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Abstract: This paper presents an algorithm structure for an active noise control (ANC) system based
on an improved equation error (EE) model that employs the offline secondary path modeling method.
The noise of a compressor in a gas station is taken as an example to verify the performance of the
proposed ANC system. The results show that the proposed ANC system improves the noise reduction
performance and convergence speed compared with other typical ANC systems. In particular, it
achieves 28 dBA noise attenuation at a frequency of about 250 Hz and a mean square error (MSE) of
about −20 dB.

Keywords: active noise control; improved equation error; mean square error

1. Introduction

In order to reduce acoustic noise in workplaces and living environments, passive
and active approaches [1] have been employed. For passive approaches, the energy of the
noise is absorbed by dampers, barriers, mufflers, or sonic crystals [1–4]. However, at low
frequencies, the attractiveness of the passive approach decreases because of the increase
in volume, mass, and cost of passive attenuators [1,5]. In this case, active approaches like
active noise control (ANC) technology is proposed because of its low cost, effectiveness
at a low frequency, and simple implementation [6,7]. In the ANC system, there is a signal
with the same frequency and amplitude, while a phase difference of 180 degrees with
the original noise signal is generated to eliminate the reference noise. Currently, ANC
technology has achieved great success in noise-canceling headphones. It will likely be
applied in noise reducing senarios in smart cities, buildings, and manufacturing [8–10].

ANC systems can generally be classified into feedback systems and feedforward
systems. The former only apply residue signals at the point of interests, which limits
their applicability to narrowband cases only. The latter employ both the reference signal
generated by the source of the noise and the residue signal, making it effective at attenuating
both wideband and narrowband disturbances [1,5]. Furthermore, the combination of
feedback and feedforward approaches would be employed in hybrid systems. Currently,
the adaptive filter-based ANC feedforward system is widely applied, in which coefficients
of its filters adjust with changing the statistics of the signals to be filtered [11]. It can
be implemented with the following two structures: adaptive finite impulse-response
(FIR) filters and adaptive infinite-impulse-response (IIR) filters. By employing both poles
and zeros, one can model the desired filter with fewer parameters through adaptive IIR
filters, leading to less computational complexity than the all-zero-based adaptive FIR
filters [5,12]. Conventionally, there are two kinds of adaptive IIR filters, namely, the output-
error (OE) [12–16] and the equation-error (EE) models [12,17]. The OE method updates
the filter coefficients directly in a pole-zero form, which might lead to an unstable pole or
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local minimum. On the other hand, the EE-based IIR filter has only zeros but not a pole.
Hence, the EE method for adaptive IIR filtering can operate in a stable manner when the
step size is properly selected [12,18]. Moreover, the mean square error (MSE) function
of the EE-based method is a quadratic function, and thus the global minimum can be
achieved. In [18], an equation-error adaptive IIR-filter-based active noise control system
is developed, where the convergence condition is addressed to assure stability, and the
optimal solution to achieve the global minimum of the MSE is also derived. Adaptive
ANC algorithms based on offline secondary path modeling can ensure system convergence
and maintainability, meanwhile reducing transformer noise [19]. In this paper, the off-line
secondary path modeling algorithms are applied in EE IIR filter-based noise control (ANC)
systems and the noise reducing near a compressor in a gas station is taken as an example
to utilize this ANC system. In contrast with the FIR-based, OE-based, and EE-based ANC
systems proposed in [18], the improved EE IIR filter-based ANC system with off-line
secondary path modeling algorithms not only enhances the noise reducing performance
greatly, but also asks for less computation complexity. Moreover, the improved system can
still maintain stability when inputting high noise level signals.

2. The OE-Model-Based ANC System

In order to solve the problem of acoustic feedback, a feedback structure is added to
the secondary channel based on the FxLMS algorthm. Figure 1 reveals the OE-model-based
ANC system [20,21].
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Figure 1. The output-error (OE)-model-based active noise control (ANC) system using the
FURLMS algorithm.

where P(z) and S(z) are the primary and secondary paths, respectively. The error
signal is given by the following:

e(n) = d(n)− s(n) ∗ y(n) (1)

where s(n) is the impulse response of S(z), d(n) is the primary noise signal, and the ′∗′
denotes the convolution operation. y(n) is expressed as follows:

y(n) =
Na−1

∑
i=0

ai(n)x(n− i) +
Nc−1

∑
j=0

cj(n)y(n− j) (2)

where, in ai(n)(i = 0, 1, . . . , Na−1) and cj(n)(j = 0, 1, . . . , Nc−1), Na and Nc are the filter
lengths. According to the OE-model-based ANC system, the weight updating processes
can be expressed as follows:

a(n + 1) = a(n) + µx′(n)e(n) (3)
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c(n + 1) = c(n) + µŷ′(n− 1)e(n) (4)

where, in ŷ′(n) = ŝ(n) ∗ y(n − 1) x′(n) = ŝ(n) ∗ x(n), a(n) = [a0(n)a1(n) . . . aNa−1 ]
T ,

x(n) = [x(n)x(n− 1) . . . x(n− Na + 1)]T , c(n) = [c1(n)c2(n) . . . cNc(n)], ŝ(n) represents
the impulse response of the secondary path Ŝ(z), and µ is the step size. Meanwhile, the
optimal C(z) and A(z) must satisfy

A(z)
1− C(z)

=
P(z)
S(z)

(5)

to minimize the error signal e(n).

3. The EE Adaptive IIR-Filter-Based ANC Algorithm

In order to solve the pole problem caused by S(z) in the system shown in Figure 2,
the estimated value of the desired signal d(n) is synthesized by means of digital signal
processing. As shown in Figure 2, the impulse response s(n) of the secondary path is S(z).
s(n) = [s0s1 . . . sL−1], and the output signal can be expressed as follows:

y(n) = aT(n)x(n) + cT(n)d(n− 1) (6)

where d(n− 1) = [d(n− 1)d(n− 2) . . . d(n− Nc)]
T . The adaptations of the EE ANC sys-

tem [21] can be derived as follows:

a(n + 1) = a(n) + µe(n)(ŝ(n) ∗ x(n)) (7)

and
c(n + 1) = c(n) + µe(n)d̂′(n) (8)

Practically, we synthesize d̂(n) = e(n) + y(n) ∗ ŝ(n) instead it. Therefore, the output
signal can be rewritten as follows:

y(n) = aT(n)x(n) + cT(n)d̂(n) (9)
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Figure 2. ANC system based on an equation error (EE) adaptive infinite-impulse-response (IIR) filter.

The complete ANC system block diagram based on the EE model is shown in Figure 3.
As the EE model is composed of non-recursive terms, instability would be avoided. How-
ever, there are still problems such as a slow convergence speed and poor noise reduction
performance.



Acoustics 2021, 3 357

Acoustics 2021, 3 FOR PEER REVIEW  4 
 

 

However, there are still problems such as a slow convergence speed and poor noise re-
duction performance. 

 
Figure 3. Complete block diagram of the ANC system when applying an EE adaptive IIR filter. 

4. The EE Adaptive IIR-Filter-Based ANC Algorithm 
In order to improve the convergence speed and noise reduction performance of the 

EE-based ANC system, an improved ANC system based on EE is proposed [18], where 
only two adaptive filters, )(zA  and )(zC , are employed. Here, we adopt an extra filter 
named )(zB . As shown in Figure 4, )(zA , )(zB , and )(zC  are the transversal adap-
tive filters for the EE-based model. The dotted square denotes the proposed secondary 
path modeling. The squared error signal expressed as )(2' neEE =ε , and the gradient of 
error surface is denoted as follows [18]: 

))()()((2' nunsneEE ∗−=∇ε  (10)

where )(ns  is the impulse response of the secondary path )(zS  and the input of the 

adaptive filter is 







−

=
)1(

)(
)(

nd
nx

nu . The estimated secondary path is added, so the equa-

tion becomes 

))()()((2
^

' nunsneEE ∗−=∇ε  (11)

Adaptations of the improved EE ANC system can be derived as follows: 

))()()(()()1(
^

nxnsnenana ∗+=+ μ  (12)

))()()(()()1(
^
nsnynenbnb ∗+=+ μ  (13)

)()()()1(
^
' ndnencnc μ+=+  (14)

Figure 3. Complete block diagram of the ANC system when applying an EE adaptive IIR filter.

4. The EE Adaptive IIR-Filter-Based ANC Algorithm

In order to improve the convergence speed and noise reduction performance of the
EE-based ANC system, an improved ANC system based on EE is proposed [18], where
only two adaptive filters, A(z) and C(z), are employed. Here, we adopt an extra filter
named B(z). As shown in Figure 4, A(z), B(z), and C(z) are the transversal adaptive filters
for the EE-based model. The dotted square denotes the proposed secondary path modeling.
The squared error signal expressed as ε′EE = e2(n), and the gradient of error surface is
denoted as follows [18]:

∇ε′EE = −2e(n)(s(n) ∗ u(n)) (10)

where s(n) is the impulse response of the secondary path S(z) and the input of the adaptive

filter is u(n) =

(
x(n)

d(n− 1)

)
. The estimated secondary path is added, so the equation

becomes
∇ε′EE = −2e(n)(ŝ(n) ∗ u(n)) (11)

Adaptations of the improved EE ANC system can be derived as follows:

a(n + 1) = a(n) + µe(n)(ŝ(n) ∗ x(n)) (12)

b(n + 1) = b(n) + µe(n)(y(n) ∗ ŝ(n)) (13)

c(n + 1) = c(n) + µe(n)d̂′(n) (14)

Finally, the output signal of the improved EE ANC system can be rewritten as follows:

y(n) = aT(n)x(n) + cT(n)(e(n) + bT(n)ŷ(n)) (15)

A(z)
1− C(z)B(z)

= P(z) (16)

It can be seen from Equation (15) that the improved EE model can avoid instability
and improve the accuracy of the synthesized d(n) signal, as it is a nonrecursive system.
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Figure 4. The improved EE adaptive IIR-filter-based ANC algorithm.

4.1. The Step-Size Constraint

We assume that reference signal x(n) is a white noise signal with a mean value of zero
and a variance of 1. The step size limits µA, µB, and µC of A(z), B(z), and C(z), are set as
the following Equation (16), respectively:

0 < µA <
3

(Na + 3∆eq)Px′
(17)

0 < µB <
3

(Nb + 3∆eq)Pŷ
(18)

0 < µC <
3

(Nc + 3∆eq)Pd̂′
(19)

where Px′ , Pŷ, and Pd̂′ denote the power of x′(n), ŷ(n), and d̂′(n), respectively, and the is
the equivalent delay of the secondary path Equation (16). ∆eq can be expressed as follows:

∆eq =

L−1
∑

l=1
ls2

l

L−1
∑

l=0
s2

l

(20)

The maximum overall step-size µ of the ANC system should be the minimum of µA,
µB, and µC, and the signal powers of Px′ , Pŷ, and Pd̂′ in Equations (16)–(18) are set to be 1.
Hence, the maximum step size and filter length are only affected by the secondary path
delay ∆eq.

4.2. Global Minimum Solutions

The mean square error (MSE) function based on the improved EE-based ANC system
is expressed as follows:

ξ ′EE(n) = E[d2(n)] + aT(n)Rx′x′ a(n)
+bT(n)Rŷŷb(n) + cT(n)Rd̂′ d̂′c(n)
+2[aT(n)Rx′ d̂′c(n) + aT(n)Rx′ ŷb(n)
+bT(n)Rŷd̂′c(n)− aT(n)pdx′ − bT(n)pdŷ

−cT(n)pdd̂′ ]

(21)
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where Rx′x′ = E[x′(n)x′T(n)], Rŷŷ = E[ŷ(n)ŷ(n)], Rd̂′ d̂′ = E[x′(n)x′T(n)],
Rx′ d̂′ = E[x′(n) ˆd′T(n)] and pdx′ = E[d(n)x′(n)] pdd̂′ = E[d(n)d̂′(n)]. It can be seen that the
ANC system based on the improved EE model owns a global minimum. By calculating the
gradient function of Equation (21), we have

∂ξ ′EE
∂a(n) = [

∂ξ ′EE(n)
∂a0(n)

∂ξ ′EE(n)
∂a1(n)

· · · ∂ξ ′EE(n)
∂aNa−1 (n)

]
T

= 2Rx′x′ a(n) + 2Rx′ d̂′c(n) + Rx′ ŷb(n)− 2pdx′
(22)

∂ξ ′EE(n)
∂b(n) = [

∂ξ ′EE(n)
∂b0(n)

∂ξ ′EE(n)
∂b1(n)

· · · ∂ξ ′EE(n)
∂bNa−1 (n)

]
T

= 2Rŷŷb(n) + 2Rx′ ŷa(n) + 2Rŷd̂′c(n)− 2pdŷ

(23)

∂ξ ′EE(n)
∂c(n) = [

∂ξ ′EE(n)
∂c0(n)

∂ξ ′EE(n)
∂c1(n)

· · · ∂ξ ′EE(n)
∂cNa−1 (n)

]
T

= 2Rd̂′ d̂′c(n) + 2Rx′ d̂′ a
T(n) + 2bT(n)Rŷd̂′ − 2pdd̂′

(24)

Therefore, the optimal weight vectors, a0
EE(n) b0

EE(n), and c0
EE(n) can be derived by

supposing that the gradient functions are equal to zero.

5. Computer Simulation
5.1. Test Environment and Noise Characteristics

The noise of the compressor (product model VW-11/4) in a gas station is x(n), which
possesses a strong periodicity and high noise input level. As shown in Figure 5a, a dual-
channel audio signal analyzer (AWA6290M+) is used to transmit the audio signals collected
by two signal sensors to the MATLAB2019a software on a personal computer for algorithm
verification processing. The distance from sensor1 to the computer is the primary path
(1.2 m), and the distance from sensor0 to the computer is the secondary path (6.7 m).

The time–frequency diagram of the tested noise is obtained by the computer mea-
surement system shown in Figure 5b, indicating that the sound pressure level in the low
frequency range of 0–1 kHz is much higher than the one in the high frequency range. To
compare our algorithm with the ones in [1,5,18] under similiar conditions, the secondary
path of this system is set with a delay of 24 samples and filter length of 64.
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5.2. Simulation Results

Firstly, by inputting the data into Equations (12)–(14) of the improved EE-based
ANC system model, the learning process of the weight coefficients can be calculated as
shown in Figure 6a–c. Moreover, we can compute the optimal weights a0

0(n) = 0.683,
b0

0(n) = 0.579, and c0
0(n) = 1.196 (the first column vector of the optimal weight coefficient
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matrix). Secondly, according to Equations (17)–(20), the step size bounds can be computed
as µA < 0.139, µB < 0.346, and µC < 0.21.
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Therefore, the step size bound is µ < 0.139, i.e., µmax = 0.139. The learning curves
with different step sizes are shown in Figure 6d, and is achieved by applying the following
Equation (22):

∂(n) = γ∂(n− 1) + (1− γ)e2(n) (25)

where γ = 0.97 is a forgetting factor. By taking n = 0, we have ∂(0) = e2(0). The improved
EE-based ANC system converges when the step size is less than 0.4µmax.

We compare the performance of the conventional FIR method (FxLMS), the OE-based
model, the EE-based ANC systems in [12,17,18], and the improved EE-based ANC systems
with the measurement noise. Figure 7a reveals the average sound pressure level of the noise.
The step sizes are 0.018, 0.015, 0.0016, and 0.0007 for the FxLMS, OE, EE, and improved EE
schemes, respectively. The FxLMS-based algorithm filter length is 200; the filter lengths
of A(z) and C(z) are 42 for both the OE-based and EE-based ANC systems; and the filter
lengths of A(z), B(z), and C(z) are 42 for the improved EE-based system. Obviously, the
algorithms compared in this paper can effectively converge and achieve a certain noise
reduction effect. Although, for the noise of a compressor, the improved EE-based ANC
system shows better convergence speed, as shown in Figure 7b. Furthermore, as shown
in Figure 7a, the improved ANC system can reduce the noise of the compressor up to
28 dBA at frequency below 2.5 kHz, and the amplitude is expressed by the A-weighted
sound pressure level. In addition, the time–frequency diagram of the ANC system through
various algorithms is shown in Figure 7c.
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algorithm. (c) Time–frequency diagram of different algorithms after noise reduction.

5.3. Computational Complexity

We compare the calculation complexity of the FIR-based FXLMS algorithm, the IIR-
based OE, the EE-based ANC system, and the improved EE-based ANC system in Table 1.
The filter lengths of W(z), A(z), B(z), and C(z) are N, Na, Nb, and Nc, respectively. Gen-
erally speaking, in contrast with the FIR-based method, the IIR-based method can utilize
fewer filter lengths; in comparison with the OE-based method, the EE-based method
requires an additional filtering of Ŝ(z) to obtain the output signal; in contrast with the
EE-based method, the improved EE-based method adds an additional adaptive filter C(z)
in order to make the ANC system more accurate and faster.
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Table 1. Computational complexity.

Algorithm Multplications Additions

FxLMS 2N + L + 2 2N + L− 1
OE ANC 2Na + 2Nc + 2L + 2 2Na + 2Nc + 2L− 2
EE ANC 2Na + 2Nc + 3L + 2 2Na + 2Nc + 3L− 2

Proposed EE ANC 2Na + 2Nb + 2Nc + 4L + 2 2Na + 2Nb + 2Nc + 4L− 2

Table 1 displays the comparison of the computational complexity of the various
algorithms. If we substitute the previous data into the table using the FxLMS algorithm for
450 multiplications and 447 additions, the OE-based method requires 298 multiplications
and 294 additions, the EE-based method needs 362 multiplications and 358 additions, and
the improved EE-based method requires 424 multiplications and 420 additions. Obviously,
the IIR-based models cost less in computational complexity.

6. Conclusions

This paper introduces an adaptive IIR filter based on an improved EE model employ-
ing an offline secondary path modeling method that is superior in convergence speed
and noise reduction performance. The compressor noise is taken as the input noise data
to simulate the performance of the system. The results show that it has a good noise
reduction effect from 0 Hz to 2.5 kHz. However, the system will increase a certain amount
computational complexity. The model proposed in this paper is suitable for processing
noise signals in a low frequency range, which is typical among industrial equipment, such
as engines and compressors with loud noise signals.
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