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Abstract: The gastrointestinal system where inflammatory bowel disease occurs is central to
the immune system where the innate and the adaptive/acquired immune systems are balanced
in interactions with gut microbes under homeostasis conditions. This article overviews the
high-throughput research screening on multifactorial interplay between genetic risk factors,
the intestinal microbiota, urbanization, modernization, Westernization, the environmental influences
and immune responses in the etiopathogenesis of inflammatory bowel disease in humans.
Inflammatory bowel disease is an expensive multifactorial debilitating disease that affects thousands
new people annually worldwide with no known etiology or cure. The conservative therapeutics focus
on the established pathology where the immune dysfunction and gut injury have already happened
but do not preclude or delay the progression. Inflammatory bowel disease is evolving globally and
has become a global emergence disease. It is largely known to be a disease in industrial-urbanized
societies attributed to modernization and Westernized lifestyle associated with environmental
factors to genetically susceptible individuals with determined failure to process certain commensal
antigens. In the developing nations, increasing incidence and prevalence of inflammatory bowel
disease (IBD) has been associated with rapid urbanization, modernization and Westernization of the
population. In summary, there are identified multiple associations to host exposures potentiating the
landscape risk hazards of inflammatory bowel disease trigger, that include: Western life-style and
diet, host genetics, altered innate and/or acquired/adaptive host immune responses, early-life
microbiota exposure, change in microbiome symbiotic relationship (dysbiosis/dysbacteriosis),
pollution, changing hygiene status, socioeconomic status and several other environmental factors
have long-standing effects/influence tolerance. The ongoing multipronged robotic studies on gut
microbiota composition disparate patterns between the rural vs. urban locations may help elucidate
and better understand the contribution of microbiome disciplines/ecology and evolutionary biology
in potentially protecting against the development of inflammatory bowel disease.

Keywords: gastrointestinal disorders; inflammatory bowel disease; ulcerative colitis; Crohn’s disease;
indeterminate colitis; inflammation; rural lifestyle; urbanization; diet/nutrition; environment;
intestinal microbiota; dysbiosis/dysbacteriosis); genetics; ethnicity; innate immune system;
adaptive/acquired immune system

1. Introduction

The “Colitides” also known as Inflammatory Bowel Disease (IBD), include ulcerative colitis
(UC) and Crohn’s disease (CD), is intestinal disease that cause prolonged chronic relapsing and
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remitting inflammation of the digestive tract due to multifactorial interplay between genetic risk,
the immune system, environmental exposures, and the intestinal microbiota in genetically susceptible
individuals [1–3]. The aetiopathogenesis of UC and CD remains enigmatic [4,5]. The incidence of IBD
is alarmingly evolving in pediatrics and young adults worldwide [4,5]. In the beginning of the 21st
century, in some developed nations the incidence of IBD declined with a prevalence of as lower as up
to 0.5% of the general population, while it has continued to rise in developing countries [6–8] as well
as in some Western and developed countries [9–13].

IBD incidence and prevalence is evolving worldwide [14,15] and is now contemplated to be
an emergence global disease [4]. The burden of IBD varies in different countries and locations,
especially when compared between developing [16–31] and developed nations [32,33]. Data suggest
that younger populations are more affected [6,34] and that the peak incidence of IBD occurs in children
and adolescents [34,35]. It is estimated that 25 to 30 percent of cases diagnosed with CD and 20 percent
of patients with UC present early in life and in most cases before the age of 20 years [35–37].

Rapid urbanization represents a major demographic shift and has been associated with an
escalated incidence of several autoimmune diseases, including IBD [36,38–40]. In this long extensive
literature search overview article we discuss: (i) pathogenesis of IBD, seeking to better understand
accurately the aetiopathogenesis of IBD. (ii) environmental factors, building on the knowledge of how
factors like diet, microbiota and psychological stress are reflected to play a role in IBD (iii) preclinical
human IBD mechanisms, paying close attention to how IBD manifests in patients and ensuring research
in the laboratory reflects this understanding, (iv) novel technologies, applying the latest multipronged
innovations like non-invasive imaging and biosensors to IBD and (v) pragmatic clinical research, working
in collaboration between basic scientist, clinical teams and patients to ultimately answer questions
relevant to daily clinical practice and evaluate the effectiveness of current practices in diagnostics
and treatments.

2. Methods

Performed literature review using multipronged search engine predetermined protocol in
accordance with the quality assurance of reporting meta-analyses of observational contemplations
(MOOSE) [41,42]. Preferred reporting items for review and meta-analysis protocols (PRISMA-P) was
followed [43]. A comprehensive multipronged search of the “inflammatory bowel disease (IBD)”
etiopathogenesis was carried out through 30 of June 2018 using Medical Literature Analysis, PubMed,
and Retrieval System Online (MEDLINE), Current Nursing, Excerpta Medica database (EMBASE),
and Allied Health Literature (CINAHL), Web of Science, the Cochrane library, and Google® search
engine. The following search terms were used: inflammatory bowel disease, indeterminate colitis,
ulcerative colitis, Crohn’s disease, Crohn’s colitis, inflammation, etiology, pathogenesis, intestinal
microbiota, genetic risk factors, environmental factors, diet, immune responses, Westernization culture,
developed countries, urbanization, developing nations, diagnostics, and treatment. Subordinate and
hand/manual searches of reference lists, other studies cross-indexed by reviews, authors, books,
commentaries, and conference abstracts were also carry out. Published reports in language other
than English, non-human studies and editorials were eliminated. Manuscript inclusions were based
on the available supportive evidence for each particular detailed item of interest. Final, conclusive
consensus was statistically evaluated with the k-statistic during the title and abstract reviews. As a
result, titles were examined and divided into two sets when the value was ≥0.6; each was reviewed by
the researcher. Assessable discrepancies were corrected, followed by other assessments of agreement
when the value was <0.6.

3. Results

There were 51,671 publications identified in the review search of the possible etiopathogenesis of
IBD (22,925 for UC, 27,536 for CD and 1210 for indeterminate colitis (IC). Of the 51,671 publications,
13,773 were duplicate publications and were excluded. Further, following a review of the abstract
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or title, additional 23,970 were removed because were found not to be relevant to the topic of
etiopathogenesis, leaving 13,928 full-text articles. Of the 13,928 reviewed articles, 277 were further
excluded because they were not English-language publications and/or non-human studies leaving
13,651 articles qualified for inclusion in this extensive summarized overview.

4. Etiopathogenesis of IBD

Inflammatory bowel disease has been understood to be idiopathic attributable to several possible
effectuates that include genetic, gut microbiota, dysbiosis; pollution, hygiene, environmental, immune
response, urbanization and dietary/nutritional factors [44,45]. These factors, and more, are discussed
point by point below. The digestive system in which IBD takes place is central to both the innate
and adaptive/acquired immune systems where are balanced in complex reciprocal influence with
intestine luminal microbes under homeostasis premises [46]. In IBD however, etiopathogenesis has
become better elucidated owing to scientific technology advances in biological genetic, environmental
and immunology that normal homeostasis physiology is disrupted and uncontrolled intestinal
inflammation is perpetuated [47,48]. Customary pattern of thought, Th1 cell have been observed to
play a crucial role in etiopathogenesis related to the chronicity of intestinal inflammation, especially
in CD, where Th2 cells have been thought to play an important influence in UC [46,49]. Recently,
however, it has been reported that activation of Th17 cells and imbalance of Th17/regulatory T (Treg)
cells are recognized to be a vital segmental component in the trigger and development of intestinal
inflammation, such as IBD [50]. Since tumor necrosis factor (TNF)-α is a strong candidate and has been
identified as a potential cytokine in IBD etiopathogenesis, the establishment of anti-TNF-α treatment
has contributed towards the initiation of disease-remodeling drugs [50–52].

4.1. Genetic Risk Factors

Despite the fact that the exact cause of IBD still remains unclear, there are susceptibilities that has
broadly been recognized to have a genetic component ground, a defective immune system [53–55],
and environmental basis combined are thought to partly play role in the etiopathogenesis [56,57].
This is singled out by the development of IBD in immigrants to high-prevalence countries [58] and
contention of IBD among monozygotic twins [59]. The significance of environmental components is also
well recognized by a rising trend in the incidence and prevalence of IBD in countries undergoing rapid
Westernization [4,16,60]. As mentioned, genetics is observed to play role as observed by the greater
prevalence of IBD in Ashkenazim Jews with trace ancestry in northern-European Jewish groups than
Sephardic Jewish population [61,62]. Analyzing data materials from 5685 Ashkenazi Jewish exomes,
Rivas et al. [62] bring forth a systemic analysis of Ashkenazi Jewish enriched protein-coding alleles,
which contribute to distinct in genetic risk to IBD of which are transmitted via autosomal recessive
inheritance. Other similar such genome-wide scan studies are herewith in-depth discussed [63,64].
Genetic population isolates like the Ashkenazim, Jews who trace their ancestry to eleventh century
central European Jewish groups [65], have hitherto made it possible the mapping of alleles to play
a part in to human disorder predisposition [66–69]. The documented 2–4 fold enrichment of CD
prevalence in the Ashkenazi Jewish population [70,71] prompted enthusiasm for the use of exome
sequencing and genome-wide array studies to evaluate the degree to which bottle-neck-enriched
protein-altering alleles and undeniably implicated common variants contribute an excess CD genetic
risk to Ashkenazi Jewish [70]. Despite efforts in the advance in the mapping genes and alleles for
physical injuries and/or disorders with increased prevalence in the Ashkenazi Jewish population,
precise estimates of the risk-allele frequency and the carrier rate in the Ashkenazi Jewish population
have unfortunately not yet been resolved to date [72]. In addition, the disproportion of immune
responses to intestinal bacterial antigens is thought to play a critical role in the etiopathogenesis of IBD
in genetically receptive host individuals [73].

The CARD family plays an important mechanistic role in innate immune response by the
activation of nuclear factor-κB (NF-κB). Studies to determine the gene expression and enumeration
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of the protein-expressing cells of some members of the CARD family (CARD9, CARD10, CARD11,
CARD14 and CARD15) in patients with IBD vs. normal controls have demonstrated that the CARD9
and CARD10 gene expression was significantly elevated in UC as compared to CD. CARD11 gene
expression was significant decreased in UC than in CD patients while CARD14 gene expression was
significantly heightened in the group with active UC compared to non-inflamed controls. The down
expression of CARD14 gene was associated with a benign clinical course of UC, characterized by
initial activity followed by long-term remission longer than 5 years. CARD15 gene expression was
significantly reduced in UC patients vs. CD. CARD9 protein expression was detected in inflammatory
infiltrates; CARD14 in parenchymal cells, while CARD15 in inflammatory and parenchymal cells.
CARD9-, CARD14- and CARD15-expressing cells were observed significantly higher in patients with
active UC vs. non-inflamed controls. Therefore the CARD family looks indisputably involved in the
inflammatory process and might be elaborated in the IBD etiopathophysiology.

There are about 71 CD and 47 UC susceptibility loci/genes to date. Approximately one-third of
loci described confer susceptibility to both CD and UC. Amongst these are multiple genes involved
in IL23/Th17 signaling (IL23R, IL12B, JAK2, TYK2 and STAT3), IL10, IL1R2, REL, CARD9, NKX2.3,
ICOSLG, PRDM1, SMAD3 and ORMDL3. The evolving genetic architecture of IBD has furthered the
understanding of disease etiopathogenesis. For CD, defective processing of intracellular bacteria has
become a central theme, following gene discoveries in autophagy and innate immunity (associations
with NOD2, IRGM, ATG16L1 are specific to CD). Genetic evidence has also demonstrated the
importance of barrier function to the development of ulcerative colitis (HNF4A, LAMB1, CDH1
and GNA12). According to Chua et al., 2012, there is a strong association between both inflammatory
bowel disease gene 5 (IBD5) locus variants but not the IL23R gene variant with CD (in the Malaysian
population) but the IBD5 locus variants were highest in Indians, which may explain the increased
susceptibility of this particular ethnic group to the disease [74].

4.2. Intestinal Microbiota

The symbiotically benefit of the intestinal microbiota to the host’s physiology can be divided
into three different group categories—(i) nutrition, (ii) immune development, and (iii) host
defense [75]. An inauspicious alteration of the constitutional composition and variety of the
gastrointestinal microbiota (dysbiosis) is observed and reported in IBD patients which affects the
host immune system functionality and barrier integrity, resulting in chronic inflammation and
aberrant immune responses [76]. Studies into host-microbe interactions, involving both innate and
acquired/adaptive immune responses, have shown to be of particular interest in understanding the
possible etiopathogenesis of IBD [76,77]. Evolutions in sequencing advance technology have triumphed
to the groundbreaking findings and characterization of the gut microbiota and its role in health and
disease. While an altered microbiome has been described in IBD, whether it is a causative source or
an effect of the local intestinal response to cellular injury (inflammation) has yet to be illuminated.
Moreover, the bidirectional relationship between the intestinal microbiota and the mucosal immune
system (discussed on 4.3) adds to the multifaceted complexity of intestinal homeostasis at large.
A better understanding of how host genetics, including NOD2, influence immune-microbe interactions
and alter susceptibility to IBD is still a challenge endeavor and potentially essential in order to gradually
manifest therapeutic and preventative precision measures [77].

When compared patients with IBD to healthy individuals, the decrease of bacteria with
anti-inflammatory capacities and the increase of bacteria with inflammatory capacities have been
reported [78,79]. The most consistent observations are a downsizing in the diversity of gut microbiota
and pruning abundance of Formicates [78,80–82]. Expansion in abundance of Proteobacteria
and Bacteroidetes have been outlined [78], but downsizing have also been outlined [82]. It has
been communicated that F. prausnitzii, Blautia faecis, Roseburia inulinivorans, Ruminococcus torgues,
and Clostridium lavalense are reduced in cases with CD when collated to healthy subjects [83,84]
and that the number of F. prausnitzii is correlated with the risk of subsequent relapse of ileal CD
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following surgery. The defect of colonization of F. prausnitzii was noted in UC patients during
remission and the recovery of the F. prausnitzii population after relapse is seen to be associated with
the maintenance of clinical remission [85]. In addition, human peripheral blood mononuclear cells
simulated with F. prausnitzii induced the production of IL-10 and inhibit the population of inflammatory
cytokines, such as IL-12 and IFN-γ [86]. Further, a significant reduction of Roseburia spp. was noted in
the gut microbiota of healthy individual with a high vulnerable genetic risk for IBD. In contrast,
a relative increase in Proteobacteria, mainly E. coli, was reported in CD patients, in particular,
on mucosa-associated microbiota compared to fecal samples [87–94]. CD-associated E. coli with
pro-inflammatory properties is adhesion-invasive E. coli (AIEC), which was initially isolated from
adult CD patients [79]. It has been communicated that the number of AIEC increased in about
38% of patients with active CD compared to only 6% in healthy subjects [95]. The increase of
pathogenic bacteria with the ability to adhere to the gut mucosa affects the permeability of the intestine,
revamps the diversity and composition of gut microbiota, and induces inflammatory reactions by
regulating the expression of inflammatory genes, consequently leading to the causing of intestinal
inflammation [96]. Further, fluorescence in situ hybridization analyses have shown an enhanced
abundance of mucosa-associated bacteria in IBD [97–99]. This may be caused by the altered ecology
and increased volume of mucolytic bacteria, such as Runinococcus gnavas and Ruminococcus torques in
IBD patients [99].

The subsequent yield of metabolites affected by the disruption of gut microbiota is reported
attributable to the etiopathogenesis of IBD [84]. For example, the concentration of SCFAs has
been communicated to decrease in IBD patients, as a result of butyrate-producing bacteria, such as
F. prausnizzi and Clostridium clusters IV, XIVa, XVIII [84]. The reduced production of SCFAs affects
the differentiation and expansion of Treg cells and the growth of mucosal cells [100], which play an
important part in conserving intestinal homeostasis. On the other hand, the number of sulfate-lessening
bacteria, such as Desulfovibrio, is abundantly increased in IBD patients [101,102], stemming in the
fabrication of hydrogen-sulfate that cause severe injure to the intestinal epithelial cells and induces
mucosal damage and inflammation [101]. Collectively, these data forcefully demonstrate that dysbiosis
partly is associated with the etiopathogenesis of IBD.

4.3. The Intestinal Epithelium and Microbiota

A number of different cells, including enterocytes, goblet cells, neuro-endocrine cells, Paneth
cells, M cells, and epithelia resident intestinal stem cells together make the intestinal epithelial cell
(IEC) compartment, Figure 1. These monolayer cells structurally self-possessed crypt and villi, with
a single columnar cell inner surface with an impervious jointure secreting anti-microbial peptides
accommodated mucus; these cells separate intra-luminal pathogens from the sub-epithelial lamina
propria [48,103,104].
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Figure 1. (A) Small intestine mucosal immune system landscape. The intestinal epithelial cell (IEC) 
layers form villi and crypt structures and are composed of different cell lineages. Goblet cells secrete 
mucus. Paneth cells, found only in the small intestine, can be found at the base of the crypts and are 
the main secretors of antimicrobial peptides. The base of the crypts also contains the IEC stem cell 
populations. Immune cells can be found in organized tissue such as Peyer’s patches and throughout 
the lamina propria. They include macrophages, dendritic cells, intra-epithelial lymphocytes, lamina 
propria effector T cells, IgA secreting plasma cells, innate lymphoid cells and stromal cells such as 
fibroblasts. Antigen presenting cells in Peyer’s patches or mesenteric lymph nodes interact with and 
activate local lymphocytes, which consequently upregulate expression of the integrin α4β7. Such cells 
then enter the systemic circulation but home towards the gut, in response to chemokine ligands such 
as CCL25. (B) Colon (large intestine) mucosal immune system. The colon has a much higher bacterial 
load and a markedly different immune cell composition. The colon contains only crypts, no villi. Also 

Figure 1. (A) Small intestine mucosal immune system landscape. The intestinal epithelial cell (IEC)
layers form villi and crypt structures and are composed of different cell lineages. Goblet cells secrete
mucus. Paneth cells, found only in the small intestine, can be found at the base of the crypts and are
the main secretors of antimicrobial peptides. The base of the crypts also contains the IEC stem cell
populations. Immune cells can be found in organized tissue such as Peyer’s patches and throughout
the lamina propria. They include macrophages, dendritic cells, intra-epithelial lymphocytes, lamina
propria effector T cells, IgA secreting plasma cells, innate lymphoid cells and stromal cells such as
fibroblasts. Antigen presenting cells in Peyer’s patches or mesenteric lymph nodes interact with and
activate local lymphocytes, which consequently upregulate expression of the integrin α4β7. Such cells
then enter the systemic circulation but home towards the gut, in response to chemokine ligands such
as CCL25. (B) Colon (large intestine) mucosal immune system. The colon has a much higher bacterial
load and a markedly different immune cell composition.
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The colon contains only crypts, no villi. Also there are no Paneth cells, which mean that enterocytes
have a much more important contribution to antimicrobial peptide production. However, there is a
high prevalence of goblet cells. The mucus forms dual layers, with a thick largely sterile inner layer
and a thinner outer layer. There are no Peyer’s patches. While the immune cell types present are
similar to those found in the small intestine it is likely that there may be at least subtle differences.
In particular natural killer T cells are found more frequently and have a more significant role in the
colon. Adapted with permission from “Recent advances in inflammatory bowel disease: Mucosal
immune cells in intestinal inflammation” by Cader and Kaser, Gut 2013, 62, 1653–1664, BMJ Publishing
Group Limited [48].

Normally, there are roughly 1011~1014 enteric commensal microorganisms from 300~500 different
bacterial types [105,106]. These indigenous commensal bacteria play an important duty in defending
intestinal homeostasis which has essential impact crucial to nutrient provision, development
of the immune system, and regulation of energy metabolism [49,107]. Under certain acquired
circumstances these microorganisms can become harmful and can cause intestinal inflammation [108].
Iatrogenically, when patients are treated with a systemic antibiotic drug(s) two or even three times the
indigenous/commensal intestinal microbiota get lost and should rebuild to normalize and that could
take months. In a compromised luminal innate immune system mechanisms there are some indications
that commensal bacteria play crucial role in the developmental trigger of IBD. These include, (i) empiric
antibiotic therapy experiences has been satisfying in certain IBD patients [109], (ii) IBD patients have
enhanced concentrations against indigenous commensal bacteria [110], (iii) genetic deviants that are
consociated with bacterial spotting, such as NOD2 [111], and T cell immunity, such as IL23R, are
incriminated in IBD [112] and (iv) most animal model studies of colitis require commensal bacteria
for the initiation or trigger of intestinal inflammation [113]. In addition, recent observations have
concentrated on the benefaction of other enteric microorganism, such as viruses or fungi, for IBD
elaboration [114,115].

Intriguing observation on stem cell regenerative enrichment report by Marlicz et al. [116].
They observed that developmentally early cells, including hematopoietic stem progenitor cells (HSPCs),
mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like
stem cells (VSELs), were observed mobilized into circulating peripheral blood (PB) in CD patients
possibly in response to intestinal tissue injury [116,117]. The mobilized cells also expressed at the
mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium
accompanied by increased serum concentrations of VEGF and HGF. Therefore it was concluded that
CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of
these mobilized cells in repair of damaged intestine is still obscure and requires further studies.

4.3.1. Escherichia coli (AIEC)

A number of pathogens have been reported as possible causative microorganisms for
IBD establishment trigger. Current studies reveal Proteobacteria, especially adherent-invasive
Escherichia coli (AIEC), as one of the candidates. AIEC has been more frequently recognized in
patients diagnosed with CD as compared to control subjects [88,90,118]. AIEC is known to be able to
capture epithelium and clone within macrophage [119]. Some studies removed AIEC from the small
intestine of patients with CD (Crohn’s ileitis) [82,120]. Interestingly, AIEC was infrequently seen in the
colon tissue of CD (Crohn’s colitis) patients and was not recognized in UC patients [95], meaning that
AIEC performs a vital role in the event of inflammation [121].

4.3.2. Clostridium

Clostridium cluster XIVa and IV are crucial part of gut homeostasis through Treg cell accumulation
which is in contrast to AIEC, [122]. Foxp3+CD4+ Tregs are plenteous in the lamina propria of
the large intestine and are crucial immune-regulating cells [123]. Studies revealed that Treg cells
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were significantly contrived by ileal microbiota [124]. In particular, Treg cells stimulated by Cbir1,
a microbiota flagellin, induce IgA + B cells in the intestine. As a result, reduced pathogenic loading by
IgA leads to down-regulation of systemic Tcell activation [125]. A development murine quintessential
study with an escalated Clostridium XIVa/IV population was observed to be resistant to allergy and
intestinal inflammation [122]. Contrastingly, patients with IBD demonstrated a decreased Clostridium
XIVa/IV compared to that in non-IBD controls [78,86,126].

Observational studies of dysbiosis in IBD [127] and the disparities in host-microbe relationships
which play part to the extent, severity, and chronicity of intestinal inflammation led to efforts to
restore microbiota to a normal composition [128]. Further, a successful novel management approach in
patients suffering from IBD using fecal microbial transplantation (FMT) has been introduced [129,130].
One randomized control trial involving 75 UC cases demonstrated a significantly escalated remission
rate (24%) in individuals cases treated with FMT from unrelated/discrete donor enemas than that in
the placebo array (5%) [131]. In another randomized control trial with 48 UC cases yielded antagonistic
negative result [132]. To date, there are no randomized control trials contrasting FMT with placebo
management in CD population. However, a meta-analysis using four patient series data in 38 CD
patients unveiled a 60.5% pooled result rate [133]. It looks likely their outcome was not that of epithelial
remission but of clinical response. Consequently, the effectiveness of FMT as a therapeutic use for
IBD is still preliminary. Furthermore, optimal donor selection, delivery methods, and donor feces
processing, which are both critically important, have not yet been formalized and remain unsettled
to date. Probiotics are nutritional supplements that contain microorganisms that when consumed or
administered in the proper amount restores beneficial bacteria to the digestive tract and benefit the
host’s health. There has been trials made to manage IBD patients by improving intestinal microbial
balance through probiotics. In a pilot colitis model study, probiotics demonstrated an anti-inflammatory
outcome via TLR9 signaling [134]. In a recent meta-analysis study using 23 randomized controlled
trials demonstrated that administering of probiotics was seen to be associated with benefits concerning
induction and continuance of remission in patients suffering from UC but painstakingly not in cases
suffering from CD [135]. Obviously, these studies are vindicated to draw a concrete conclusion in terms
of the management sequels of probiotics in IBD. As IBD-related research advances, expounding of IBD
pathologies is accentuating and some of such advances are illustrated in Figure 2. With the opening
of the era of biologic and biosimilar agents, it has become realizable to anticipate deep sustainable
remission in IBD patients, unalike in the erstwhile; however, about one-third of sufferers painstakingly
still do not demonstrate clinical benefit to these modern agents. There are different new biologic
and biosimilar agents specific to IBD etiopathogenesis that are now surfacing and are under different
phases of clinical trials, Figure 3. With this advancement, more and more patients will likely benefit
from these new unfamiliar agents. Moreover, future IBD clinical settings should be used in terms of
patient-customized management, and it is expected greatly to shed light clinical practice to have a
feasible drug repertoire targeting different mechanisms of the disorder.
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Figure 2. Intestinal immune system. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; TGF, 
transforming growth factor; Th, helper T cell; Treg, regulatory T cell; TCR, T cell receptor; NF-κB, 
nuclear factor kappa-light-chain-enhancer of activated B cell; TLR, toll-like receptor; NOD, nucleotide 
oligomerization domain. Adapted with permission from “Pathogenesis of Inflammatory Bowel 
Disease and Recent Advances in Biologic Therapies” by Kim and Cheon, Immune Netw. 2017, 17, 25–
40 [46]. 

Figure 2. Intestinal immune system. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; TGF,
transforming growth factor; Th, helper T cell; Treg, regulatory T cell; TCR, T cell receptor; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cell; TLR, toll-like receptor; NOD, nucleotide
oligomerization domain. Adapted with permission from “Pathogenesis of Inflammatory Bowel Disease
and Recent Advances in Biologic Therapies” by Kim and Cheon, Immune Netw. 2017, 17, 25–40 [46].
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Figure 3. Biologics regarding therapeutic targets (black: showed benefits; violet: no benefits). APC, 
antigen presenting cell; IEC, intestinal epithelial cell; TNF, tumor necrosis factor; MHC, major 
histocompatibility complex; TCR, T cell receptor; JAK, Janus kinase; TGF, transforming growth factor; 
IL, interleukin; MAdCAM, mucosal vascular addressing cell adhesion molecule. Adapted with 
permission from “Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic 
Therapies” by Kim and Cheon, Immune Netw. 2017, 17, 25–40 [46]. 
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An environmental factor is an identifiable element in the cultural, demographic, physical, 
economic, technological environment, or political, regulatory that impacts the operations, survival 
and growth of an organization and/or institution in health and in disease [136]. IBD is believed to 
result from several interactions between genetic susceptibility and environmental agents that affect 
the normal intestinal indigenous/commensal flora to activate an inappropriate mucosal immune 
response [137]. Despite the fact that IBD susceptibility genes have been elucidated [138,139], similar 
developments in outlining environmental risk factors have lagged [140,141]. Numerous 
environmental risk factors have been investigated, including smoking, appendicitis, nutrition, 
cultural influences on diet, breastfeeding, infections/vaccinations, oral contraceptives, antibiotics, 
helminths, psychological stress, urban life style, air pollution and childhood hygiene, all portray 
shared vulnerabilities that could constitute risk for IBD [142–147]. Most of these factors construe the 
evident relationship between Westernization-urbanization culture and the risk of IBD trigger, as has 
been described in China and offspring of South Asian immigrants to the United States and Canada 
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in certain geographic regions. It will be meaningful to identify the role of these environmental 
influences/factors in IBD etiopathogenesis triggers [150]. 

Smoking has been reported to be associated with IBD risk, specifically CD [151,152] and is also 
reported to be associated with increased intestinal permeability [153], but what remains vague is 
whether the influence is mediated through the gut microbiome [154]. It also not known whether 
secondary smoke exposure can increase risk of IBD onset. A meta-analysis study did not identify a 

Figure 3. Biologics regarding therapeutic targets (black: showed benefits; violet: no benefits). APC,
antigen presenting cell; IEC, intestinal epithelial cell; TNF, tumor necrosis factor; MHC, major
histocompatibility complex; TCR, T cell receptor; JAK, Janus kinase; TGF, transforming growth
factor; IL, interleukin; MAdCAM, mucosal vascular addressing cell adhesion molecule. Adapted
with permission from “Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic
Therapies” by Kim and Cheon, Immune Netw. 2017, 17, 25–40 [46].

4.4. Environmental Factors

An environmental factor is an identifiable element in the cultural, demographic, physical,
economic, technological environment, or political, regulatory that impacts the operations, survival
and growth of an organization and/or institution in health and in disease [136]. IBD is believed to
result from several interactions between genetic susceptibility and environmental agents that affect
the normal intestinal indigenous/commensal flora to activate an inappropriate mucosal immune
response [137]. Despite the fact that IBD susceptibility genes have been elucidated [138,139], similar
developments in outlining environmental risk factors have lagged [140,141]. Numerous environmental
risk factors have been investigated, including smoking, appendicitis, nutrition, cultural influences on
diet, breastfeeding, infections/vaccinations, oral contraceptives, antibiotics, helminths, psychological
stress, urban life style, air pollution and childhood hygiene, all portray shared vulnerabilities that
could constitute risk for IBD [142–147]. Most of these factors construe the evident relationship
between Westernization-urbanization culture and the risk of IBD trigger, as has been described
in China and offspring of South Asian immigrants to the United States and Canada [10] and/or
United Kingdom [148,149]. These surveillances again raise the issue of how vivid culture influences,
such as diet, regulating and/or adjusting the risk of IBD in certain ethnic communities and in certain
geographic regions. It will be meaningful to identify the role of these environmental influences/factors
in IBD etiopathogenesis triggers [150].

Smoking has been reported to be associated with IBD risk, specifically CD [151,152] and is also
reported to be associated with increased intestinal permeability [153], but what remains vague is
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whether the influence is mediated through the gut microbiome [154]. It also not known whether
secondary smoke exposure can increase risk of IBD onset. A meta-analysis study did not identify a
relationship between childhood passive-smoke vulnerability and CD [155]; although, additional recent
studies have opposite observational results, thus the influence of secondary smoke on IBD assault
warrants further investigational studies [156–158].

In humans, psychological stress has been observed to play a significant role in the etiopathogenesis
of IBD due to the chronic, relapsing, and remitting nature of this condition [146,147]. The commonly
seen chronic and acute stress in these pathologies do alter immune function [142]. Results from
experimental studies have been conflicting, with observations endorsing both positive and null
connections [146,147]. However, due to the retrospective nature of these studies, recall bias may
have influenced the results [142]. Evidence from animal model studies demonstrates that chronic
psychological stress may exacerbate IBD by upgrading damage to the gut luminal epithelium, thereby
disrupting barrier function [159,160].

Clearly, the environmental risk factors that have been recognized have not nailed down the
etiopathogenesis of the “Colitides” to date [161]. These factors mentioned herewith, have been
implicated in the increased global incidence of IBD [161,162]. However, even the most conflictingly
substantiated environmental risk factor such as smoking is seen to contribute only partially to disease
etiopathogenesis. We now know that most people with smoking habits do not have CD and most
patients diagnosed with CD are not smokers [161,162]. Agreeably thus, more studies are warranted to
better elucidate the environmental determinants of IBD [161,162].

4.5. Immune Response

In Colitides, the immune defense against intestinal microbes’ compromises in two different
levels [163]: (i) the impairment of epithelial mucosal barrier and (ii) the altered innate and
adaptive/acquired host immune responses. The immunopathogenesis of IBD may occur in three
distinct stages [163]: (i) penetration of luminal inner contents into amenable tissues which may be
facilitated by environmental components such as inherent defects in epithelial barrier or infection,
(ii) defective secretion of pro-inflammatory cytokines by macrophages due to compromised clearance of
foreign materials from the gut wall and (iii) a compensatory acquired/adaptive immune reaction which
results to a chronic inflammatory reaction and gives rise to distinctive IBD abrasions. Briefly, chronic
improper activation of the acquired immune system against indigenous commensal microorganism
has been observed to be the main etiopathogenesis of IBD [46]. During the process there is increase
secretion of IFN-γ from Th1 cells and cytokines associated with Th17 cell, such as IL-17A/F, IL-21,
IL-22, and CXCL8, are seen in the intestine of CD cases, while T cells from the lamina propria of UC
patients’ significantly produce Th2 cell-associated cytokines, such as IL-5 and IL-13 [48,164,165].

Recently, IL-9-secreting Th9 cells are known to be involved in the pathogenesis of IBD [166].
However, the role of Th9 cells and their secretory cytokine IL-9 in IBD is poorly elucidated and studies
on its functional importance in IBD are underway. Clearly, studying the actual role and mechanisms
of different T helper cell subsets including Th9 cells in IBD is critical to develop novel IBD therapies.
An understanding of the mechanisms that employed by Th9 cells and IL-9 to cause IBD could help
contemplate potential targets for the treatment of Th9 cell-mediated IBD.

Conservatively, immune-modulating management of IBD have aligned on acquired/adaptive
immunity [167–169]. The NOD2 gene was the first susceptibility gene established within the IBD 1
locus for CD. Subsequently, over 230 genetic risk loci have been identified with IBD and yet NOD2
remains the most robust/powerful association to date [77].

4.6. Urbanization

Urbanization is a multidimensional undertaking that manifests as rapidly changing population
characteristics and land cover [170]. The rapid urbanization has been observed to correlate
with an increasing incidence and prevalence of IBD [4,14]. In the past six decades, IBD has
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recognized as a rapidly evolving challenge in previously low incidence countries, especially
in recently urbanize-industrialized nations, including Africa, Asia, the Middle East and
South America [4,16,171–175]. The emergence of IBD in these countries, which are undergoing
rapid modernization and urbanization, resembles patterns that were seen in the Western world
during the early 20th century, with the upsizing prevalence of UC preceding that of CD in urban
areas [10,176]. A meta-analysis of 40 multipronged studies investigating the association between
urban environment and IBD observed that the pooled incidence rate ratios (IRRs) for urban vs.
rural environments were 1.17 (95% CI 1.03–1.32) and 1.42 (95% CI 1.26–1.60) for UC and CD,
respectively [177]. This suggests a bond between urbanization and the incidence of IBD. The relative
risk in the urban areas is reported to be 1.3 versus countryside [177]. The effects of swift urbanization
are likely to be reflected in the human intestinal microbiome that we herewith discussed earlier
(Section 4.2), and alterations in the gut microbiome have been reported to be associated with IBD
incidences [178]. The role of the gut bacterial microbiome in human health and diseases has been
herewith extensively presented [179,180]. Additional studies have outlined that inhabitants residing
in non-Western and/or rural areas have a higher bacterial diversity when compared with populations
in the Western nations such as United States, Canada and Europe [181–184]. The fecal microbiota of
children from a rural African villages, e.g., of Burkina Faso, who mostly eat a diet high in fibre [185],
is similar to that of the microbiome of early human settlement at the time of the birth [181]. Children
from Burkina Faso demonstrate a significant (p < 0.001) enhancement of Bacteroidetes and a reduction
of Formicates compared with children from the urban locations, e.g., of Florence, Italy, with a unique
plenteous of bacteria from the genera Prevotella and Xylanibacter, which are recgnized to contain a
set of bacterial genes for cellulose and xylan hydrolysis. These bacteria were totally lacking in the
15 European country children studied [181]. Corresponding observations have been seen in children
and adults in Malawi, Amazonian American Indians [183] and adult Hadza hunter-gatherers in
mainland Tanzania [182]. The Hadza of Tanzania, in Eastern Africa, despite human civilization, are one
of the very few societies in the world who still live by hunting and gathering [182]. These studies
have shown that urbanization is consociated with an upsizing proportion of Bacteroides, Alistipes
(Bacteroidetes), Balautia, Faecalibacterium, Ruminococcus (Formicates) Bifidobacterium (Actinobacteria)
and Bilophila (Proteobacteria), whereas Prevotella (Bacteroidetes) is significantly elevated in the gut
microbiota of individuals residing in non-industrialized communities [181–183].

Studies comparing the rural and urban microbiome within a population of homogeneous
ethnicity is a scarcity [185]. In one study comparing the fecal microbiota composition of African
descendants residing in rural, semi-urban communities with those settling in urban locations,
substantial dissimilarities were observed, with Prevotella predominating in semi-urban individuals
and Bacteroides predominating in urban African Americans [186]. These observations indicate that the
intestinal microbiota content contrasts between genetically similar populations living in diverse
communities, such as rural vs. urban. Comparison of the fecal microbiota of elderly persons
residing in rural and urban areas in Japan demonstarted that individuals living in Yuzurihara
(a rural village) had a larger number of bifidobacteria, whereas larger proportions of bacilli and
lecithinase-positive clostridia were found in residents of Tokyo [187]. An underway countrywide
study of IBD incidence in Asia shows that Inner Mongolia has a low IBD incidence than other
regions [185]. Microbial profiling of Inner Mongolia residents indicates that the high-level presence of
Phascolarctobacterium, Lactobacillus and Bifidobacterium might be associated to a pasturing lifestyle and a
diary diet. Lactobacillus helvetucus is oftentimes found in individuals from every rural pasturing area in
Inner Mongolia but not in Mongolians living in Hohhot city (urban), indicating that diet affects the
intestine luminal microbial composition of Mongolians [188]. A Russian study [189] demonstrated
that microbial communities from inhabitants in rural areas had a 2.6-fold increase in the frequency of
new microbial community structures distinct from the common three enterotypes [190] compared with
the microbial communities of urban hosts. The predominant microbial populations in rural inhabitants
were from the Formicates and Actinobacteria phyla. These bacterial communities are accommodated
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by the consumption of starch-rich bread and potatoes, typical staple foods utilized in rural Russia,
and natural foods that are available to low-income socioeconomic communities from their household
gardens [189,191]. Correspondent with the theory of vanishing microbiota and its relation with the
emergence of autoimmune and chronic GI disorders [192], the constantly witnessed loss of microbiota
affluent and diversity during urbanization might largely account for the upsizing in IBD incidence.
These experimental and observational studies were mostly based on 16S ribosomal RNA (rRNA)
gene sequencing [185]. All-in-all, an in-depth understanding of rural vs. urban intestinal bacterial
species or strains and their functions in IBD etiopathogenesis is largely still lacking warranting more
experimental studies.

Indisputably, an air contamination is taking place in parallel with urbanization [170,193], and it
is thought to have significant detrimental effect on a wide range of public health issues, including
IBD [143,194]. Persistently long-term exposure to a high concentration of nitrogen dioxide pollution
and particulate matters has been reported to be related with an escalated risk of early-onset of CD,
indicating a linear increase proportional to high concentrations of pollutants [143]. Other forms of
inhaled environmental exposures observed to promote the susceptibility to IBD via alteration of the
intestinal microbiota are herewith in-depth discussed [195–220].

4.7. Dietary/Nutrition

Intestinal mucosal microbiota composition is dependently influenced and modified by
diet [221,222]. According to the IBD-EPIC (IBD European Prospective Cohort) Study, several dietary
factors have been found to be related with IBD onset [223–226]. Milk and milk product consumption
was observed to be potentially related with a low risk of developing CD (p = 0.23) but not for with
UC (p = 0.60) [224], whereas a role of flavones (C15H10O2) and resveratrol (C14H12O3) in the risk
of triggering CD was also shown [225]. The IBD-EPIC study results also indicate dietary role for
linoleic acid in the etiopathogenesis of UC [225]. According to this calculated study cohort, overweight,
as measured by BMI (body mass index), was observed not consociated with the etiopathogenesis of
either UC or CD, respectively [226]. Altogether, total fiber consumption from vegetables, cereals or
fruits, and the ensuing evolution of either CD or UC were found not consociated [223]. Nonetheless, it is
acknowledged that most of these studies are grounded on food intake frequentness questionnaire data
that may have significant boundaries/limitations [227]. There is an indisputable evidence indicating a
role for diet, particularly among genetically susceptible individuals and the development of IBD [44].
In addition, data from animal model studies demonstrate that dietary change and/or modification
impacts the risk of IBD [44]. More studies report to have seen affirmation suggesting that artificial
sweeteners such as saccharin, sucralose, acesulfame potassium (ace K) and cyclamate may have
played causative role in the pathogenesis of IBD [228–230]. These sweeteners are observed to be
distinctive by high stability with little metabolism by the body and long-lasting in the environment
but high inhibitory effect on bacteria [231]. In one EPIC (European Prospective Investigation into
cancer and Nutrition) demonstrated that a dietary pattern obtaining of high intake of sugar and
sweetened beverages and low consumption of vegetables is linked with elevated hazard of UC
(incidence rate ratios for the fifth vs. first quintile, 1.68 [1.00–2.82]; Ptrend = 0.02) [228]. In contrast,
a recent sizable prospective cohort study from Scandinavian demonstrated no corroborations between
consumption of sweetened beverage and subsequent endangered CD or UC [232]. The study
established 143 incident cases of CD (incidence rate = 11 cases/100,000 persons-years) and 349 incidence
cases of UC (incidence rate = 28 cases/100,000 person-years) over 1,264,345 person-years of follow
up. Consumption of sweetened beverages does not appear to increase endanger of CD (Ptrend = 0.34)
or UC (Ptrend = 0.40) [232]. Compared to participants who reported no consumption of sweetened
beverage, the calculated multivariable-adjusted HRs for 1 or more consumptions per day were 1.02 for
CD (95% CI, 0.60–1.73) and 1.14 for UC (95% CI, 0.83–157), respectively. The association between
consumption of sugar-sweetened beverages and risk of CD or UC were not modified by age, sex
(cohort), body mass index, or smoking (all Pinteraction ≥ 0.12) [232].
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Gene-environmental studies on the interrelationship between environmental factors and
genetic variant in functionally annotated genes have largely been encouraged to assist infer causal
affiliation [233] to shed light into potential biological mechanistic pathways through which an
environmental component such as diet might shed light to the aetiopathogenesis of IBD. Genetic loci
related with IBD risk can be widely designated into those involving the innate and/or acquired
immune response anomalies and mucosal barrier functional event [234]. Experimental studies also
show that a number of these pathways are impacted by nutritional/dietary factors [235]. Thus, it
is biologically creditable that special and/or specific dietary ingredients have unique differential
outcomes on the incidence of IBD, coinciding with the genetic background of every individual per sig.

Introductory analyses of gene-environmental interplay in studies involving dietary factors in
IBD have been increasingly promising [236–239]. A study from the NHS and NHSII, which involved
169 patients with CD and 202 cases with UC matched to 740 participants as control, analyzed the
reciprocal action between total dietary consumption of iron and heam iron and genetic variants related
with risk factors of IBD [240]. This analysis illustrated a relationship between iron and haem iron
consumption and the UC vulnerability locus rs1801274, a coding variant in the ECGR2A (which
encodes the low affection immunoglobulin-γ Fc location receptor IIa) gene. Peculiarly, among females
with the GG genotype, low haem iron consumption was linked with a consequentially reduced
risk of UC (or 0.11, 95% CI 0.03–0.37 for each 1g increase in heam iron consumption. In contrast,
increasing haem iron consumption was correlated with an almost threefold elevated risk of UC
among females with the TT genotype (OR 2.26, 95% CI 1.02–7.48). Owing to the important role of
FCGR2A in controlling humoral reaction to infection [241] and the known importance of the rs1801274
variant in changing the binding volume capacity of the encoded protein product of C-reactive protein
(CRP) and immunoglobulin G2 (IgG2) [242–244], these results offer supportive attestation for an
interesting interplay between dietary haem consumption and immune physiological function in the
etiopathogenesis of UC.

In an identical population, in a NCC (nested case-control) study of 202 cases with UC and
169 patients with CD in the NHS and NHSII cohorts matched to 740 participants as control based on age,
menopausal situation, period of blood withdrawal collection and fasting status, an interplay between
dietary potassium consumption and genetic variants in the IL-23 pathway that have been previously
related with risk of IBD in GWAS was identified [234,236]. Particularly, the rs7657746 variant of IL21
(which encodes IL-21) appeared to modify the relationship between potassium consumption and risk
of IBD pathogenesis. Each additional 200 mg more in dietary potassium consumption was inversely
consociated with risk of UC (OR 0.90, 95% CI 0.82–0.98) among participants with the AA genotype, but
not among those with the AG or GG genotypes. Similar observations were reported in cases with CD
in the study. As IL-21 play a key developmental role of TH17 cells through signal transducer and driver
of transcription 3 (STAT3), a transcription factor needed for the differentiation of TH17 cells in vivo,
the results from gene-environment interaction studies indicate an existence of a potential mechanism
for the identified relationship [245]. IL-21 and IL-23 induced expression of the nuclear receptor RORγ
(also known as RORC), which, in synergy with STAT3, upstairs IL-17 expression in CD4+ T cells,
leading to the activation of TH17 cells [245]. In addition, IL-21 hinders the transforming growth
factors-β (TGFβ)-dependent generation of FOXP3+ Treg cells and catalyzes TH17 cells activation [246].
Intriguingly, the gen-environment interplay finding was encouraged further supported by in vitro
studies showing that potassium generates FOXP3 expression in naïve and memory T cells and in
pro-inflammatory TH17 cells. This effect was noted even in the presence of pro-inflammatory cytokine,
indicating that potassium curbs inflammation in a pro-inflammatory milieu.

Chassaing et al., reported in animal model that, relatively list content of emulsifiers, such as
carboxymethylcellulose and polysorbate-80, caused low-grade inflammation and obesity/metabolic
syndrome in WT hosts and incubated robust colitis in mice predisposed to this gastrointestinal
disorder [247]. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment,
altered species composition, and increased pro-inflammatory potential. Use of germ-free mice and
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fecal transplants demonstrated that such alterations in microbiota were essential and enough for both
low-grade inflammation and metabolic syndrome. These observations support the emerging idea that
perturbed host-microbiota associations resulting in low-grade inflammation can increase adiposity
and its associated metabolic effects. Moreover, they suggest that broad use of emulsifying agents
might be contributing to increased societal incidence of obesity/metabolic syndrome and other chronic
inflammatory diseases such as IBD.

Finally, studies from the NHS and NHSII have vividly indicated that two variants in CYP4F3,
which encodes the cytochrome P40 4F3 enzyme (CYP4F3) elaborated in PUFA metabolism, might
modify the relation between n-3 and n-6 PUFA intake and risk of UC [238]. Potentially, the relation
between n-3:n-6 PUFA intake ratio and UC was modified by rs4646904 single nucleotide polymorphism
(SNP) in CYP4F3 (Pinteraction = 0.049). A high (greater than or equal to the medium) n-3:n-6 PUFA
intake ratio was related with a lower risk of UC among women with the GG or AG genotypes (OR 0.57,
95% CI 0.32–0.99), but not among those with the AA genotype (OR 0.95, 95% CI 0.47–193). Identical
observations were also reported earlier in a pediatric case-control study with newly diagnosed CD [239],
suggesting that the interaction is indeed robust.

4.8. Role of miRNA in IBD trigger

Advances in the field of miRNA (microRNA) research technology is speedily expanding [246] and
are strongly associated in the etiopathogenesis of IBD, having an important role in the development,
regulation and differentiation of both the innate and acquired/adaptive immune system [248].
A number of studies have demonstrated a differential expression of miRNA in tissue and blood
samples from cases suffering from IBD compared with normal/healthy controls, indicating that
miRNAs may be shortlisted not only in the development of immune system component but as
new candidate biomarkers of these disorders [249]. Due to the fact that CD and UC differ in their
clinical presentations, genetic consociations, gene expression patterns, and immune reactions, differing
miRNA profiles are anticipated for these two IBD pathologies. It is now been realized that CD and
UC patients have unique miRNA expression profiles in their target organs. Not surprising that while
some uniquely expressed miRNA are commonly routine to other immune-related disorders, most are
different. Further, studies have demonstrated peculiar miRNA expression profile bio-fingerprints in
IBD and preliminary operational analyses relate these deregulated miRNA to canonical pathways
related with IBD etiopathogenesis [250]. In order to elucidate precision roles of miRNAs is the human
context more studies are required despite current promising to advance understanding of miRNAs in
the pathogenesis and diagnosis of IBD which may be useful for the development of miRNA-based
therapies [251].

In recent years, blood-derived microparticle biochemical peptides have become invaluable for
IBD monitoring and more frequently used as surrogate markers of intestinal inflammation. Emerging
concepts that revolve around measurement of cell-derived microvesicles (MVs) in the circulating
blood vascular bed of IBD patients is another emerging advances advantageous in future disease
understanding and management. Extracellular microvesicles (ExMVs) are part of the cell secretome
baroque in chronic autoimmune diseases, such as IBD. ExMVs capture functional RNA species and
proteins from one cell to another, an observation that paved up the new way to the new field of research
of bioactive molecules in cell-to-cell communications [252–254]. This observation disclosed up the gates
to novel idea, in which the presence of mRNA, noncoding RNA, and miRNA in ExMVs in blood and
other biological body fluids gave the possibility of employing ExMVs as new fingerprint biomarkers
for pathological disorders. Subsequently, ExMVs has become a target for “liquid biopsy” strategies.
Tziatzios et al. [255] observed that circulating levels of platelet derived microparticles (PDMPs) were
enhanced in CD patients but did not correlate with disease activity. 5-ASA treatment was associated
with lower levels of PDMPs, while anti-TNF-α treatment did not influence expression of ExMVs in
IBD patients. Similarly, circulating PDMPs were increased in IBD patients with active disease.
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5. Clinical Diagnosis

Currently, “Diagnostic Gold Standard” test for IBD does not existent. Also, there is no accurate
tools to predict whether a patient with newly diagnosed IBD will progress to complications of disease
before and after colectomy for UC or indeterminate colitis such as cancer, pouchits, cufittis or fistulae,
structuring and penetrating complications in de novo CD. In the IBD clinical setting, clinicians use
state-of-the-art criteria, yet engage in invasive and inexact testing classification systems such as
endoscopy (gastroscopy and colonoscopy), radiologic imaging, and histopathology to diagnose IBD
patients, resulting to a substantial number of incorrect or delayed diagnosis [256–260]. It is possible that
early accurate diagnosis and timely treatment could improve outcomes for those high-risk patients [13].
Even with a combination of recommended state-of-the-art diagnostic system modalities IBD patients
cannot be accurately diagnosed. Up to 15% of colonic IBD cases are classified as “indeterminate colitis
(IC)” because the established criteria for UC and CC are non-definitive [257,261,262]. In addition,
another 15% of colonic IBD cases that are prescribed pouch surgery (restorative proctocolectomy (RPC)
with ileal pouch-anal anastomosis (IPAA), which are standard surgical procedures for treating UC
or IC predicted as UC, are in fact CC cases. Therefore, a total of 30% of colonic IBD patients are
not diagnosed accurately [258–260]. For these reasons, efforts at identifying accurate, noninvasive
biomarkers have been undertaken [263–265]. Another really challenge is a significant subgroup of
IBD patients, especially UC patients undergoing proctocolectomy that convert to de novo Crohn’s,
are thought to be “misdiagnosed” [265]. This may not be accurate because there is a possibility that
these patients with UC were “transformed” due to an altered microbiome ecology in the pouch and
immune environment and that the patient actually “convert”. Since there is significant overlap between
disease-associated genes, it is possible that disease phenotype may change within a given individual.
More elucidation studies are needed in this area.

A recent breakthrough finding that Paneth cell specific peptide “Human alpha-defensin 5
(DEFA5)” delineate colonic IBD (CC versus UC) may solve diagnostic dilemma in IBD clinical
settings [265]. Detection of DEFA5 more accurately circumvented the IC cases into UC or CC phenotype
and identified CC cases initially treated as UC cases [265]. Among patients with IC, DEFA5 is a reliable
delineator with a positive predictive value of 96 percent [265]. The distinction between UC and
CC is of utmost importance when prescribing a patient’s candidacy for pouch surgery, RPC and
IPAA [40,266,267].

6. Management and Challenges

As discussed on Section 4.3, persons suffering from IBD are frequent users of the healthcare
system, with an annual frequency of hospitalization exceeding 20 percent [32]. Studies from the
United States economic implications report of IBD, showed in 2014, that CD and UC were related
with annual direct and indirect costs ranging between US $14.6 and $31.6 billion [268]. Costs include
invasive endoscopic and radiologic procedures for diagnostics and management decisions, as well
as medications, hospitalizations, and surgical interventions [269]. Further costs accrue to community
in loss of productivity and disability of impacted patients with deprived quality of life. While a
noninvasive, easier, accurate and fast screening diagnostics tool is needed to downsize costs and
burden of disease [265] the unmet need for noninvasive markers has outpaced the evidence. Thus, IBD
is indeed expensive to treat and manage [270]. Due to an incomparable infrastructural gape in terms of
access to care between developing vs. developed nations and the uneven representation of IBD across
socioeconomic strata, a serious plan is required in the developing countries concerning how to tackle
this emerging human health challenge [4,137].

There are significant advances in genetic and immunologic analytical technologies and as a result
new therapeutic approached are now in place that accurately target the mechanistic pathways of
IBD [46]. Apart from conventional immune-suppressive treatment, the evolution of biological and
biosimilar agents that are target specific has lead in more frequent and deeper remission in the IBD
patients, with mucosal healing as a therapeutic goal. In not too distant future, targeted novel biologic
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and biosimilar agents should defeat the obstacles of customary treatments and ensure that each patient
can be managed with optimal medications that are nontoxic and precisely target IBD. These drugs are
unfortunately the quickest-cultivating partition of the prescription drug market in the West as is IBD in
the developing countries [4]. The healthcare system, and certainly the patients, in developing nations
will struggle and will not be able to afford such costly managements which will lead into a series of
events that are life threatening in terms of health, safety or well-being of large group of people.

Fecal microbiota transplantation (FMT) is emerging advances as a novel approach to therapy
for UC. However, the interpretation of efficacy of FMT for UC is disputably complicated based on
various study contentions, FMT administration procedures, intensity of therapy (dose) and donor stool
processing methodologies. In a systemic review with meta-analysis including randomized controlled
trials (RCTs), Costello et al. reported that despite variation in stool processes, FMT appears to be
effective for induction of remission in UC patients, with no major short-term safety signals [271].
However, further elucidative observational studies are required to better define, establish, and
verify dose frequency and preparation methods, and to explore its feasibility, efficacy and safety
as a maintenance agent.
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