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Abstract: The frequency estimation of multiple complex sinusoids in the presence of noise is impor-
tant for many signal processing applications. As already discussed in the literature, this problem
can be reformulated as a sparse representation problem. In this letter, such a formulation is derived
and an algorithm based on sparse cyclic coordinate descent (SCCD) for estimating the frequency
parameters is proposed. The algorithm adaptively reduces the size of the used frequency grid, which
eases the computational burden. Simulation results revealed that the proposed algorithm achieves
similar performance to the original formulation and the Root-multiple signal classification (MUSIC)
algorithm in terms of the mean square error (MSE), with significantly less complexity.

Keywords: frequency estimation; sparse estimation; coordinate descent algorithms

1. Introduction

Parametric frequency estimation has been an active research area for many years.
As a consequence, several methods have been proposed in the literature for addressing this
problem. Among the most classic estimation strategies are the multiple signal classification
(MUSIC) [1], its extension Root-MUSIC [2], and the estimation of signal parameters via
rotational invariance techniques (ESPRIT) [3]. The principal drawback of these algorithms
is their high computational complexity due to the required computation of the eigenvalue
decomposition (EVD) of the measurement signal’s covariance matrix [4,5]. Furthermore,
a degradation of the performance in scenarios with low signal to noise ratios (SNRs) can
be also observed. Some approaches found in the literature, e.g., the work proposed in [6]
for source localization, inspired the application of sparse representations in frequency
estimation as an alternative method for overcoming the limitations of the classic techniques.
As a consequence, some algorithms that exploit the sparse nature of the signals in the
frequency domain have been introduced [7–10] in the literature. These methods rely on
the sparse representation of the model. This means that the model assumes that the signal
can be well-approximated as a linear combination of just a few underlying functions from
a known basis or dictionary. Previous works based on these concepts using structured
and dynamic dictionaries [11] have also been proposed. These algorithms have significant
advantages, such as better performance compared with classic methods, less computational
complexity, and more accurate results in scenarios with fewer available measurements.

The frequency estimation problem can be modeled as a linear combination of complex
exponentials in the presence of noise via the following model:

b[m] =
p

∑
q=1

xqej2π fqm + w[m] (1)
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where the coefficients xq represent the (complex) amplitudes, and fq are the frequencies of
the signals. w[m] represents the noise samples and p is the number of frequencies that are
assumed to be known in this work.

Frequency estimation can be also formulated as a sparse representation problem using
a sparse vector x of amplitudes, where the signal model in (1) can be rewritten using a
frequency grid with a spacing of ∆ f :

b = Ax + w. (2)

b represents the measurement vector of values b[m], w the noise vector of values w[m],
and A is a M× N matrix with columns a∗,i =[ej2πi∆ f 0, . . . , ej2πi∆ f m, . . . , ej2πi∆ f M−1]T . The
measurement matrix A can be seen as a dictionary in which the columns represent complex
exponentials with frequencies corresponding to points on a frequency grid. We assume
normalized frequencies, i.e., a sampling frequency fs = 1 resulting in fs/2 = 0.5, which
naturally results in a number of columns N = 0.5/∆ f (assuming for simplicity that this
fraction is an integer). For achieving high-precision estimation results, one should select a
small ∆ f , which leads to a large number of columns of A, typically larger than the number
of measurements M [12].

This representation encourages the use of sparse recovery algorithms. We present an
approach that exploits this representation, leading to an algorithm that can be implemented
efficiently in digital hardware, and is based on low complex coordinate rotation digital
computer (CORDIC) operations. The proposed method is an extension of the sparse cyclic
coordinate descent (SCCD) algorithm that significantly reduces the complexity further,
allowing for efficient hardware implementations even for a large number of measurements.
In contrast to, e.g., the Root-MUSIC algorithm that we will use for performance comparison,
its complexity scales only quadratically in the number of measurements.

Sparse recovery algorithms can be classified into two principal categories: greedy
algorithms (e.g., orthogonal matching pursuit (OMP) [13]; iterative hard thresholding
(IHT) [14]) and convex optimization methods (least absolute shrinkage and selection
operator (LASSO) [15], basis pursuit denoising (BPDN) [16], linearized Bregman itera-
tions (LBI) [17], etc.). However, when choosing one of these algorithms for a particular
application, there is a range of different properties that have to be considered, such as
computational and storage requirements, ease of implementation, recovery performance,
and flexibility [18]. An analysis of the performance guarantees of these algorithms usually
involves quantities that measure the suitability of the measurement matrix A [19]. Some
of these measures of quality are the restricted isometry property (RIP) and the mutual
coherence (MC).

Greedy algorithms are easy to implement and can be extremely fast [18] in some
scenarios. They ease the computational complexity by performing locally optimal greedy
iterations, but the recovery guarantees are weaker than those of convex optimization
methods. Successful estimation can only be guaranteed if one further assumes that all
non-zero components of x are somewhat larger than the noise level. Greedy techniques
rely on a least square (LS) solution for an estimated support, and this approach performs
poorly unless the support is correctly identified. A single incorrectly identified element of
the support can lead to the entire estimation being severely incorrect [20].

In the case of OMP, the performance guarantees rely on the RIP condition and the
mutual coherence of the measurement matrix A. In general, we do not normally know
whether the RIP holds [18] and it is NP-hard to evaluate the restricted isometry constants
(RICs) for a given matrix. They must then be bounded by efficiently computable properties
of A, such as the mutual coherence [20]. The exact recovery of every p-sparse vector via
orthogonal matching pursuit is guaranteed when the measurement matrix has a coher-
ence µ < 1/(2p− 1) [19]. The mutual coherence µ = µ(A) of a matrix A is defined as
µ := max1≤i 6=j≤N |〈ai, aj〉| for a matrix A ∈ CM×N with `2-normalized columns for all
i ∈ [N] [19].
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In applications such as frequency estimation where the measurement matrix is com-
posed of complex exponentials that are highly correlated, conditions such as the one
enunciated above are violated. For example, in a scenario with M = 50, ∆ f = 1/(20M)
and p = 5, the mutual coherence of the matrix A is equal to 0.9959. Therefore this condition
cannot be satisfied (i.e., µ = 0.9959 > 1/(2p− 1) = 0.111).

On the other hand, convex optimization methods have very good performance guar-
antees, which make them a reliable tool for sparse signal recovery but with the drawback
that these methods typically have a higher computational cost for large-scale problems.
Therefore, iterative approaches such as sparse cyclic coordinate descent (SCCD) [21] were
introduced for solving these problems. SCCD is an optimization technique that sequentially
minimizes a cost function in the direction of a single coordinate while leaving all other
coordinates fixed. This is particularly useful in cases where the single parameter problem
is easy to solve [22]. It is also especially suitable for problems where the gradient of the cost
function does not have a closed-form solution. Moreover, efficient storage in a sparse vector
format can be implemented since SCCD only updates one entry of the sparse vector at each
iteration. SCCD also offers other advantages in terms of memory requirements compared
to alternative algorithms such as linearized Bregman iterations. SCCD only uses a sparse
vector of length N, and storing such a vector requires only a memory size depending on the
number of non-zero values, whereas LBI requires an additional vector of length N which is
dense and requires a most costly update [23,24]. Based on these characteristics, SCCD can
be considered a more suitable candidate for the frequency estimation problem [12].

In this letter, a new version of SCCD based on an adaptive frequency grid is pro-
posed. The proposed method inherits the characteristics of the original formulation and
in addition employs several strategies for accelerating the convergence and reducing the
number of required mathematical operations. The main idea of the proposed method
is to effectively reduce the size of the grid (i.e., to reduce the number of columns of the
matrix A) for estimating the frequency parameters. This will allow one to reduce the
computational complexity, and subsequently the number of required mathematical opera-
tions in comparison to the original formulation. Therefore, it enables a significantly better
complexity/precision trade-off. As our approach mainly consists of complex rotations,
it is easily implementable in fixed-point digital hardware with only moderate precision
requirements. The proposed method also achieves similar performance to the Root-MUSIC
algorithm, but with significantly less computational complexity.

2. Adaptive-Sparse Coordinate Descent Algorithm

The SCCD algorithm solves the following cost function:

arg min
x

1
2
‖Ax− b‖2

2 + λ‖x‖1, (3)

where the regularization parameter λ is used to adjust the sparsity of the estimation result.
Higher values of λ lead to more sparse estimation results [12].

An interesting phenomenon occurs over the iterations in SCCD: most coordinates
at each update that are zero never become nonzero [22]. This characteristic allows using
different strategies to speed up the convergence of the algorithm. For example, one can
use a vector of lambda in descending order instead of a fixed λ [25]. Then, the estimation
result of a higher λ is used as the start value for the next estimation with a lower λ.
Such a hot-starting strategy reduces the computational effort to obtain a whole solution
path because the result of such a previous estimation provides a start vector for the next
estimation that is typically closer to its solution than the all-zero vector. As a consequence,
the computation of the final solution is considerably faster than computing the solution
using a fixed arbitrary λ.

In [12], we proposed a version of SCCD for frequency estimation, where a decreasing
strategy for updating the regularization parameter and a peak search are used for detecting
the p frequencies exactly. This is repeated in Algorithm 1 for the reader’s convenience.
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Algorithm 1 starts with a λ-value that would lead to the all-zero solution (i.e., λ1 = λmax
where λmax = max

i
|aH
∗,iy|) [12] and reduces λ until the number of estimated frequencies

matches the desired number of frequencies p. For this, we use a vector of descending en-
tries: λ = [λ1 = λmax, λ2, . . . , λL]. The iteration process basically consists of two principal
steps. In the first step (line 8), the inner product between the corresponding column a∗,i and
the residual r is computed and added to the currently estimated vector. Then, the resulting
value is passed as the argument to the shrink function. The shrink function outputs zero if
its input is smaller than a defined threshold (i.e., in our case smaller than µiλl). If the input
is larger than the threshold, the magnitude of the input is reduced by the threshold value.
Figure 1 graphically depicts the shrink function. After applying the shrink function, the
second step (line 9) of Algorithm 1 updates the residual.

μiλl-μiλl

shrink(x,μiλl)

x

Figure 1. Graphic representation of the shrink function.

In order to find an estimated vector with exactly p nonzero values that correspond
to the true frequencies, a very fine grid of λ values are required. This also implies a
considerable increase in the number of iterations. In order to address this issue, a peak
search on the estimated vector can be performed (line 11 of Algorithm 1). This allows
detecting p frequencies, even when the number of nonzero elements of the estimated vector
is larger than p. This strategy also allows using a relatively coarse vector of λ values while
still providing good estimation performance. The vector a∗,i in Algorithm 1 is composed
of complex exponentials. Therefore, the inner product of such a vector with the vector r
and the multiplication by a scalar (complex) number µi (line 8 of Algorithm 1) can be easily
performed by the CORDIC algorithm without explicitly calculating and storing a∗,i. Hence,
the vector a∗,i will only exist virtually in the hardware implementation [12].

Based on Algorithm 1, we propose an extension of the work published in [12]. In the
proposed version, we continue to exploit the fact that most coordinates that are zero
remain unchanging over the iterations. This characteristic allows discarding the areas of
the frequency grid that remain zero over the iterations. Then, the frequency grid can be
redefined to the areas of interest where the values are nonzero. This dimensional reduction
of the frequency grid considerably reduces the number of mathematical operations needed
per iteration and speeds up the convergence of the algorithm. The proposed algorithm is
called Adaptive-SCCD and consists of two main steps:

• In the first step, Algorithm 1 is run using a coarse grid. This means that the defined
frequency spacing of the grid ∆ f coarse uses a coarse grid spacing, which leads to
a moderate number of columns of A. After running the algorithm, the non-zero
positions are detected. These positions are located in the non-zero intervals around
the peaks of the estimated vector x̂. This is the reason why we performed a peak
search and detected the beginnings and ends of these intervals.

• In the second step, we again run Algorithm 1, but in this case, the frequency grid
is constructed only considering the intervals detected in the first step and using
a frequency spacing ∆ f fine. This considerably reduces the number of grid points
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(i.e., number of columns of the matrix A) that need to be considered, resulting in a
reduction of the required number of mathematical operations.

Algorithm 1 Sparse cyclic coordinate descent (SCCD) for frequency estimation [12]

Input: b, λ = [λ1, . . . , λL], ∆ f , N, θ, p

Output: x̂, set of detected frequencies

1: x̂(0) ← 0

2: r← b

3: l = 1 . Index for λ

4: for k = 1...K do . K as pre-set maximum of iterations

5: i← ((k− 1) mod N) + 1 . cyclic processing

6: a∗,i = [ej2πi∆ f 0, . . . , ej2πi∆ f m, . . . , ej2πi∆ f M−1]T

7: µi ← 1/
∥∥a∗,i

∥∥2
2 = 1/M

8: x̂(k)i ← shrink(x̂(k−1)
i + µiaH

∗,ir, µiλl)

9: r← r− ai(x̂(k)i − x̂(k−1)
i )

10: if i = 1 and
∥∥∥x̂k − x̂k−N+1

∥∥∥
1
< θ then

11: P = AbsPeakPositions(x̂k)

12: if |P| < p then

13: l ← min(L, l + 1)

14: else return frequencies corresponding to P

15: end if

16: end if

17: end for

The two main steps of the proposed algorithm are illustrated in Figure 2. The main
advantage of this approach is that the first estimation (coarse search) allows finding inter-
vals centered around the peaks. These intervals can be interpreted as the potential regions
of the grid where the true frequencies can be located. Then, the size of the frequency grid
is effectively reduced in the second step (fine search) by only considering the intervals
detected before. As a consequence, the number of points of interest that need to be evalu-
ated in the second step is reduced and the number of required mathematical operations
also decreases.

The pseudocode of Adaptive-SCCD is described in Algorithm 2, where FindNonZe-
roPositions and BuildGrid are auxiliary functions. Note that in Figure 2, the intervals
centered around the peaks of the absolute value of the estimated vector x̂ correspond to the
non-zero positions. The function FindNonZeroPositions finds the start and end values of
these peaks and stores them in the vectors s and e. The function is described in Algorithm 3.
The function BuildGrid is used to build a fine frequency grid in the intervals found by
the coarse estimation. The fine grid uses the frequency spacing ∆ f fine. It is described
in more detail in Algorithm 4. Finally, the function SCCD_fine is used for estimating
the frequency parameters using the fine frequency grid. This function is similar to the
original one described in Algorithm 1, only the inner product of line 8 is now performed
by only considering the non-zero intervals detected in the first run of SCCD. Then, for
implementing the function SCCD_fine, the lines 5 and 6 in Algorithm 1 are replaced by
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5 : for i = 1...N do

6 : a∗,i = [ej2πgrid_fine(i)0, . . . , ej2πgrid_fine(i)m, . . . , ej2πgrid_fine(i)M−1]T .

Algorithm 2 Adaptive-SCCD for frequency estimation

Input: b, λ = [λ1, . . . , λL], θ, p, ∆ f , ∆ f coarse

Output: set of detected frequencies f̂

1: N = 0.5/∆ f coarse

2: [x̂]= SCCD (b, λ,∆ f coarse,N, θ, p)

3: [s, e]= FindNonZeroPositions(x̂, ∆ f coarse)

4: ∆ f fine = ∆ f

5: grid_fine = BuildGrid(s, e,∆ f fine)

6: N = size(grid_fine)

7: [x̂fine, f̂]= SCCD_fine(b, λ,grid_fine,N, θ, p)

Algorithm 3 FindNonZeroPositions
Input: x̂, ∆ f coarse

Output: s, e

1: fgrid = 0 : ∆ f coarse : 0.5

2: [pks, loc] = AbsPeakPositions(x̂)

3: x̃ = abs(x̂)

4: dx = [0 diff(x̃)]

5: P = length(pks)

6: start = zeros(P, 1)

7: end = zeros(P, 1)

8: for k = 1...P do

9: start = find(( fgrid < fgrid(loc(k))) & (dx <= 0))

10: if isempty(start) then

11: start=1

12: end if

13: s(k) = start

14: end = find(( fgrid > fgrid(loc(k))) & (dx >= 0))

15: if isempty(end) then

16: end=1

17: end if

18: e(k) = end

19: end for
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Figure 2. Overall description of the principal steps of the Adaptive-SCCD algorithm.

Algorithm 4 Buildgrid

Input: s, e, ∆ f fine

Output: grid_fine

1: grid_fine = [ ]

2: fgrid = 0 : ∆ f fine : 0.5

3: grid_endpoint = sort( fgrid(e))

4: grid_startpoint = sort( fgrid(s))

5: for j = 1 . . . length(s) do

6: grid_fine = [grid_fine, grid_startpoint(j) : ∆ f fine : grid_endpoint(j)]

7: end for

3. Results

The performance of our method in the following estimation scenarios is evaluated in
terms of the mean square error (MSE).

MSE =
1

Rp

R

∑
r=1

p

∑
i=1
| f̂i,r − fi|2 (4)

between the correct frequencies fi, i = 1, 2, . . . , p and their estimates f̂i,r in R = 1000 runs.
The measurement noise samples were drawn from an i.i.d. complex Gaussian random
process with zero mean and variance σ2.

The measurements have been created by summing p real sinusoids with phase φ
uniformly distributed at random in the interval (0, 2π) and the amplitudes were chosen ran-
domly to be −1 or 1 for all the simulations. The vector λ is defined as
λ = [λmax, ελmax, ε2λmax, . . . , ε(L−1)λmax] where ε = 0.99 and L = 50. In the case of SCCD,
we considered a frequency grid with a spacing of ∆ f = 1/(20M), and for Adaptive-SCCD
we consider a coarse grid with ∆ f coarse = 1/(2M) for the first step and in the second step a
spacing equal to the original version (i.e., ∆ f fine = ∆ f = 1/(20M)). We also included the
following algorithms for comparison: Root-MUSIC; ESPRIT, whose code is available in [26];
discrete-time Fourier transform (DTFT); and the two-step iterative shrinkage/thresholding
(TwIST) algorithm [27], whose code is available in [28]. The simulation results for Root-
MUSIC were obtained using the function rootmusic built in MATLAB and considering
autocorrelation matrices of size M/2×M/2 for Root-MUSIC and also for ESPRIT. In the
case of the algorithm TwIST, the parameter τ was set to 5.
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Figure 3 depicts a scenario with M = 50 and five frequencies selected at random from
the interval (0, 0.5). Please note that Adaptive-SCCD showed about the same performance
as the original version of SCCD. This validates our affirmation that the adaptive reduction
of the frequency grid size does not affect the final performance. Both versions of SCCD also
outperformed the Root-MUSIC, ESPRIT, DTFT, and TwIST algorithms for this test case. In
the case of the DTFT, it is known that in the presence of multiple frequencies, the DTFT suf-
fers from spectral leakage due to interference among the sinusoidal components [29], which
causes it to become biased [30]. Its inferior performance in this scenario was expected. In
the case of the subspace techniques, Root-MUSIC showed the best performance compared
to ESPRIT and is comparable in performance to Adaptive-SCCD. The performance gap
between Root-MUSIC and ESPRIT is due to the fact that they work in different subspaces:
Root-MUSIC works in the noise subspace with dimensions M− p, and ESPRIT works in
the signal subspace with dimension p. Moreover, TwIST is an interesting approach based
on the iterative shrinkage/thresholding (IST) algorithm that was originally proposed for
image restoration, but we can notice that its performance for the simulated scenario of
frequency estimation was inferior to Root-MUSIC and the proposed method.

Figure 3. MSE versus SNR for p = 5 normalized frequencies.

We also analyzed how the selection of ∆ f coarse affects the final performance. We
experimentally determined that a minimum spacing ∆ f coarse = (1/2M) is necessary to
guarantee the same final performance than SCCD. Figure 4 shows the performance of the
original formulation versus the adaptive version for different values of ∆ f coarse. In the
simulations, ∆ f coarse = factor · (1/(20M)). This is the reason why the figure is represented
as a function of the factors. In the case of SCCD, the spacing of the grid ∆ f = 1/(20M) was
always the same for all simulations.

Note that for values of ∆ f coarse > (1/2M), i.e., factor values greater than 10, the per-
formance of Adaptive-SCCD was worse than the performance of SCCD. This behavior
was due to the fact that large values of ∆ f coarse lead to a very coarse frequency grid. This
produces scenarios with M > N or even N ≤ p, where the coarse estimation fails to find all
the intervals of interest (i.e., some parts of the grid where the true frequencies are located
can not be detected in the coarse search). Therefore, some of these intervals of interest were
excluded in the fine frequency grid. As a consequence, the Adaptive-SCCD algorithm was
unable to estimate the true frequencies in the fine search.
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Figure 4. MSE versus factors for a scenario with SNR = 10 dB and p = 5 normalized frequencies.

As expected, we also observed in the simulation results that for larger values of M,
the final performance improved, but we must consider that the increase of M also had
an impact on the number of overall required computations. In [12], we outlined that the
Algorithm 1 can be efficiently implemented in hardware using the CORDIC algorithm. In
order to evaluate how the increase of the number of measurements impacts the complexity
of such an implementation, we provide Figure 5.

Figure 5. CORDIC operations versus M for a scenario with SNR = 10 dB, p = 5 normalized
frequencies, and ∆ f coarse = 1/4M. For analyzing the complexity of the algorithms, a second-order
polynomial in M was used. In addition, a linear fitting is also provided for Adaptive-SCCD.

Figure 5 shows the average numbers of required CORDIC operations of SCCD and
Adaptive-SCCD for different numbers of measurements. We considered the total number of
iterations until the algorithms finished. A second-order polynomial in M has been used to
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fit the points with resulting R2 (R-squared) values of 0.9988 and 0.9997 for Adaptive-SCCD
and SCCD, respectively. In addition, a first-degree polynomial fitting for Adaptive-SCCD is
also shown with an R2 (R-squared) value of 0.9834. Note that the complexity of Adaptive-
SCCD is significantly smaller than SCCD whenever the number of measurements increases.
This result confirms that the proposed technique significantly reduces the computational
complexity of the original formulation and provides a more efficient alternative for hard-
ware implementations. Moreover, the subspace method MUSIC has a computational
complexity of O(M2N + M2) [31]. As typically the number of grid points N � M, the
complexity can be approximated to O(M3). This implies that the computational cost of
MUSIC scales cubically with respect to the number of measurements while the complexity
of Adaptive-SCCD only scales quadratically in the number of measurements. Therefore, a
significant complexity gap should be expected between an implementation of the MUSIC
algorithm in digital hardware and the proposed method in scenarios where the number of
measurements increases.

4. Materials and Methods

The implementations were written in MATLAB 2008a and simulations were run on
an HP laptop running Windows 10 64-bit with an Intel(R) Core(TM) i7-7600 CPU and
16 GB of memory.

5. Conclusions

We proposed an adaptive algorithm based on SCCD for the frequency estimation
problem that requires significantly less computational effort than its basic version. The pro-
posed method relies on the sparse representation of the signal model, where the signal is
represented as a multiplication of a measurement matrix A with a sparse vector. In order
to estimate these frequencies, we proposed a method that effectively reduces the size of the
frequency grid and considerably reduces the overall computational complexity without
loss in performance. Moreover, the complexity of the method only scales quadratically with
the number of measurements, while for other alternative methods, such as Root-MUSIC,
it scales cubically. Basically, an implementation of Adaptive-SCCD in digital hardware will
mostly consist of CORDIC operations and additions. This will result in a significant com-
plexity gap between digital hardware implementations of Root-MUSIC and the proposed
method. Due to the structure of the algorithm, designs can be efficiently implemented
using sparse vector formats. Simulations have also shown that the proposed estimator
achieves similar results in terms of the MSE to the original version, and outperforms other
techniques such as Root-MUSIC.

The use-cases of a low-complexity and high-precision sparse frequency estimation
method are manifold, including real-time applications in areas such as audio signal pro-
cessing, radar or communications.
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Abbreviations
The following abbreviations are used in this manuscript:

SCCD Sparse Cyclic Coordinate Descent
MUSIC Multiple Signal Classification
ESPRIT Estimation of Signal Parameters via Rotational Invariance techniques
EVD Eigenvalue decomposition
SNRs Signal to noise ratios
OMP Orthogonal Matching Pursuit
IHT Iterative Hard Thresholding
LASSO Least Absolute Shrinkage and Selection operator
BPDN Basis Pursuit Denoising
LBI Linearized Bregman iterations
RIP Restricted Isometry Property
MC Mutual Coherence
LS Least square
RICs Restricted Isometry constants
CORDIC Coordinate Rotation Digital Computer
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