insight into the damping response of blast energy within
GLNRs. By and large, the impact generated modified the microstructure, exhibiting modifications
in the number of layers, conjugated loops, and dynamic disorder. Signal processing analysis carried
out for incident and transmitted impulse pressure revealed an interaction mechanism of shock wave
with GLNR. Details are presented.

Keywords: impulse pressure; graphene-like nanoribbons (GLNR); split Hopkinson pressure bar
(SHPB); microstructure; signal processing

1. Introduction

Any pressure impulse exceeding the magnitude of GPa is treated as an explosion [1]. It causes
the generation of energy in the form of transient heat (2000–4000 K), sound (>20 kdB), and intense
light flashes with the simultaneous emergence of shock waves [2] that consequently lead to a dynamic
deformation in structure [3]. It is a mechanical disturbance propagating in a medium [4] at peculiar shear
velocities and broadly classified into elastic, plastic, shock, blast, and explosion waves with non-linearly
peaking amplitudes. The nature of the pressure impulse and mechanical stability of the medium chiefly
decide the level of catastrophe. On imparting high strain rate (HSR) deformation, there is a transient
temperature and rapid pressure rise in a material that may lead to a complex scenario that depends on
numerous structural aspects such as surfaces, interfaces, microstructures, porosity, direction of flow of
heat and material, etc., causing fragmentation, perforation, and spall. The cause beneath such an extreme
result is a shock wave [5]. It is catastrophic, lethal, and devastating. However, in the strategic sector,
the damping of such an impact [6], explosive detonation, and dynamic deformation could be understood
to a certain extend by a thorough understanding of the HSR deformation mechanism and dynamic
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response of the damping material. An explosion is an uncontrollable phenomenon; however, the same
could be realized at the laboratory scale using shock wave tube [7], stand off/contact explosion [8],
and split Hopkinson pressure bar (SHPB) [9] techniques. Among them, SHPB is an inexpensive,
time-effective, safe measurement route to generate shock waves to realize an explosion scenario off

the field [10]. Mechanical parameters of aluminum alloys were investigated, both at room [11] and
high temperature [12] using the SHPB technique. Furthermore, tensile, force-displacement behavior,
and compressive strength data were analyzed for shock mitigation in carbon nanotube/polymer
composites [13–15]. However, most of the reported studies are on quasi-static measurements rather
than HSR and focused onto enhancement into reinforcing properties of alloys and composites [16],
including deformation in graphene [17].

Herein, we have examined shock mitigation in graphene-like nanoribbons (GLNR). Particularly,
we address fundamental questions such as how shock waves interact with GLNR, what happens to
its morphology and microstructure with dynamic pressure, how inherent disorder and defects factor
into the resulting various microscopic failures such as slip, twinning, etc. GLNRs, after fabrication
by chemical vapor deposition (CVD), were subjected to SHPB for the extraction of parameters such
as stress, strain, and strain rates. The samples were further investigated using optical and field
emission scanning electron microscopy (FESEM), as well as Raman, Fourier Transform infrared
(FTIR), and UV-visible spectroscopy. The transmitted and reflected shock wave signals were signal
processed for damage feature extraction in GLNR. Broadly, the shock wave/GLNR interaction process
involved microstructure modifications related to glissile dynamics, flow hardening, transient phase
transformation, physicochemical modifications, phonon drag, and importantly, shock damping. Details
are presented.

2. Experimental

GLNR were obtained by following the synthesis protocols reported in [9,18], whereas SHPB
measurements were performed as per the procedures in the reference [9]. GLNR samples subjected
to SHPB were termed HSR GLNR samples. The loading scheme is shown in Figure 1 indicating
an incident bar, GLNR, and transmission bar in SHPB. Both GLNR and HSR GLNR were examined
using a number of characterization tools such as optical microscopy, Raman spectroscopy (Horiba
HR800 Jobin Vyon, India) (wavelength ≈532 nm, scan range ≈200–3000 cm−1), confocal imaging
(Horiba HR800 Jobin Vyon, India), field emission microscopy (FESEM) (Carl Zeiss, India) at a beam
potential of 5 kV, and dark field transmission electron microscopy (HRTEM) (Techni, India) at 200
kV at numerous magnifications. In some cases, the selective area electron diffraction pattern (SAED)
was recorded.
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Figure 1. Loading scheme showing the impact of an incident bar onto specimen causing shock wave
front generation and resulting deformation in graphene-like nanoribbons (GLNRs).

3. Results and Discussion

For analyzing mechanical properties, we assumed that deformation in GLNRs is uniform and
maintaining stress equilibrium while impact, frictional, and other dynamic effects were neglected,
including linear variations in particle velocity (volume strain) with shock velocity.
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3.1. Mechanical Analysis

In a quasi-static and dynamic range when the magnitude of stress exceeds the elastic limit, a plastic
deformation sets in GLNRs. A decomposed component of elastic and plastic waves propagates
in the form of impulse in which the built-up hydrostatic stress component exceeds dynamic flow
stress by several orders of magnitude. As a first approximation, we have assumed that GLNRs
offered no impedance to the developed shear, and calculated shock parameters are obtained by
Lagrange–Rankine–Hugoniot formulism [19–21]. The progressing stress disturbance is characterized by
∂2u
∂t2 =

dσ
dε
ρ0

( ∂
2u
∂x2 ) at a constant strain, ε, with Vo = ( dσ/dε

ρo
)

1
2 and dσ

dε = E (in an elastic limit), in which, u is

the volume strain speed, ρo is the density of nanocarbon, i.e., GLNR ≈ 0.02 kg/m3, and E is the elastic
energy (measured in GPa). The boundary conditions are u = Vot at xi = 0 and any t > 0; u = 0 at
x f = ∞. The position, x, and time, t, variations are given by x

t =
.
σ
ρ0

. The variable strePss rate,
.
σ, is

explained while analyzing the stress (σ)–strain (ε) curve and other derived quantities. By and large,
the structural strength of a GLNR in a dynamic region depends on the strain, ε, and the first dispersion
derivative of strain i.e., the strain rate, dε

dt (denoted by ἑ). Figure 2a shows the σ–ε curve for GLNR
fitted by a bilinear function in the first stage, which is elastic in nature. The power function is fitted of
the type σ = σ0 + k εn; here, k is a pre-exponential factor (0.13), and the work-hardening coefficient
n = 0.17. The velocity, VS, with which the shock wave incident is ∼ 3.5× 103 m/s, is given as above.
The GLNR departs from its elastic limit with large dispersion in Vo. The characteristic time parameter
tc involved in the phase transformation from the elastic to plastic region, is given by tc =

∂σ/∂
.
ε

∂σ/∂ε and
estimated to be ≈10−5 s−1, as given in Figure 2b.

Surfaces 2020, 3 FOR PEER REVIEW  3 

3.1. Mechanical Analysis 

In a quasi-static and dynamic range when the magnitude of stress exceeds the elastic limit, a 

plastic deformation sets in GLNRs. A decomposed component of elastic and plastic waves propagates 

in the form of impulse in which the built-up hydrostatic stress component exceeds dynamic flow 

stress by several orders of magnitude. As a first approximation, we have assumed that GLNRs offered 

no impedance to the developed shear, and calculated shock parameters are obtained by Lagrange–

Rankine–Hugoniot formulism [19–21]. The progressing stress disturbance is characterized by  
𝜕2𝑢

𝜕𝑡2 =

 
𝑑𝜎

𝑑𝜖⁄

𝜌0
 (

𝜕2𝑢

𝜕𝑥2) at a constant strain, ε, with 𝑉𝑜 =  (
𝑑𝜎 𝑑𝜖⁄

𝜌𝑜
)

1
2⁄  and 

𝑑𝜎

𝑑𝜖
= 𝐸 (in an elastic limit), in which, u is 

the volume strain speed, 𝜌𝑜 is the density of nanocarbon, i.e., GLNR ≈ 0.02 kg/m3, and E is the elastic 

energy (measured in GPa). The boundary conditions are u = 𝑉𝑜t at 𝑥𝑖 = 0 and any t > 0; u = 0 at 𝑥𝑓 =

∞. The position, 𝑥, and time, t, variations are given by 
𝑥

𝑡
=  

�̇�

𝜌0
. The variable strePss rate, �̇�, is explained 

while analyzing the stress (σ)–strain (ε) curve and other derived quantities. By and large, the 

structural strength of a GLNR in a dynamic region depends on the strain, ε, and the first dispersion 

derivative of strain i.e., the strain rate, 
𝑑𝜀

𝑑𝑡
 (denoted by ἑ). Figure 2a shows the σ–ε curve for GLNR 

fitted by a bilinear function in the first stage, which is elastic in nature. The power function is fitted 

of the type  𝜎 =  𝜎0 +  𝑘 𝜖𝑛 ; here, k is a pre-exponential factor (0.13), and the work-hardening 

coefficient n = 0.17. The velocity, 𝑉𝑆, with which the shock wave incident is ~3.5 × 103 m/s, is given 

as above. The GLNR departs from its elastic limit with large dispersion in 𝑉𝑜. The characteristic time 

parameter 𝑡𝑐 involved in the phase transformation from the elastic to plastic region, is given by 𝑡𝑐 =

 
𝜕𝜎 𝜕�̇�⁄

𝜕𝜎 𝜕𝜀⁄
 and estimated to be ≈10−5 s−1, as given in Figure 2b. 

 

Figure 2. (a) Magnified region of stress, σ, (MPa) vs. percentage strain, ε, the curve (arrow: elastic 

region) tangent shows the estimated strain-hardening time parameter, (b) corresponding plastic 

regime showing variations in stress rate,  �̇�𝑖 , three stages (shown by slope lines) of dynamic 

deformation in GLNR, and (c) variations in strain rate, ἑ, with time, imprinting a specific shock wave 

profile onto 2D GLNR exhibiting a number of stages. 

The gradual decrease in σ is indicative of ε propagation in a GLNR matrix, which has 

experienced the strain flow hardening. The change has occurred in three stages. The �̇�1 is attributed 

to the strain impediment offered by GLNRs in the form of interparticle plastic deformation. The �̇�2 is 

attributed to the plane gliding of conjugated ribbon stacks (evident prominently in subsequent 

Raman and microscopy analysis). The �̇�3  causes damage to the ribbon structure terminally. The 

impact has cascading consequences. For an ideal shock wave, a discontinuous shear wave front 

follows a plateau at the top and the gradual decay of impulse, which is shown as an inset in Figure 

2c. In contrast, shock waves imprinted onto a material have distinctly peculiar features that are 

pressure- and medium-dependent. In the case of GLNRs, the volumetric stress rise rate is much 

higher under elastic conditions, which yield to the Hugoniot elastic limit (HEL) around about 8 GPa. 

The flow strength of any medium depends on the pressure employed. It can be independent 

(Hugoniot) of pressure or change, causing a softening or hardening of material. In plot Figure 2c, at 

HEL, elastic and plastic wave components get separated. The elastic fraction within HEL propagates 

with higher velocity than the plastic wave. After crossing the HEL, the rise in pressure is steady until 

the approach of the top plateau region due to the continuous plastic wave front nature, and mainly, 

(c) 

Figure 2. (a) Magnified region of stress, σ, (MPa) vs. percentage strain, ε, the curve (arrow: elastic
region) tangent shows the estimated strain-hardening time parameter, (b) corresponding plastic regime
showing variations in stress rate,

.
σi, three stages (shown by slope lines) of dynamic deformation

in GLNR, and (c) variations in strain rate, ἑ, with time, imprinting a specific shock wave profile onto
2D GLNR exhibiting a number of stages.

The gradual decrease in σ is indicative of ε propagation in a GLNR matrix, which has experienced
the strain flow hardening. The change has occurred in three stages. The

.
σ1 is attributed to the strain

impediment offered by GLNRs in the form of interparticle plastic deformation. The
.
σ2 is attributed

to the plane gliding of conjugated ribbon stacks (evident prominently in subsequent Raman and
microscopy analysis). The

.
σ3 causes damage to the ribbon structure terminally. The impact has

cascading consequences. For an ideal shock wave, a discontinuous shear wave front follows a plateau
at the top and the gradual decay of impulse, which is shown as an inset in Figure 2c. In contrast,
shock waves imprinted onto a material have distinctly peculiar features that are pressure- and
medium-dependent. In the case of GLNRs, the volumetric stress rise rate is much higher under elastic
conditions, which yield to the Hugoniot elastic limit (HEL) around about 8 GPa. The flow strength of
any medium depends on the pressure employed. It can be independent (Hugoniot) of pressure or
change, causing a softening or hardening of material. In plot Figure 2c, at HEL, elastic and plastic
wave components get separated. The elastic fraction within HEL propagates with higher velocity
than the plastic wave. After crossing the HEL, the rise in pressure is steady until the approach of
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the top plateau region due to the continuous plastic wave front nature, and mainly, such pressure
rise is governed by the constitutive parameters attributed to the mechanical properties of GLNRs.
The observed phase change is not prominent in the obtained wave profile due to a significant amount
of elastic and plastic wave front separation. The plateau zone is observed at the top of the recorded
profile. The pressure-unloading region in GLNRs suggests elastic deformation followed by plastic
deformation and identical to shock loading subsequent to HEL. The short tail shows the fracture
of GLNRs.

3.2. Fractographic Analysis

Both GLNRs and HSR GLNRs were examined and analyzed using electron and optical microscopy.
For optical microscopy, magnification was kept at 100×, and several sites were surveyed. A few
representative micrographic images are shown in Figure 3.
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Figure 3. Typical optical micrographs @ 100× for (a) GLNRs and (b) high strain rate (HSR) GLNRs,
respectively, (c,d) FESEM images and (e,f) HRTEM images of fractured HSR GLNR.

Optical micrography was used to obtain more insights into the nature, shape, and size of pre and
post-impacted GLNR. For better imaging, suspended GLNR (HSR GLNR) solution was drop-casted
onto a silicon wafer and dried. The optical imaging was carried out at several sites in a raster scan-line
fashion to collect statistics on ribbons.

Figure 3a shows GLNRs and Figure 3b shows HSR GLNRs. The images were processed for their
contrast with optimum brightness and sharpness to reveal features of the ribbons. The GLNR were
mostly seen with sharp edges and a prominent rectangular shape. Even smaller ribbons carried similar
structural features; however, these are not provided here. The ribbons were thick and may have several
conjugated graphene layers within them. Figure 3b is a typical HSR GLNR, which is observed to be
different in its morphology. It seems that after impact size, the shape is changed with a bit of elongation
and loss of conjugated layers. Figure 3c,d shows representative FESEM images of GLNRs and fractured
HSR GLNRs. The resemblances of optical images can be seen in FESEM imaging in terms of the shape,
sharp edges, and rectangular shape of the ribbon geometry. Further, fractographic analysis provides
important clues for the underlining mechanisms of deformation, fracture, and spall due to the shock
experienced by GLNRs. Figure 3e,f shows HRTEM images recorded for HSR GLNRs. In FESEM,
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it is quite evident that the individual surface of the ribbon is acting as a stress concentration zone.
The warps that are visible on the surface of the GLNRs, in moderate fashion, is indicative of the flow of
the stress wave front within the GLNRs, which may have undergone breakage of the entire ribbon
structure. The effect of shock onto local structure modifications such as dislocation, slip, and disorder
can be revealed in depth in TEM investigations. By and large, the images showed a detailed change
in the morphology of the ribbon and the effect of impact.

The HSR GLNR has displayed typical two/three step-like features in the Figure 3e inset. The arrow
connected to the inset shows the existence of microcracking that originated in one of the steps. The crack
tip is located around the junction of two nearly orthogonal cut sides of the step. The track of the crack
is almost straight and narrows toward the termination. The approximate track length is ≈3–3.5 µm
with a width of roughly 150–200 nm. It seems that the crack ends with a generating stacking fault
in the overlayer graphene ribbon. Figure 3f displays more features such as a circular bend in the end of
the track of the crack followed by warp-like exfoliation. Startlingly, in another step, a crack is not seen.
The blur rings recorded in the SAED pattern are indicative of a lower degree of crystallinity in GLNRs.
Broadly, the degree of crystallinity is not changed, even after impact.

3.3. Raman Spectroscopic Investigations

In general, the amount of sp2 and sp3 content and their proportion in the ribbon offers peculiar
physical properties and variety to the obtained nanocarbons. Raman spectroscopy fundamentally
extracts information on sp2 ordering directly and sp3 indirectly. Raman scattering is a proprietary
probe to examine structure and dynamics at the molecular level by extracting numerous parameters
such as dynamic force constant, kq, crystalline, La, disordered length, LD, areal defect density, nD,
electron–phonon coupling, EPC, and Fermi velocity, VF. Figure 4 shows recorded Raman spectra for
(a) GLNRs and (b) HSR GLNRs at 532 nm photo excitation; the corresponding confocal Raman imaging
is seen in (c) and (d). For GLNR, D and G peaks appeared, respectively, at ≈1333 and 1593 cm−1.
The estimates for kq are approximately given by the relation ωq=

√
kq/µ, where kq is the dynamical

variable of the force constant, and µ is the reduced atomic mass of carbon. For GLNR, the values
estimated were ≈460 and ≈650 N/m, respectively, for D and G. The corresponding bond lengths of
–C–C– and –C=C– were ≈1.60 and 1.20 Å, respectively. Post-impact analysis revealed that at D sites,
the force constant is down-shifted to ≈410, and at G, it is reduced to 600 N/m compounded to bond
deformation at 2.85 and 3.50 Å, respectively. The plastic deformation in GLNR cannot be explained by
applying a specific theory. The challenges come due to the formulism having numerous deformation
mechanisms such as dislocation glide, mechanical twinning, and phase transformations. Raman
analysis can quantify information about dislocation movement as the agent for plastic deformation
by treating kq at the footy of shear stress, τ. The assumption made here is that dislocations produce
shear strain, γ, by movement. The dislocation moves under the action of shear stresses, τ. The force
on the dislocation per unit length, under this ideal orientation arrangement, is given by F = τ b; here,
b is the offset (Burger) vector. There are frictional forces resisting the movement of a dislocation; thus,
a force is required to make it move. At the sp3 site, such force movement, i.e., estimated FD, is ≈0.3 nN,
whereas at sp2, FG ≈ 0.6 nN. In-plane shear stress is 33% high compared to out-plane shear stress.



Surfaces 2020, 3 510

Surfaces 2020, 3 FOR PEER REVIEW  6 

 

Figure 4. Raman spectrographs recorded for (a) GLNRs and (b) HSR GLNRs (inset 2D peaks), 

corresponding confocal Raman imaging (c,d), (scan area 40 × 40 µm2) arrows indicate the shock wave-

induced redistribution of D and G zones. 

Some of the Raman features are similar to those recorded for graphene-like nanoflakes [9]. For 

GLNRs, D-peak deconvolutions were composed of two prominent components: one at ≈1200 cm−1 

attributed to an amorphous (a‐C–O) carboxyl phase and another broad at 616 cm−1 quasi-crystalline 

carbon (qc-C). There was a significant upshift in vibration modes on impact. The D was shifted to 

≈1326 cm−1, whereas G was shifted to 1583 cm−1 for HSR GLNR. The a‐C is also blue-shifted by ≈90 

cm−1 with a total disappearance of qc‐C component. The upshifted D and G show strain and 

frustration at molecular levels of HSR GLNRs. For 532 nm excitation, the value of ID/IG for GLNRs 

was 1.55 and reduced by 0.44 after impact. The ratio is connected to crystalline length, La, by relation 

𝐿𝑎(𝑛𝑚) =  (2.4 ×  10 −10) 𝜆𝐿
4 𝐼𝐷

𝐼𝐺
, where λL represents the laser excitation. La was found to be ≈17 nm 

for GLNRs and 7 nm for HSR GLNRs. The change was attributed to the lowering sp2 content and 

increasing sp3 zone by impact. In addition, ID/IG is correlated to the inter-defect distance, LD, by a 

modified Tuinstra–Koienig relationship 
𝐼𝐷

𝐼𝐺
 =  

𝐶(𝜆𝐿)

𝐿𝐷
2 , where 𝐶(𝜆) is the phenomenological parameter 

≈102 nm2 (at 532 nm) and for LD, in terms of defect density nD, one can write 𝑛𝐷(𝑐𝑚−2) =
10−14

𝐿𝐷
2 . For 

GLNRs, LD and nD were ≈15 nm and ≈10−13/cm2, respectively, whereas for HSR GLNRs, these values 

were ≈10 nm and ≈10−12/cm2, respectively. In particular, the derived values of La, LD, and nD are 

connected to the shear strain, γ. The movement of chiral dislocations in GLNRs may produce an 

elastic shear strain, γE, with an assumption that dislocations are interacting within the elastic limit. 

The relation among nD, γE, and LD is given by γE = nD × b × LD; that yields to a value >10−9, whereas in 

the plastic regime, γP is >10−9 for GLNRs. The disorder speed, ν, is given by �̇� =  𝑛𝐷 × 𝑏 ×  𝜈, and ν is 

found to be more than 1000 cm-s−1. 

Further, the width of the D peak in a 2D nanocarbon system is connected with EPC having an 

acoustic longitudinal and transverse branch. The width amounts to inter-phonon interaction 

compounded with other elementary excitations; however, anharmonic, elementary excitations can be 

ignored. The degree of phonon interactions can be quantified by measuring the FWHM of the D peak. 

The FWHM for GLNR was 165 and 205 cm−1 for HSR GLNR. The corresponding estimated EPC was 

5 and 35 N/m. Moreover, EPC has a relation with Fermi velocity, VF, which is measured in ms−1 and 

given by 𝐸𝑃𝐶 =
√3

4

𝑎0
2

𝜇

𝐸𝑃𝐶Γ2

𝜈𝐹
2  where 𝐸𝑃𝐶Γ2  is the hypothetical Γ-phonon-branching parameter (47 

(eV/Å)2), ao is 3.14 Å, and μ, is the reduced mass of the carbon molecule. The value of VF for GLNR 

and HSR GLNR was, respectively, ≈1 × 106 and 5 × 105 ms−1 [22–24]. 

Interestingly, there was no 2D peak recorded for GLNRs. However, for HSR GLNRs, a 

prominent 2D band was observed that extended 2000–2750 cm−1. This shows the longitudinal effect 

of the impulse, which has exfoliated the conjugated layers of GLNRs, introducing stacking faults. 

Figure 4. Raman spectrographs recorded for (a) GLNRs and (b) HSR GLNRs (inset 2D peaks),
corresponding confocal Raman imaging (c,d), (scan area 40 × 40 µm2) arrows indicate the shock
wave-induced redistribution of D and G zones.

Some of the Raman features are similar to those recorded for graphene-like nanoflakes [9].
For GLNRs, D-peak deconvolutions were composed of two prominent components: one at ≈1200 cm−1

attributed to an amorphous (a-C–O) carboxyl phase and another broad at 616 cm−1 quasi-crystalline
carbon (qc-C). There was a significant upshift in vibration modes on impact. The D was shifted to
≈1326 cm−1, whereas G was shifted to 1583 cm−1 for HSR GLNR. The a-C is also blue-shifted by
≈90 cm−1 with a total disappearance of qc-C component. The upshifted D and G show strain and
frustration at molecular levels of HSR GLNRs. For 532 nm excitation, the value of ID/IG for GLNRs
was 1.55 and reduced by 0.44 after impact. The ratio is connected to crystalline length, La, by relation
La(nm) = (2.4× 10−10) λ4

L
ID
IG

, where λL represents the laser excitation. La was found to be ≈17 nm for
GLNRs and 7 nm for HSR GLNRs. The change was attributed to the lowering sp2 content and increasing
sp3 zone by impact. In addition, ID/IG is correlated to the inter-defect distance, LD, by a modified

Tuinstra–Koienig relationship ID
IG

=
C(λL)

L2
D

, where C(λ) is the phenomenological parameter ≈102 nm2

(at 532 nm) and for LD, in terms of defect density nD, one can write nD(cm−2) = 10−14

L2
D

. For GLNRs,

LD and nD were ≈15 nm and ≈10−13/cm2, respectively, whereas for HSR GLNRs, these values were
≈10 nm and ≈10−12/cm2, respectively. In particular, the derived values of La, LD, and nD are connected
to the shear strain, γ. The movement of chiral dislocations in GLNRs may produce an elastic shear
strain, γE, with an assumption that dislocations are interacting within the elastic limit. The relation
among nD, γE, and LD is given by γE = nD × b × LD; that yields to a value >10−9, whereas in the plastic
regime, γP is >10−9 for GLNRs. The disorder speed, ν, is given by

.
γ = nD × b× ν, and ν is found to be

more than 1000 cm-s−1.
Further, the width of the D peak in a 2D nanocarbon system is connected with EPC having

an acoustic longitudinal and transverse branch. The width amounts to inter-phonon interaction
compounded with other elementary excitations; however, anharmonic, elementary excitations can
be ignored. The degree of phonon interactions can be quantified by measuring the FWHM of the D
peak. The FWHM for GLNR was 165 and 205 cm−1 for HSR GLNR. The corresponding estimated EPC
was 5 and 35 N/m. Moreover, EPC has a relation with Fermi velocity, VF, which is measured in ms−1

and given by EPC =
√

3
4

a2
0
µ

EPCΓ2

ν2
F

where EPCΓ2 is the hypothetical Γ-phonon-branching parameter

(47 (eV/Å)2), ao is 3.14 Å, and µ, is the reduced mass of the carbon molecule. The value of VF for GLNR
and HSR GLNR was, respectively, ≈1 × 106 and 5 × 105 ms−1 [22–24].
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Interestingly, there was no 2D peak recorded for GLNRs. However, for HSR GLNRs, a prominent
2D band was observed that extended 2000–2750 cm−1. This shows the longitudinal effect of the impulse,
which has exfoliated the conjugated layers of GLNRs, introducing stacking faults.

Further, spectral confocal mapping is a promising technique that has been successfully used
previously to evaluate the nanofiller dispersion in a polymer matrix [22]. We adopted a similar
technique to assess our post-impacted GLNRs. The Raman spectral features collected from each specific
spatial coordinate within the selected scan area are used as pixels for final imaging of the specific
zone. The typical Raman spectra were recorded in the range of 1000–1800 cm−1. However, the spectral
variation over the range 1200–1600 cm−1 (range covering the D and G peaks of GLNRs) were used
to map the modifications in the post-impacted nanocomposites. The obtained images consisted of
a topology of sp3 and sp2 zones, which are shown in Figure 4c,d. The color contrast between the sp3

and sp2 zone is seen in both the images. The spectral image was taken in large areas (50 × 50 µm2).
The sp3 phase in Figure 4c was distributed homogeneously with uniform spread within the planer sp2

network. At some places, the degree of disorder in the sp3 zone was seen to be higher and appeared
as a distinctly dark region. In the planer region, no such peculiarities have been observed. They
were mostly smooth and flat. The features seen in Figure 4d are significantly different. There are
two important observations: first, the sp3 zone is redistributed in a systematic pattern and, secondly,
it shows small warps in the sp2 zone. Perhaps, it seems to be the imprint of the propagated shock
impulse, which sequentially stressed the sp3 zone (indicated by a horizontal arrow). The vertical
arrows show its relative strength, which is enhanced at the boundary layers of GLNR. After impact,
the trail of the damaged zone is seen.

3.4. Signal Processing Studies: Impulse Interaction with GLNR

In SHPB, the GLNR samples were sandwiched between the two elastic pressure bars. The striker
bar, also termed as a projectile, becomes propelled with the help of a gas gun toward the incident bar.
Striking onto the incident bar, an elastic compression wave sets in, and impact travels through this
input bar. Since the GLNR samples are mounted onto the input bar at the interface, part of the impact
wave gets reflected and part of the wave gets transmitted through the specimen to the input bar.
Following this, the reflected wave travels back as a tensile wave. The resulting time-dependent strains
were calculated from the voltage signals, which were measured by semiconductor strain gauge sensors
attached to the incident bar. The reflected signals will be received by the same sensor attached to this
bar. In similar fashion, the output bar collects the transmitted signal. The signals received are shown
in Figure 5a. These signals were processed further to extract information about how the strain energy
is propagated in GLNRs. For this, signal-processing studies were performed using the short-term
Fourier transform (STFT) technique to investigate the flow of strain energy in the time and frequency
domain. Figure 5b,c respectively shows the reflected and transmitted strain in the GLNRs.

Figure 5. (a) Recorded shock wave signals by strain gauge sensors for the incident, reflected,
and transmitted impact within the GLNRs, (b,c) short-term Fourier transform (STFT) signal processing
of collected signals and corresponding strain contours showing the dispersion of shock energy,
respectively, for reflected and transmitted impact.
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The STFT functional is given by x([n],ω) = X(m,ω) =
m=∞∑
m=0

x[n]•ω[n−m]e− jωn. The operation

was performed on a time sequence, where x [n] is the data array variable of time, ω is the continuous
signal frequency, and m is the discrete time locality. The equation shows the DTFT of the signal with
the window function described below. The STFT was computed by adopting the following procedure:
(a) a finite number of signal data points (N) were taken from the input shock signal, where these
N points were equal to the window size; (b) the window of the chosen type was used to multiply
the extracted data, point-by-point; (c) zeros were padded on both sides of the window. The provision
was made in case the window width becomes smaller than the size of the FFT, and (d) FFT were
computed. Furthermore, the following steps were performed to compute STFT with the following
settings: (i) sampling interval as 1, (ii) FFT length as 256, (iii) window length as 256, (iv) overlap as 128,
and (v) type of window as rectangle. The window function is given by ω [n] = 1, if 0 ≤ n ≤ N − 1;= 0,
otherwise. The output results are the complex valued data matrix (N × M) with the following
conditions: N = Fw

2 + 1, if input signal data real; else;= Fw complex and M = f (Ds−Ws
Ws−Os

) + 1. Here,
Fw is the transform width, Ds is the size of the data, Ws is the width of the window, Os is the overlap
function, and f is the floor function. In addition, one can analyze the frequency content of the signal
as well as the variations in frequency with time. The segments on the signal apply the discrete
Fourier transform to slide the window onto the entire signal to get the coefficients of the transform.

The spectral content of the signal can be obtained using
∣∣∣X(m,ω)

∣∣∣2, i.e., by squaring the coefficients and
plotting the two-dimensional contour plots. The spectrograph shows temporal variations in the shock
rate of recurrence. The blocks represent how the power is dispersed within the GLNRs. Each
colored area covered represents the corresponding energy dissipation and the size of the contour
represents the amount of energy loss. The propagation of the shock wave through the GLNRs causes
the dissipation of impact energy within ribbons and leads to a number of deformations of chemical
and physical origins, as discussed below.

Impulse pressure can be imaged as a kind of excitation perturbation, in the form of
a δ-function. In the GLNR, the impulse pressure exerts negligibly small shear compared to
the compressive hydrostatic component and induces disturbance, moving isentropically, which

is given by an approximate relation:

√
dσ
dε
ρ is equivalent to

√
dP
dV , (where, ρ is the density of the GLNRs,

while P and V are the change in the pressure and volume, respectively). The subjected mechanical
disturbance varies with time and enhances in its peak strength as it propagates over the GLNRs,
resulting in disorder activation [23]. The inherent defect is a key component for the dynamic flow
strength in the GLNRs. Regarding shock travel, there emerges a mismatch in the material flow of
the GLNRs and the speed of the shock wave front. This results in a distortion in the GLNR beyond its
elastic limit, leading to plastic deformation and finally fracture (spall region). The plastic deformation
would build residual internal stresses, leading to the separation of conjugated layers. The gliding
ribbon layers could be modeled by a Peierls–Nabarro stress mechanism. At the gliding interface,
conjugated layers experience two resultant forces: first, compression due to the extra plane present
leading to edge dislocation, and second, a missing plane to neutralize the compressive force due to
the short fall of the dislocated edge. It is a balancing phenomenon and dislocation extension depends
on the Poisson’s ratio. The slip dislocation starts moving in response to the applied shear stress,
and the ratio of the in-plane to out-of-plane stress sets the critical stress limit [25–27]. The slip ratio

is given by
σ‖
σ⊥

= 4π
(σ−1) ×

{
5.8 + log (σ− 1)

}
× e

4π
(σ−1) , in which σ⊥ and σ‖ are respectively the out-plane

and in-plane stress components. For GLNRs (0.07) and HSR GLNRs (0.1), the estimated values of
σ are provided in parentheses. The estimated slip ratio

σ‖
σ⊥

is ≈10−4 for GLNRs, which is as low as
10−6 after impact. Broadly, the incident transonic impulse of speed with a Mach number more than
1.0 damps almost more than 80% of its shock energy within GLNR, transmitting a small fraction
≈5%, and the rest is subject to spall/fracture, as shown in Figure 6, schematically. Table 1 shows other
mechanical parameters obtaind for GLNR.
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Table 1. Estimated dynamic mechanical parameters for the GLNRs from Hugoniot formalism.

Sr. No. Parameter (SI Unit) GLNR HSR GLNR

1 Young’s modulus >60 MPa -
2 Elastoplastic time constant, tc ≈10−4 s−1 (metal-like) -
3 Hugoniot elastic limit (GPa) - ≈8 (ceramic-like)
4 Force constant, (–C–C–) (N/m) 460 410
5 Force constant, (–C=C–) (N/m) 650 600
6 Bond length (Å) 1.60 2.85
7 Bond deformation (Å) 1.20 3.50
8 Disorder velocity (cm/s) - 1300

Thus, in certain situations, energy storage in a medium becomes an unimportant characteristic
of a material compared with its ability to dissipate energy within. Specifically, it is important when
designing and building armor blocks, bulletproof armors, bunkers, etc., where shock, acceleration,
and jerk need to be damped efficiently and effectively. The study performed herein develops
a fundamental insight into the shock wave interaction with GLNRs that provides an important clue for
designing body armors using nanocarbons.

4. Conclusions

We have investigated shock waves mitigation in graphene-like nanoribbons (GLNRs). GLNRs
were synthesized using the chemical vapor deposition method. The impulse pressure of GPa
magnitude and microsecond duration having a speed >1 Mach were created using the split Hopkinson
pressure bar technique and delivered onto GLNRs. Data have been collected for the strain, stress,
and their time-varying components. The number of mechanical parameters was extracted such as
the strain (ε)–stress (σ) constitutive conjugate, elastoplastic transformation rate, work-hardening
factor, compressive force, ultimate elastic limit, slip movement rate, shock dissipation constant,
Peierls–Nabarro stress, etc. The bilinear σ–ε behavior of the curve revealed the non-linear (parabolic)
nature of work hardening with an exponent value, n, ≈0.17. The elastic-to-plastic transformation factor
was estimated to be ≈10−5 s−1. The strain rate of stress,

.
σ (i.e., dσ

dε ), with strain was seen, typically,
of three stages in the plastic region. It was comprised of conjugated ribbon separation, layer exfoliation,
and corner/edge fracture at the spall stage. Under the elastic conditions, the volumetric stress rise
was higher, which resulted in an ultimate (Hugoniot) elastic limit (HEL) of ≈8 GPa. GLNRs departed
significantly in the elastic zone and closely resemble an ideal Rankian–Hugoniot model in the plastic
region. Shear waves have three folds of in-plane impact compared with out-of-plane impact, resulting
in stacking faults in conjugated layers. Raman analysis extracted information on the dynamics of slip
disorder due to shear stresses. It showed a compressive force movement, FD, of ≈0.3 nN at sp3 and
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a ≈0.9 nN at sp2 site with a dislocation speed > 1000 cm/s. Imaging by Raman technique indicated
a redistribution of sp3 content and emergence of strain@sp3, imprinting a shock trail compounded with
warps into sp2 planes. The incident impulse velocity is reduced almost by 80% showing the effective
shock mitigation characteristics of GLNR. Analysis revealed a multifaceted hydrodynamic response of
the GLNR material suitable for shock absorbent application in a strategic sector.
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