
Article

Bifidobacteria and Mucosal-Associated Invariant T
(MAIT) Cells: A New Approach to Colorectal
Cancer Prevention?

Hüseyin Sancar Bozkurt 1,* and Eamonn M. M. Quigley 2

1 Clinic of Gastroenterology, Medical Faculty Internal Medicine, Maltepe University, Maltepe 34843, Turkey
2 Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders,

Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX 77062, USA;
equigley@houstonmethodist.org

* Correspondence: sancarb79@gmail.com; Tel.: +90-009-050-5448-2291

Received: 19 April 2019; Accepted: 20 May 2019; Published: 31 May 2019
����������
�������

Abstract: Colorectal cancer is the most preventable form of cancer worldwide. The pathogenesis of
colorectal cancer includes gut inflammation, genetic and microbial composition factors. İmpairment of
the gut microbiota has been associated with development of colorectal cancer. The genus Bifidobacterium
is an important component of the commensal gut microbiota. Bifidobacteria are considered to
have important roles in several homeostatic functions: immunologic, hormonal and metabolic.
Mucosal-associated invariant T cells (MAIT) are components of the immune system involved in
protection against infectious pathogens and regulate the pathogenesis of various inflammatory
diseases and, potentially, colorectal cancer. Engagement between Bifidobacterium and MAIT cells
could exert a beneficial effect on colorectal cancer prevention and treatment.
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1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second
in females around the world. Approximately 1.8 million new cases of CRC were diagnosed in 2018
and accounted for approximately eight percent of all cancer deaths [1]. The incidence and mortality
rates vary markedly worldwide. The commensal gut microbiota plays important roles on various
systemic functions which include modulation of the immune system, modulation of neuro-hormonal
activity, gut barrier and epithelial integrity. Immune dysregulation, dysbiosis and epithelial disruption
contribute to carcinogenesis in CRC. Of these, the development of inflammation and alterations in the
colonic microbiota are the two factors most closely associated with progression to CRC [2–4].

2. Bifidobacteria and Gut Inflammation

The human gut microbiota includes commensal, symbiotic, and harmful bacterial composition [5,6].
It was demonstrated that colon microbiota has anti-inflammatory and anti-oncogenic features and
contributes to the immune, neuroendocrine, and metabolic homeostasis of the host [7,8]. The genus
Bifidobacterium comprises Gram-positive, non-motile, often branched anaerobic bacteria and belongs
to the phylum Actinobacteria [9]. Bifidobacteria are one of the dominant species in the human gut
microbiota and are frequently used as probiotics [10]. Bifidobacterium species have immunological,
neurohormonal, and anti-inflammatory effects (Figures 1 and 2) [9,11–14]. B. animalis subsp. lactis
exerts the highest level of intracellular hydrogen peroxide resistance among Bifidobacteria and could,
thereby, provide protection against reactive oxygen species [15]. Previous studies have reported
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that Bifidobacteria differ from other colonic bacteria in their role in carbohydrate metabolism [9,16].
Bifidobacteria use the fructose-6-phosphate phosphoketolase pathway to ferment oligosaccharides and
indigestible oligosaccharides ingested by the host are converted into short chain fatty acids (SCFAs),
such as butyrate, propionate, and acetate which provide beneficial effects on gut immunity and
inflammation [17]. Bifidobacteria are the main sources of SCFAs production, and they are used as
probiotic ingredients in many foods [18,19].
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Reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) [20,21]. 
Bifidobacteria are able to protect against intestinal epithelial cell injury and this protection is 
independent of their effects on tumor necrosis factor alpha (TNF-α) production [20]. The 
exopolysaccharide (EPS) which is a feature of Bifidobacteria has been shown to play a significant role 
in this protective effect [22]. Bifidobacteria may also reduce cell injury as a direct result of inhibiting 
TNF-α and macrophages [20]. Also, Bifidobacteria increase regulatory T cell (Tregs) responses and, 
additionally, increase the anti-inflammatory cytokine interleukin-10 (IL-10) in IBD tissue [23]. In an 
experimental model of IBD, B. breve ameliorated dextran sodium sulfate (DSS)-induced colitis. This 
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From Hüseyin S. Bozkurt. 2019 [8] with permissions from Elsevier, Copyright 2019.
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Figure 2. Mucosal healing (right) within one month after a single intracolonic application of 120 billion
colony-forming units (CFUs) of Bifidobacterium animalis sp. lactis in unresponsive solitary rectal ulcer
syndrome (left). From Hüseyin S. Bozkurt. 2019 [8] with permissions from Elsevier, Copyright 2019.

Reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) [20,21].
Bifidobacteria are able to protect against intestinal epithelial cell injury and this protection is independent
of their effects on tumor necrosis factor alpha (TNF-α) production [20]. The exopolysaccharide (EPS)
which is a feature of Bifidobacteria has been shown to play a significant role in this protective effect [22].
Bifidobacteria may also reduce cell injury as a direct result of inhibiting TNF-α and macrophages [20].
Also, Bifidobacteria increase regulatory T cell (Tregs) responses and, additionally, increase production of
the anti-inflammatory cytokine interleukin-10 (IL-10) in IBD tissue [23]. In an experimental model of
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IBD, B. breve ameliorated dextran sodium sulfate (DSS)-induced colitis. This was linked to increases in
Tregs and decreases in CD4+ IL-17+ cells in Peyer’s patches of DSS-induced colitis [24].

3. MAIT Cells and Gut Inflammation

Mucosal-associated invariant T (MAIT) cells are innate human T cells included in antibacterial
immunity. MAIT cells contain a T cell receptor (TCR) which has an invariant Vα7.2-Jα33 TCRα
chain, and recognizes vitamin B precursors derived from microbial synthesis of riboflavin presented
by the major histocompatibility complex (MHC) related 1 (MR1) [25,26]. Human MAIT cells are
found in the lamina propria and other mucosal surfaces. MAIT cells are most abundant in the
human gut lamina propria and associated organs, such as lymph nodes and the liver, also they can
be found in peripheral blood (8% of all human T cells) [27]. MAIT cells were found to produce the
Th1-related cytokines—interferon-gamma (IFN-γ) and TNF-α [28]. MAIT cells are stimulated by
antigen-presenting cells infected by various species of bacteria. This stimulation requires the interaction
between the invariant TCR and MR1; in this way, the activation of MAIT cells depends on the presence
of the microbial flora. Previous studies have shown that MAIT cells might be implicated in IBD and
CRC [29,30]. The expression of TCRVα7.2 has been found to increase in inflamed colon tissue, while it
has been shown to decrease in blood samples of IBD patients [31].

4. Bifidobacteria and Colon Cancer

Colonic epithelial inflammation is an important promoting factor in the development of
colitis-related CRC. Gut inflammation occurs after mucosal invasion by colonic bacteria [32]. Later,
persistent immune dysregulation and neoplastic changes arise in the colon mucosa. Chung et al.
showed that Bacteroides fragilis promotes a pro-carcinogenic, inflammatory cascade that requires IL-17R
and includes nuclear factor (NF)-κB signaling in colonic epithelial cells in the context of intestinal
dysbiosis [33]. İnvaded the protective mucus layer of the colon by the pathogenic bacteria causes colonic
instability and DNA damage begins with neoplastic change accompanying chronic inflammation [34].
It was demonstrated that Bifidobacterium breve reduces the expression of IL-17(Th17) and IL-23, which
play an important role in development of IBD [35]. Schroeder et al. [36] reported that Bifidobacterium
longum promotes mucosal layer integrity and restore the dysbiosis. Also, it has been shown that
when colonic permeability is decreased, enhancement of the epithelial mucus layer is increased in the
presence of an intact colonic bacterial composition [36]. Butyrate has strong anti-inflammatory and
anti-tumor effects and Bifidobacteria are considered the main source of butyrate production and [37].
İt was shown that a higher diversity of butyrate-producing bacteria are found in stools of native
Africans with low CRC risk as compared to Afro-Americans with a higher risk [38]. Also, it was
determined that butyrate inhibits CRC cell proliferation and promotes differentiation and apoptosis of
CRC cells [39]. Higher levels of butyrate production reduces the incidence of carcinogen-induced colon
tumors. Free fatty acid receptor 2 (Ffar2) is a receptor for SCFAs and Ffar2 is downregulated in human
colon cancers [40]. Sivaprakasam et al. reported that that the administration of Bifidobacterium reduces
intestinal inflammation and carcinogenesis in Ffar2−/− mice [40]. Butyrate may play an important role
in oncogenesis, genomic instability, inflammation, and colon cell energy metabolism.

5. Bifidobacteria and MAIT Cells in Colon Cancer

MAIT cells are stimulated in IBD, and their accumulation in inflamed colon mucosa correlates
with IBD activity. Kentaro et al. reported that the numbers of MAIT cells were significantly lower in the
peripheral blood and significantly higher in inflamed colon tissue of IBD patients compared to healthy
controls [29]. They used immunohistochemistry to examine MAIT cells in the inflamed mucosa of
IBD patients and the normal mucosa of colon cancer patients. They showed that surgically resected
colon specimens of patients with ulcerative colitis (UC) and colon cancer stained for anti-TCR-Vα7.2
antibodies. According to their findings, an accumulation of MAIT cells in the inflamed mucosa
correlated with their decrease in the peripheral blood of IBD patients with more active disease.
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Shaler et al. [41] found that CD3ε+Vα7.2+CD161++ MAIT cells infiltrated hepatic metastases
in patients with colorectal carcinoma. Mansour Haeryfar et al. [42] hypothesized that MAIT cells
could constitute attractive targets for cancer immunotherapy. Activated circulating MAIT cells from
CRC patients promoted the production of IL-17 [43]. IL-17 could promote angiogenesis and cancer
progression in CRC [43]. CRC usually disrupts mucosal homeostasis and barrier function. CRC
development and progression depend on the interaction in the microenvironment around the tumor
between neoplasia, pathogens, and tumor-infiltrating MAIT cells [44]. Arthur et al. reported that
intestinal inflammation promoted by MAIT cells can alter the prognosis for the tumor and microbial
composition [45,46]. They demonstrated that microbial composition modulates the progression of
colitis-associated CRC using the colitis-susceptible Il10−/− mouse strain [45,47] and they also reported
that inflammation, rather than cancer, was related to colonic microbial shifts. MAIT cells can affect
clinical outcome and survival of CRC patients [48]. Tosolini et al. [48] showed that diagnosed with high
expression of the Th17 (IL-17) cluster had a poor prognosis, whereas patients with high expression
of the Th1 cluster had prolonged disease-free survival in CRC. They determined that functional Th1
and Th17 clusters exert opposite effects on patient survival in CRC and, interestingly, none of the
Th2 clusters (IL4, IL5, IL13) were predictive of prognosis. Rui Yu et al. showed that Bifidobacterium
adolescentis strains were associated with the induction of Th17 cells in humans [49]. Also, Ruiz et al.
reported that Bifidobacterium animalis strains promote a Th1 response, in both in vitro and in vivo
experiments [50]. Wei et al. reported that the use of transfected Bifidobacteria as a novel system for
specific genes offers a promising therapeutic method for treating a tumor through non-stimulatory
effects on Th17 cells [51]. It seems likely that MAIT Th17 cells preferentially infiltrate into the tumor in
CRC patients and may contribute to prognosis of CRC.

MAIT-TCRs levels stimulated by colonic antigen-presenting cells were measured in an invitro
assay and 47 microbiota-associated bacterial strains from different phyla for their stimulatory capacities
were shown [52]. Most species that are high-stimulators for MAIT-TCRs belong to the Bacteroidetes and
Proteobacteria phyla, whereas low/non-stimulator species belong to the Actinobacteria or Firmicutes phyla.
Also, riboflavin metabolites from high and low MAIT-stimulating bacteria that possessed the riboflavin
pathway were measured. Interestingly, it was reported that human T cell subsets can also present
riboflavin metabolites to MAIT cells in an MR1-restricted fashion and this signaling also contributed to
increased production of IFN-γ and TNF-α [52].

It appears that the Bifidobacterium animalis strain exhibits low/non-stimulator status for MAIT
cells and it can be proposed that the Bifidobacterium animalis strain may be effective in preventing CRC
through non-stimulatory effects on Th17 (IL17) cells and a promoting effect on Th1 cells.

6. Conclusions

Significant development has been made in recent years in recognizing the importance of the
interaction between the gut microbiota and MAIT cells in CRC. Bifidobacterium strains play protective
and preventive roles on human colonic microbiota composition and may have an impact on the
inflammatory regulation of CRC. Bifidobacterium strains may be effective in preventing CRC through
their inhibitory effects on MAIT cells.
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