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Abstract: Diamond offers great potential for use as a thermal spreader in various applications,
including power electronics and radio-frequency (RF) applications. However, to be used as an
efficient thermal spreader, the atomically smooth surface of the diamond is critical to be bonded with
chips. Herein, a polishing technique for a 2-inch diameter wafer-scale bulk polycrystalline diamond
substrate is proposed. In this work, 350 µm thick polycrystalline diamond is grown by the microwave
plasma-assisted chemical vapor deposition (MPACVD) technique on a Si substrate at a growth rate
of 8 µm/h. Thereafter, a three-step polishing process was applied to achieve an atomically smooth
surface, consisting of grinding using a diamond slurry with an iron plate, ICP etching using the
SF6 gas, and final mechanical polishing using a resin-bonded diamond wheel. Surface roughness of
diamond characterized by atomic force microscopy showed the significantly reduced from 900 nm to
0.3 nm. Hence, this study provide the practical methods for obtaining atomically smooth diamond
films suitable for thermal management in various areas including power electronics and RF devices.

Keywords: wafer-scale polycrystalline diamond; polishing; surface smoothing; high efficiency

1. Introduction

Owing to its notable properties of extreme mechanical strength and high thermal con-
ductivity, etc., diamond is used in a variety of applications including ultra-wide band gap
semiconductors, optical components, thermal spreaders, and wear-resistant coatings [1].
Among them, one of the most promising applications of crystalline diamond grown by
chemical vapor deposition (CVD) method is as a heat spreader material for various appli-
cations (e.g., laser diodes, MOSFETs, HEMTs, avalanche photodetectors, etc.) [2]. Diamond
grown by CVD provides the highest thermal conductivity of any material, which is approxi-
mately 2000 W/mK, which is five times higher than that of copper at room temperature [3].

Stand-alone diamond-based devices are rather difficult to demonstrate due to the diffi-
culty in growth of high quality materials and doping for commercial applications. However,
it could be used for the integration and hybrid with existing matured semiconductor device
technology in order to take advantage of the highest thermal conductivity of diamond. For
example, SOD (Silicon-On-Diamond) technology is a promising alternative to standard SOI
(Silicon-On-Insulator) due to the high heat-spreading capability of diamond material [4].
In addition, diamond and InGaP can be room temperature bonding to reduce the heat
generated in the high-power and high-frequency devices based on GaAs [5].

Especially, efficient heat management in optoelectronics and power electronics appli-
cation is critical to achieve the highest performance without degradation or failure. For
example, GaN-based high-electron-mobility transistors (HEMTs) are strongly affected by
self-heating, leading to increased junction temperature and failure of power devices. One
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potential solution is to use diamond immediately adjacent to the hot spot of the chip to
effectively dissipate the generated heat from the GaN devices [6]. To use the CVD dia-
mond as a thermal spreader, the surface of the diamond is required to ensure sufficient
contact between the chips and the substrate to maximize heat transfer from the chips to
the substrate.

In a bonding process for gallium nitride-based electronic devices on diamond heat
spreaders technology, GaN devices are transferred from silicon (Si) onto single (SCD) and
polycrystalline diamond (PCD) substrates by van der Waals bonding. 350µm-thick PCD
wafer was grown by microwave chemical vapor deposition in hydrogen/methane plasma
on Si substrates. After growth, the rough growth side was polished to a final diamond
thickness of 300 µm [7].

However, the CVD diamond has a roughness that evolves with the thickness. Fur-
thermore, the grain structure of polycrystalline CVD diamond exhibits a non-uniform
composition, owing to the growth process. Therefore, the polishing of CVD diamond is
an essential step for its application as a thermal spreader. To alleviate the issues, various
polishing techniques have been developed to smooth the CVD diamond surface.

For a single-crystal diamond, polishing along the (100) plane, known as “soft” direction
crystal facets, allows the efficient achievement of smooth polished surfaces. In contrast,
polishing along the “hard” direction, such as (111), the surface usually shows signs of
micro-fractures and cracking [8]. Therefore, argon-based plasma, containing water vapor,
was used in the plasma-assisted polishing to modify the surface of a single-crystal diamond
(100) plane [9]. A mechanochemical polishing (MCP) process, combined with a UV-induced
photochemical reaction, was used to polish the surface of a 3 mm × 3 mm × 1 mm
single-crystal diamond (100) plane [10]. Moreover, a planarization method with 172 nm
vacuum-ultraviolet (VUV) irradiation was also proposed [11]. Furthermore, inductively
coupled plasma (ICP) etching using an Ar/Cl2 gas mixture was used to remove the sub-
surface damage of mechanically processed single-crystal diamond surfaces [12]. Ar/Cl2
ICP plasma etching shows improved smoothness of the diamond surface [13]. Ion-beam
etching has also been used as a non-contact single-crystal diamond (100) surface finishing
method [14].

As mentioned above, most of the effort in developing the polishing technology fo-
cused on single-crystal diamond with limited size mostly due to extremely expensive
substrate cost and difficulties in growth of bulk single crystalline diamond. Therefore,
the development of wafer-grade polycrystalline diamond substrates with a low cost and
large size would enhance the widespread application and future development of various
diamond-integrated device technologies.

MPCVD polycrystalline diamond films were also planarized in hydrogen plasma
under the graphitization of iron film obtained by reduction of iron chloride under hydrogen
plasma ambient [15]. To improve efficiency, a fast polishing of polycrystalline CVD diamond
films was used by ultrasonic machining in a slurry with diamond particles. The material
removal mechanism is based on diamond micro-chipping by the bombarding diamond
particles subjected to action of an ultrasonic radiator [16]. Electrical spark discharging
was used to etch the CVD diamond film. The effects of parameters in electrical spark
discharging including the pulse width, electrode shape, metal layer thickness, and the
polarity on diamond removal height [17]. A picosecond-laser (ps-laser) polishing method
can prohibit the formation of graphite on the diamond also has a relatively high removal
rate [18].

However, the growth of polycrystalline diamond with a single consistent (100) crystal
orientation is challenging; thus, the polishing process of polycrystalline diamond is more
difficult than that of single-crystal diamond. To achieve the high-quality polishing of
polycrystalline diamond for the practical applications, demonstration of smooth surface
roughness, scalability and high throughput are important.

In this work, grinding, ICP-RIE etching and mechanical polishing technology are com-
bined to realize the atomically smooth surface of wafer scale polycrystalline diamond. We
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believe that the development of high quality polishing technology would be the step-stone
toward widespread applications of diamond in thermal, optical and mechanical fields.

2. Materials and Methods

This study proposed a novel optimization approach to enhance smoothness in the
polishing process. The experimental samples include 8 polycrystalline diamond films.
A series of experimental verifications were conducted by utilizing commercial grinding
machine, ICP etching machine and mechanical polishing machine.

Firstly, in order to study the influence of diamond slurry size on the grinding process,
we used 8 polycrystalline diamond samples, and obtained flat surfaces by 7 combinations
of diamond abrasives with particle sizes of 10 µm, 20 µm and 40 µm respectively. After
obtaining the most effective diamond abrasive combination in reducing the roughness of
CVD diamond surface, 2 samples using this combination were selected, and the ICP etching
process based on SF6 and O2 was adopted respectively to obtain a smoother diamond
surface. After the ICP etching process, 1 sample with lower roughness was mechanically
polished on a resin-bonded diamond wheel to produce an extremely smooth surface.

The 8 polycrystalline diamond films were grown by a 6 kW, 2.45 GHz MPCVD system
with a growth rate of ~8 µm/h. The diamond films were prepared under the same con-
dition. The average roughness prior to processing was 900 nm and the growth thickness
of diamond film is measured by Nikon digital micrometer, 15 different test areas show
thicknesses around 350 µm with the thickness deviation within 5%.

To evaluate the morphology and crystallinity of the diamond films grown by MPACVD,
X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM)
techniques have been employed. Figure 1a shows a photograph of a 2-inch 350 µm-thick
diamond film obtained on a Si substrate. Figure 1b shows the XRD spectrum of the sample.
The XRD patterns clearly shows the polycrystalline diamond phase by showing (111), (220),
(311), (400) and (311) reflection peaks with the most intense peak at a (111) orientation.
Figure 1c shows the Raman spectrum of the diamond films grown by MPACVD. From the
figure, we confirm that there is single sharp and intense diamond peak at 1333.48 cm−1

without non-diamond contribution. Figure 1d shows the surface morphology of the
diamond film sample measure by scanning electron microscopy (SEM).

Figure 1. (a) Photo of as-grown diamond surface; (b) XRD spectra taken on as-grown surface;
(c) Raman spectra taken on as-grown surface; (d) SEM micrographs of as-grown film.
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2.1. Grinding

To reduce surface roughness of diamond film, a grinding method can be used by
adding titanium to the vitrified bond wheel. By using the grinding wheel, the surface
roughness of CVD diamond film can be dramatically reduced [19].

Here, as the first step, 2-inch diamond samples grown on Si by MPACVD were ground
against an iron plate using diamond slurry to prepare flat diamond faces. The grinding
of diamond was conducted on a rotating plate. The rotating plate is made of iron with a
diameter of ~300 mm. The sample was attached to the sample holder, which was placed
on the iron plate and rotated during grinding. The grinding pressure was applied to the
sample by adding a suitable weight. To obtain a smooth diamond surface via grinding, it is
critical to prepare an ideal flat iron plate and determine the optimal process parameters.

In this work, the grinding of diamond samples was performed under the following
conditions. A pressure of 6200 Pa was applied to the samples with a constant distribution
of the water-based diamond slurry containing diamond particles, sizes ranging from 10 µm
to 40 µm (here called W10 toW40), and a grinding wheel rotation speed of 40 rpm. The
grinding time was around 12 h and the removed thickness is 80 µm. After grinding, the
sample was sequentially cleaned with acetone and alcohol in an ultrasonic bath.

To study the effect of diamond slurry size for the grinding process, we employed
various combinations of diamond abrasives with different particle sizes for achieving the
smooth surface. We employed 7 combinations, the particle sizes are 10, 20 and 40 µm, and
change the sequence of usage W40, W40 to W20, W10, W20, W40 to W10, W20 to W10,
and W40 to W20 to W10 to verify is most effective sequence and combination of diamond
abrasives in reducing the roughness of the CVD diamonds surface.

2.2. Reactive Ion Etching-Inductively Coupled Plasma (RIE-ICP)

ICP is an effective technology to smooth the diamond surface with high throughput
owing to its high plasma density. The total pressure, RF power, and gas composition,
significantly influence the final roughness of diamond films [20]. The improved roughness
of the etched diamond surface has been observed with an increase in the O2/CF4 ratio [21].

In our process, the ICP treatment was performed between the grinding and me-
chanical polishing processes as a transitional process to make the grinding surface flatter.
Here, we employed the SF6- and O2-based two-step etching process to achieve a smooth
diamond surface.

Here, we have examined the post-grinding surface treatment process by employing
two types of plasma gases. In the SF6-based approach, the pressure, time and ICP power
were kept at constant values, i.e., 1.34 Pa, 10 min, 500 W, respectively. The total gas flow
was kept constant at 30 sccm. In the O2-based approach, we start with 2.5 min O2 followed
by 0.5 min O2/CF4 plasma, the first step was carried out using 50 sccmO2 gas and fixed
ICP power at 800 W while the pressure was 2 Pa. In order to improve the etching rate in
O2 plasma etching, a second gas, CF4, is introduced to the process. The second step was
performed using 40 sccm O2 and 10 sccm CF4 at 1.6 Pa, the ICP power was change to 200 W.
Process parameters for both recipes are summarized in Table 1.

Table 1. Diamond etching process parameters.

No. Gas Flow Rate ICP Power Platen Power Pressure Duration

a SF6 30 sccm 500 W 50 W 1.34 Pa 10 min
b-1st O2 50 sccm 800 W 100 W 2 Pa 2.5 min
b-2nd O2/CF4 40/10 sccm 200 W 0 W 1.6 Pa 0.5 min

2.3. Mechanical Polishing

After the ICP process, mechanical polishing on a rotating resin-bonded diamond wheel
was carried out to create an extremely smooth surface for the sample, which obtained a
lower roughness in the ICP process.
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We used a resin-bonded wheel charged with diamond abrasive grains. The experimen-
tal setup comprises a rotating table, pressure blocks, a sample holder, a cooling system, and
a conditioner. Before the process, the wheel was conditioned to ensure a maximum contact
area with the diamond. The polishing wheel was placed on the rotating table, which was
kept at 1200 rpm rotating during polishing. To maintain a stable contact state between
the diamond sample and polishing plate, the sample was fixed to a sample holder. The
holder rotates and swings during the polishing process, at a pressure of 7400 Pa, using
pressure blocks. The rotation speed, swing speed, and swing distance of the sample holder
are 120 rpm, 40 rpm, 6 cm, respectively. The flow rate of the cooling water was kept at
10 mL/min, and we should ensure that the water did not fall on the polishing wheel. The
polishing temperature influences the rate. Higher temperatures provide faster polishing;
therefore, we kept the temperature at 50 ◦C. In the polishing process, the removed thickness
is 15 µm.

3. Results and Discussion

Figure 2a shows the SEM image (×1000) of an as-grown diamond surface. Figure 2b–h
show the SEM image (×1000) of the grinded diamond film using various combinations
of diamond abrasives. A number of large pits can be observed in Figure 2b,c, and it
can be confirmed that the pollutant particles have embedded into the structures of the
surface after the grinding process. However, the number of pits per unit area is visibly
reduced with the decrease in Ra values during grinding. There are planes in the Figure 2d,
although they are unevenly distributed. The grain boundary can be seen in Figure 2e–g.
In Figure 2h, the planes are connected together, and the boundary of the grain becomes
not very obvious. The micro-grains were flattened evenly in all planes and directions after
the grinding process. With the change of diamond abrasive particles, the diamond surface
becomes flatter.

Figure 2. SEM micrographs of as grown and ground diamond films, the films ground by different
combinations of abrasive particles. (a)As-grown; (b) W40; (c) W40 to W20; (d) W10; (e) W20; (f) W40
to W10; (g) W20 to W10; (h) W40 to W20 to W10. W is the diameter of abrasive particles, W40, W20,
W10 represent the diameter of diamond abrasive in grinding is 40 µm, 20 µm, 10 µm, respectively.
The (b,d,e) mean that only one grain size abrasive is used; (c,f,g) mean that two kinds of abrasives
have been used successively; (h) means that abrasives with three particle sizes are used in sequence.

To further study the surface morphology of diamond film, contact mode atomic force
microscopy (AFM) was employed after the grinding process. Figure 3a–g shows the AFM
surface topography of the diamonds, these images show the same trend as Figure 2. From
the scale bar, there are obvious protrusions and depressions on the surface at the beginning,
the particle volume is also very large, and the roughness value begins to decrease with the
change of diamond abrasive, gradually decreasing from 137 nm, 112 nm, 61.4 nm, 58 nm,
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51.9 nm, 46.8 nm, to 39 nm, respectively, while Figure 3h shows the average roughness over
the 25 µm2 of each ground diamond surface.

Figure 3. Corresponding AFM surface topography of diamond films ground by different combina-
tions of abrasive particles (5 × 5 µm2). (a) W40; (b) W40 to W20; (c) W10; (d) W20; (e) W40 to W10;
(f) W20 to W10; (g) W40 to W20 to W10. The value of (a–g) is 137, 112, 61.4, 58, 51.9, 46.8, 39 nm,
respectively. (h) The evolution of the roughness gives a linear decrease with diameter of diamond
particles in the slurry.

By using the combination of abrasives, we were able to confirm that the grinding
process significantly enabled us to significantly reduce the surface roughness of polycrys-
talline diamond. Figure 3h shows the average surface roughness data against the abrasive
diameter used for grinding. When the grinding particle size was employed in sequence
from W40 to W20 to W10, the smoothest surface was achieved with a surface roughness
of 32 nm. The same grit size of the diamond abrasives allows us to obtain the same grade
surface roughness. In order to further enhance the surface quality, beyond a roughness of
30 nm, further polishing is necessary.

Therefore, 2 samples (sample a and sample b), after grinding by W40 to W20 to W10,
with the better surface quality, were prepared for a further etching process.

Figure 4a shows the SEM image of the CVD diamond surface after SF6 ICP etching
(sample a). Sample a was evident from the SEM images without pits and grain boundaries.
Figure 4b shows the SEM image of the CVD diamond after O2-O2/CF4 ICP (sample b).
We were able to confirm that SF6 and O2-O2/CF4-based plasma etching further improves
the smoothness of the diamond surface after grinding, and the roughness is reduced from
30 nm to less than 3 nm.

There was no obvious etch pits and defects observed across the surface. This indicates
that there was no severe damage to the CVD diamond surface caused by the grinding
process. Moreover, the variations in the material removal rates with different gases at a
given etching time were calculated and summarized in Table 2. We chose commonly used
diamond etching gases, chlorine-based gases and fluorine-based gases to obtain the etching
rates. The ICP power was fixed at 400 W, several groups of different etching conditions
were selected for the experiment, and the depth of the etched part was measured by a step
meter, then the etching rate was calculated.

Figure 5a shows the photograph image of sample a after completing mechanical pol-
ishing process. Figure 5b shows the AFM surface topography of this CVD diamond sample
after mechanical polishing. The roughness was evaluated over an area of 5 µm × 5 µm.
The value of the surface roughness of the polished surface was 0.278 nm. It is clear that
the diamond surface is not compact, resulting from ICP, was improved by mechanical
polishing. The resultant surface integrity was high and the regularities on the surface was
clear. Furthermore, the energy-dispersive spectroscope (EDS) signal confirms that there
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is no elemental contamination of a diamond sample surface from the polishing plate, as
shown in Figure 5c.

Figure 4. (a) SEM micrographs for diamond surface after etching in SF6 (30 sccm, 10 min,
ICP power = 500 W); (b) SEM micrographs for diamond surface after etching in O2 (50 sccm, 2.5 min,
ICP power = 800 W)—O2/CF4 (40/10 sccm, 0.5 min, ICP power = 200 W); (c) AFM surface topography
for the uniform and loose surface formed at (a) conditions, Ra = 1.79 nm, and (d) AFM surface
topography for the scattered surface formed at (b) conditions, Ra = 2.82 nm. The loose surface formed
during etching is beneficial for material removal in mechanical polishing.

Table 2. Diamond etching removal rates.

Gas Flow Rate ICP Power Platen Power Pressure Rate

SF6 80 sccm 400 W 100 W 1 Pa 0.39 µm/h
O2/CF4 80/25 sccm 400 W 100 W 1 Pa 1.02 µm/h
Ar/Cl2 25/80 sccm 400 W 300 W 0.8 Pa 2.34 µm/h

There are the same mechanisms for the surface modification of the diamond film in
the mechanical process and the CMP process, which is abrasion. In our work, the SEM
and AFM images of Figures 2 and 3 show a grinding action with different combinations of
abrasive particles. The grinding begins with the removal of crystal peaks due to the contact
with iron plate and diamond slurry, Thomas [22] proposed a chemical and mechanical
removal mechanism in the reactions between the thin diamond film, polishing pad and
silica abrasives, and show a steady polishing action with time. We did not add chemicals,
so there is no oxidation mechanism in the grinding. Plasma etching [15] is based on
the principle of sputtering and chemical reaction, and we similarly have high material
removal rate as several microns per hour in whole process. Ultrasonic machining [16]
in a slurry with diamond particles is based on the micro-chipping and form defects in
a 3–6 µm thick sub-surface layer. Electrical discharge [17] with the removal mechanism
of rapid evaporation, laser polishing of polycrystalline diamond coatings by transient
thermal oxidation and/or evaporative ablation always have a micron-level roughness [18].
In our work, a combination of a three stage polishing process, grinding, ICP etching and
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mechanical polishing improve the surface smoothness to the nanometer scale compared to
the conventional technology.

Figure 5. (a) 2-in polished diamond wafer (sample a); (b) typical AFM micrographs of film after
polishing, Ra = 0.278 nm. 2-inch diamond wafer fabricated using mechanical polishing, exhibiting an
ultra-smooth surface of average Ra = 0.315 nm (over the 10 scans); (c) EDS spectrum of the polished
diamond wafer.

4. Conclusions

Although diamond thermal spreaders of a small size have been effectively demon-
strated, there are still several technological issues to be solved. Diamond is the hardest
known material, with a superior chemical and thermal stability; therefore, there are various
technical challenges such as a low material removal rate, film delamination, fragmen-
tation, micro scratches, and contamination. To alleviate these issues, we have demon-
strated the procedure to grow and polish thermally grade polycrystalline diamond using
MPACVD and the compound approach of grinding, ICP, and mechanical polishing, atom-
ically smooth surfaces without the formation of sub-surface damage, and etch pits were
obtained, respectively.

In this study, we investigated the effects of the processing method on a diamond with
a size of 2-inch. The processing method consisting of (1) grinding using diamond slurry
size of different combinations, the surface roughness is reduced from 900 nm to 32 nm
when the grinding particle size was employed sequence from 40 µm to 20 µm to 10 µm.
(2) ICP etching using different gas, the surface roughness is reduced from 32 nm to 1.79 nm
when the SF6 gas was employed, and (3) final mechanical polishing using a resin-bonded
diamond wheel, the surface roughness is reduced from 1.79 nm to 0.315 nm.

According to the experimental observations, we conclude that for final surface rough-
ness, sequential process of grinding, ICP etching, and finally mechanical polishing pro-
vided the most smooth surface of polycrystalline diamond. The proposed method of
super-finishing diamond surface provides a surface roughness of 0.3–0.5 nm. We believe
that the atomically smooth diamond surface enabled by our process has potential to be
employed in widespread applications as a thermal spreader for efficiency heat dissipation.
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