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Abstract: Structural health monitoring problems are studied numerically with the time reversal
method (TR). The dynamic output of the structure is applied, time reversed, as an external loading
and its propagation within the deformable medium is followed backwards in time. Unknown
loading sources or damages can be discovered by means of this method, focused by the reversed
signal. The method is theoretically justified by the time-reversibility of the wave equation. Damage
identification problems relevant to structural health monitoring for truss and frame structures are
studied here. Beam structures are used for the demonstration of the concept, by means of numerical
experiments. The influence of the signal-to-noise ratio (SNR) on the results was investigated, since
this quantity influences the applicability of the method in real-life cases. The method is promising, in
view of the increasing availability of distributed intelligent sensors and actuators.
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1. Introduction

The detection and localization of defects, based on measurements at a limited number
of spatial points, falls into the category of inverse problems which are usually ill-posed
and difficult to solve. Dynamical signals have the ability to detect hidden defects, and
provided that measurements can be postprocessed effectively, are very useful for structural
health monitoring purposes. The availability of cheap and interconnected sensors and data
processing power facilitate practical applications.

Structural health monitoring (SHM) problems are based on the postprocessing of
suitable measurements in order to monitor the structural health of a structure. Warning,
in case of significant changes from the healthy nominal model, is the first stage of SHM.
The qualification and quantification of damages and other deviation from the nominal
structural model are subsequent, more delicate tasks. They belong to the class of inverse
and parameter identification problems, which lead to ill-posed mathematical problems
that require delicate numerical processing tools. A general solution of inverse and parame-
ter identification problems in mechanics can be based on the comparison of predictions
based on suitably parametrized models with measurements, using optimization or soft
computing, as can be seen in [1–4], among others. A computational tool for solving a
class of inverse wave (and/or vibration) problems is the time reversal (TR) technique
originally introduced as a physical process [5]. Time reversal concepts have been raised in
several scientific communities and seems to be an object of high interest for mathematicians,
physicists and engineers. Time reversal is a technique that focuses waves onto a source or
scatter by emitting a time-reversed analogue of the received wave field measured by an
array of transducers. This refocusing is due to the reciprocity in space and reversibility in
time for the wave field [6,7]. The main idea behind TR is to send the recorded signals back
into the medium but reversed in time. Due to the time-reversibility of the wave equation,
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this process created a back propagating wave that will focus on the original source location.
A defect or damaged area can be understood to act as a secondary source and therefore the
principle of TR can be used to find its location.

The TR method has been used for the impact location determination in [8,9] and
for both impact location and force identification in [10,11]. Lamb waves in connection
with TR have been used in several works for the detection of micro-cracks in plates and
composite structures [12–20]. Good experimental results have been reported in several pub-
lications like [11,21]. Further information can be found in the review publications [22–24].
The technique has possible applications in difficult nonlinear identification problems, like
the breathing unilateral crack identification [25]. Furthermore, it can be used within active
SHM systems, incorporating modern deep learning techniques in order to solve difficult
identification problems [26].

Frame structures that are excited by some loading on respective source points called
xs are considered in this paper. The response is collected on a number of points called
receivers xr. Each receiver is defined by a pair of its spatial location and the direction
on which response is recorded and then we use time-reversal as an imaging technique
in order to detect and localize the defect. Receivers collect data for selected degrees of
freedom (DOFs) on some nodes, that for the used beam elements, are the axial, transverse
and rotational motions. For the source localization procedure, it is necessary to reverse
the responses of every receiver in time and from now on the receivers operate as actuators
because they transmit the reversal responses for each receiver/stimulator and save the
results on the selected point to use for imaging. These points will be referred to as the
imagers xi. Furthermore, we assume that we can measure or reproduce the scattered field
produced by some scatterer, that is the difference between the total field recorded in the
presence of the defect and the incident field which corresponds to the healthy structure.
Our approach is purely computational and therefore the response recordings are being
produced numerically (the so-called, pseudo-experiment). Because of reflections from
the boundaries, the scattered field is complicated and might appear at multiple arrival
time peaks.

Following work in the field of acoustics [27], the objective of this paper is to show
that the time-reversal invariance can be exploited in the context of structural dynamics to
accurately control wave propagation and to improve target detection through structures.
In this work, we introduce the computational time reversal approaches for engineering
structural problems focusing, but not confined, to frame structures. The investigation is
purely numerical, utilizing the so-called pseudo-experiments. Nevertheless, in view of
future experimental verification, the important influence of the signal-to-noise ratio was
investigated for various numbers and placements of sensors.

The paper is structured as follows. The theory of time reversal refocusing from a
reciprocity theorem’s perspective is presented in the next section. Section 3 presents the
computational dynamics steps used for the implementation of the method, including
the consideration of stochastic Gaussian noise and signal-to-error sensitivity analysis.
The numerical results are presented in section four. The next session presents some
investigations relevant to optimal sensor placement. The paper closes with conclusions
and proposals for further research.

2. Time Reversal Approaches for Structures

Our vehicle to present and justify time reversal approaches for structures would be
the elastodynamics reciprocal theorems, with a focus on frame structures. For convenience,
we will set up dynamics reciprocity for the Euler–Bernoulli beam theory as well as for the
axial wave propagation in a rod. Such reciprocity could be considered as an extension
of the classical Betti’s theorem [28] when inertial forces are also considered. It has been
shown in [29] that Betti’s theorem could be seen as a degeneration of the elastodynamics
reciprocal theorem in terms of velocities.
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2.1. Elastodynamic Reciprocity for Classical Beam Theory

The basic assumption of the Euler–Bernoulli theory is that a plane cross-section,
perpendicular to the axis of the beam, remains plane and perpendicular to the neutral axis
during bending. The differential equation of motion for a beam, considering both materials’
density and cross-section constant over the beam’s axis x is given as

EI
∂4u
∂x4 + ρA

∂2u
∂t2 = q(x, t) (1)

with the boundary conditions distinguished as the essential ones defined on x ∈ Γu:

u(x, t) = ū(x, t), (2a)

∂u(x, t)
∂x

= ψ̄(x, t) (2b)

and the natural ones defined on x ∈ Γt:

− EI
∂2u(x, t)

∂x2 = M̄(x, t), (2c)

− EI
∂3u(x, t)

∂x3 = Q̄(x, t). (2d)

with M̄ and Q̄ indicating the prescribed bending moment and shear force, respectively.
The necessary initial condition to accompany the above system are:

u(x, 0) = u0(x), (3)

∂u(x, 0)
∂t

= u̇0(x). (4)

We now consider a continuous function v(x, t) which is assumed to be the displace-
ment field for some other elastodynamic configuration for the same beam under loading
distribution w(x, t).

We recall at this point the definition of Riemann convolution. Riemann convolution of
functions f (t) and g(t) is defined as

g(t) ∗ h(t) =


t∫

0
g(t− τ)h(τ) dτ, for t > 0

0, elsewhere.
(5)

Taking the Riemann convolution in time of function v(x, t) with equation of motion (1)
and integrating over the x-axis we obtain:

EI
L∫

0

∂4u
∂x4 ∗ v dx +

L∫
0

ρA
∂2u
∂t2 ∗ v dx =

L∫
0

q(x, t) ∗ v dx. (6)

The first integral of (6) after sequential integration by parts can be written as

EI
L∫

0

∂4u
∂x4 ∗ v dx = EI

L∫
0

u ∗ ∂4v
∂x4 dx + EI

[
∂3u
∂x3 ∗ v− ∂2u

∂x2 ∗
∂v
∂x

+
∂u
∂x
∗ ∂2v

∂x2 − u ∗ ∂3v
∂x3

]L

0
. (7)
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The integral of (6) concerning inertial terms taking advantage of time convolution’s
identities can be written as

ρA
L∫

0

∂2u
∂t2 ∗ v dx = ρA

L∫
0

u ∗ ∂2v
∂t2 dx + ρA

L∫
0

v̇0u + v0u̇− u̇0v− u0v̇ dx. (8)

Substitution of (7) and (8) into (6), taking under consideration that v(x, t) is the
displacement field for the distributed loading w(x, t) results in the reciprocal relation
between states of (u, q) and (v, w), that is:

L∫
0

w(x, t) ∗ u(x, t) dx−
L∫

0

q(x, t) ∗ v(x, t) dx =

EI

[
∂3u(x, t)

∂x3 ∗ v(x, t)− ∂2u(x, t)
∂x2 ∗ ∂v(x, t)

∂x
+

∂u(x, t)
∂x

∗ ∂2v(x, t)
∂x2 − u(x, t) ∗ ∂3v(x, t)

∂x3

]L

0

+ ρA
L∫

0

v̇0(x)u(x, t) + v0(x)u̇(x, t)− u̇0(x)v(x, t)− u0(x)v̇(x, t) dx. (9)

As shown in what follows, the above reciprocal relation could serve as the starting
point of time reversal approaches for the case of the Euler–Bernoulli beam. Furthermore,
such an approach could be easily adapted in other cases of structural dynamics, e.g., axial
waves, Timoshenko beam theory, or to the more general linear elastodynamic case.

2.2. Time Reversal Refocusing as Outcome of Reciprocity

The TR is considered as a two-stage physical process. During the first step, the forward
problem takes place when an initial disturbance is such that excites higher frequency
motion in the structure which might be seen as axial and/or bending wave propagation
phenomena. The second step is the backward one where some quantity of the forward
process is reversed in time and re-emitted in the structure. It has been experimentally
observed that at the end of this backward process, energy has again been localized at the
area where the disturbance originally begun during the forward step [30].

Here, we make an effort to investigate this two-stage procedure through reciprocal
statement of linear elastodynamics. We also discuss some different possible ways in order
to fire the backward step.

2.2.1. Switching Time Reversal

We choose the (v, w) state to be the (v(x, t), u(x, T − t)). In this case, which is some-
times called a switching time reversal approach [31], the reciprocal statement would be:

L∫
0

u(x, t∗) ∗ u(x, t) dx−
L∫

0

q(x, t) ∗ v(x, t) dx =

EI

[
∂3u(x, t)

∂x3 ∗ v(x, t)− ∂2u(x, t)
∂x2 ∗ ∂v(x, t)

∂x
+

∂u(x, t)
∂x

∗ ∂2v(x, t)
∂x2 − u(x, t) ∗ ∂3v(x, t)

∂x3

]L

0

+ ρA
L∫

0

v̇0(x)u(x, t) + v0(x)u̇(x, t)− u̇0(x)v(x, t)− u0(x)v̇(x, t) dx. (10)

It can be shown that if the forward state is such that produces wave propagation
motion originated from a limited range on the spatial x axis of the beam, then a wave
refocusing on the same spatial range is expected to take place at the end of the reversed
motion in time.
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In the case of switching time reversal approaches, based on the reciprocal statement of
Equation (10), we expected to observe wave refocusing on the part of the initial disturbance
which produced the forward wave propagation motion. Such an approach could lead to
interesting time reversal computational tools [32,33]. A usual choice of such a disturbance
would be a concentrated impulsive load on point xs given by q(x, t)=δ(x− xs)δ(t) resulting
in motion u(x, t). In other words, we choose as forward state the one corresponding to the
fundamental solution for specific boundary conditions. For the current theoretical approach,
this is a good choice, which however could lead to numerical problems and therefore
we approximate it with some smoother equivalent. Using the method of eigenmodes,
the fundamental solution, also known as Green’s function, is given as:

u(x, t) = ρA
∞

∑
n=1

φn(x)φn(xs)

Mnωn
sin ωnt (11)

As regards the backward state, it is selected to be the motion v(x, t) produced by
a load distribution equal with the reversed in time forward displacement field, that is
w(x, t) = u(x, t∗), where t∗=T−t.

After substitution into the reciprocal statement of Equation (10) and some algebraic
manipulation we obtain:

v(xs, t) = (ρA)2
∞

∑
n=1

φ2
n(xs)

Mnω2
n
(sin ωn(T − t) ∗ sinωnt) (12)

calculating the time convolution integral we may further write as

v(xs, t) = −(ρA)2
∞

∑
n=1

φ2
n(xs)

Mnω2
n

sin ωn(t + T) + sin ωn(t− T)− 2ωnt cos ωn(t− T)
4ωn

(13)

which having its maximum value for time t=T:

v(xs, T) = −(ρA)2
∞

∑
n=1

φ2
n(xs)

Mnω2
n

sin 2ωnT − 2ωnT
4ωn

, (14)

it indicates a refocus on xs for the time T.

2.2.2. Time Reversed Switched Boundary Conditions

Here, we choose only the boundary conditions state to be the reversed in time switched
in space quantity. The swapping of boundary conditions is meant by means of energetically
corresponding pairs, that is:

v(x, t)↔ ∂3v(x, t)
∂x3

∂v(x, t)
∂x

↔ ∂2v(x, t)
∂x2

therefore:

L∫
0

w(x, t) ∗ u(x, t) dx−
L∫

0

q(x, t) ∗ v(x, t) dx =

EI

[
∂3u(x, t)

∂x3 ∗ ∂3u(x, t∗)
∂x3 − ∂2u(x, t)

∂x2 ∗ ∂2u(x, t∗)
∂x2 +

∂u(x, t)
∂x

∗ ∂u(x, t∗)
∂x

− u(x, t) ∗ u(x, t∗)

]L

0

+ ρA
L∫

0

v̇0(x)u(x, t) + v0(x)u̇(x, t)− u̇0(x)v(x, t)− u0(x)v̇(x, t) dx. (15)
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The proposed procedure can be seen as a generalization of [31,34], where only free
surfaces have been studied. A more specific choice of this reciprocal statement would be
that of concentrated impulsive load on some point xs for the forward configuration while
for the backward one to assume to be free of excitation loading. Both states are considered
to be under silent initial conditions and therefore the reciprocity relation can be written as:

v(xs, t) =

EI

[
∂3u(x, t)

∂x3 ∗ ∂3u(x, t∗)
∂x3 − ∂2u(x, t)

∂x2 ∗ ∂2u(x, t∗)
∂x2 +

∂u(x, t)
∂x

∗ ∂u(x, t∗)
∂x

− u(x, t) ∗ u(x, t∗)

]L

0

(16)

In this case, we can not take advantage of modes’ orthogonality; however, the terms of
the form of Equation (13) existing here are also dominating resulting in a maximum value
of v(xs, t) at time t=T with a refocusing of the wave field on the point xs.

3. Computational Time Reversal for Structures

In computational TR, at least one of the two steps, that is forward or backward step,
is to be done numerically using some appropriate method, e.g., finite element method
(FEM) or boundary element method (BEM). Here, we use the conventional FEM, used
in the majority of structural dynamics problems, realizing the switched TR described in
Section 2.2.1. However, it is worth mentioning that in specific cases, it could be that BEM
would be the natural choice [35] for utilizing the TR approach described in Section 2.2.2.

The methodology could be stated as described in Figure 1. We assume, in the forward
step, that a source excites on some point xs the structure and that the response ur(t) is
recorded on some other point xr for the time duration T. Then, in the backward step,
the reversed in time response’s signal ur(T− t) is re-emitted as excitation on the xr point.
In that backward step, an energy refocusing will appear on the xs point after the same
duration of time T. This main application is called a source localization approach. Another
application is that of damage detection which considers damage location xd as the point of
a secondary source. This secondary excitation equals the signal scattered by the presence
of the damage and could be given in relation to the original incident field emitted by the
source at xr as

ud
r = ut

r − ur (17)

in other words, ut
r contains both primal and secondary source influence on response, ur

only that of the original one and ud
r that of damage scattered field. Therefore, by re-emitting

(in the backward step) the signal reversed in time ur, one could locate the original source;
by re-emitting ud

r , one could locate the secondary source due to damage; and finally, by ut
r

re-emission, one could locate both the original and secondary sources.

Figure 1. A schematic representation of the two distinct steps of time reversal: the forward (left); and
backward-one (right).
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3.1. Standard Forward Step

For a time interval of interest T, the finite element model of a system of N DOFs under
transient dynamic conditions will be governed by equations of motion:

Mü(t) + Cu̇(t) + Ku(t) = f (t)f (18)

where f is a load vector usually containing unit values for the components corresponding
to degrees of freedom acting as probes or otherwise zeros. Furthermore, K is the standard
stiffness matrix, M the mass matrix and C the matrix for the damping. Temporal function
f (t) might be given as a Ricker pulse of the form:

f (t) =
(

1− 2π2s2(t− t0)
2
)

e−π2s2(t−t0)
2

(19)

We assume a subset of the system’s DOFs, ur ⊆ u, where data acquisition takes place
by recording the time history of response.

3.2. The Time Reversal or Backward Step

The time histories for recorded DOFs ur are time-reversed and retransmitted into the
medium as excitation (sources).

M ¨̂u(t) + C ˙̂u(t) + Kû(t) = f̂ (t)f̂ (20)

Following previous work [33,36], our choice here is to assume f̂ of zero values com-
ponents or units when it corresponds to some ur component. Evolution f̂ (t) = u(t∗) is
the reversed in time component of vector u, actually being the solution of the forward
problem of Equation (18). For the case of structural irregularities, i.e., damage localization,
ur contains the scattered field response.

Of crucial importance is the choice of quantity to be monitored in order to observe
refocusing during the backward step. Such refocusing on appropriate discrete time step [33]
or time averaged [37] will indicate the spatial location of original source point of the
forward step. As for monitoring quantity, we consider here the value of some DOF, its time
derivative, some appropriate norm (e.g., Euclidean) or even some energetic quantity, as
would be the density of elastic, kinetic or total energy.

3.3. Signal-to-Noise Ratio

One of main objectives of this work was the investigation of the signal-to-noise ratio
(SNR) for various receivers’ placement scenarios. Signal-to-noise ratio is a quantity of
paramount importance, defined as the value of the image at the true source location divided
by the noise, defined here as the maximal value of the image outside a region around the
true source location. The parametric study of SNR can give us a directive on the amount
of receivers we should need for imaging. Furthermore, it has been found to be very
instructive for investigating the optimal sensors’ placement together with the quantity we
should monitor on each location. For that purpose, two parametric studies have been done,
in one-dimensional beam and two-dimensional frame structure.

3.4. Illustrative Comparison

We present here the results for a common setup by utilizing both approaches that
arise from Sections 2.2.1 and 2.2.2. These TR approaches fulfil the partial information
property [38]. We consider a simply supported beam of length L. During the forward
step, excitation loading acts as a source on the 0.65 L point in the form of a Ricker pulse of
Equation (19) both in the transverse and axial direction. Our selection of the monitoring
quantity is that of the total energy density.

As it can be observed in plots of Figure 2 together with the original point of source at
0.65L, two other smaller peaks (ghosts) are present. The ratio of the peak at the original
source location to the ghosts’ peaks is increased with the increasing number of receivers.



Signals 2021, 2 232

The presence of ghosts is due to the bounded range of the domain and their location
depends on the location of the receiver and boundary conditions. An in depth investigation
has been presented in the literature [36] for the case of the acoustic field. In the current
work, in the following section we present further results for the case of a beam and frame
structures. Furthermore, in the plot of Figure 3, similar results for this specific example are
presented for the switched boundary conditions’ time reversal, presented in Section 2.2.2,
with very satisfactory results in the absence of ghosts. However, the TR of Section 2.2.1 is a
better choice since it is fully adaptive with possible unlimited SNR improvement.

(a)

(b)
Figure 2. Spatial distribution of energies densities (J/m) from the backward step of switching time
reversal (Section 2.2.1) at the time step corresponding to the original source excitation. Plot (a) is by
considering a receiver at about 0.2 L while plot (b) corresponds to similar results adding another
receiver at the location about 0.3 L.

Figure 3. Spatial distribution of energy densities (J/m) from the backward step of time reversal at
the time step corresponding to original source excitation. Here, the time reversal (TR) approach is for
the full boundary conditions switch described in Section 2.2.2.

4. Applications with Numerical Examples

The proposed technique has been used for the study of a couple of rather academic
numerical examples and their solutions have been implemented in a Java open source
framework for calculations [39]. The first one is related to an one-dimensional beam. A two
dimensional frame structure, which is a common structure in various applications, is
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studied in the second example. It should be emphasized that the present feasibility study
considers academic examples including the material properties, which do not represent
specific real structures or materials. In particular, a standard approach in acoustics consid-
ering unit values for both the elasticity modulus and density is followed here, resulting in
unit wave propagation velocity for axial waves.

4.1. Energy Refocusing

A very interesting application of TR that could be seen as a structural active control
procedure is that of energy refocusing [34]. This application switches the usual implemen-
tation of TR where the forward step is assumed to be the one realized physically as the
data acquisition procedure and the backward one to be the one to be held numerically.
As an energy refocusing example, the issue could be stated as: find the excitation to be
imposed on a limited number of specific locations of the structure, such that the energy
to be focused on some particular location of the structure in a controlled manner and in a
well-approximated time. In order to succeed, the forward problem is numerically solved
on a digital twin of the structure, by exciting some source location and the response on a
limited number of spatial points and selected DOFs for a time duration T is collected. Af-
terwards, the structure is stimulated by exciting the selected DOFs on the specific locations
by imposing loads as the time reversed collected response data and expected the energy to
be refocused on the original source location after the passage of time equal to the original
forward procedure duration T. The intelligent usage of this concept, for instance, with the
help of remote sensors and actuators, will enhance the performance of structural health
monitoring systems.

4.2. Source Localization

In contrast to the TR application presented in Section 4.1, here, we return to a more
usual application, that of source localization. Here, we assume that the forward step might
be held physically in the process of which response data is collected in a limited number of
DOFs on specific spatial locations. Then, we may take advantage of these data since by
numerically solving the backward step, we may redefine the original spatial location of
the source.

4.2.1. One-Dimensional Beam

In this section, the 1D beam is analysed and the results of the source localization are
presented. During the forward process, an excitation source located at point xs and three
receivers, equidistantly distributed along the medium at L/3, 2L/3 and at the end of the
free edge, collect the data.

For the calculations of the academic example presented here, a one-dimensional beam
with a length L = 30 m, mass density ρ = 1 kg/m3, modulus of elasticity E = 1 Pa and
Poisson’s ratio ν = 0.25. Moreover, the total experiment’s duration was T = to +

2L
c1

= 63 s,
where the initial time is to = 3 s , the number of discrete time steps is chosen as a power of
two (212) and the mesh is the 1950 finite elements which means a distance between nodes
dx = 0.015 m and a time step dt = 0.015 s.

During the forward process, we assume three receivers, along the axis of the beam,
collecting data for displacements and/or velocities for every DOF of nodes. The backward
step problem is numerically solved again for each receiver. The receiver now acts as a
source point that emits the recorded signal reversed in time as loading. Refocusing the wave
at the source point xs takes place at time T−t0 = 60 s. Plots of Figure 4 depict the Euclidean
norm of displacements at the specific discrete time step Nt− t0

dt = 3900. It is important to
mention that secondary peaks are presented because of the existence of the boundaries.
These peaks are also responsible for the noise created because the domain is bounded and
waves are reflected back. The exact location of these secondary peaks depends on the
relative position of receivers. This fact acts beneficially on the SNR improvement using



Signals 2021, 2 234

multiple receivers distributed on the body of some structure, as it will be shown later in a
following section.

(a) Receiver xr = L/3 (b) Receiver xr = L/3

(c) Receiver xr = 2 L/3 (d) Receiver xr = 2 L/3

(e) Receiver xr = L (f) Receiver xr = L
Figure 4. Imaging using the absolute value of the axial (left column) and the norm of the transverse and rotational (right
column) displacement (m) degrees of freedom (DOFs); the green line (with a dot on the horizontal axis) is the location of
the receiver while red line (with an asterisk) is the location (m) of the source.

4.2.2. Two-Dimensional Frame Structure

In order to demonstrate the applicability of the method to more complicated geometries,
a 2D frame structure made of an assembly of beams is studied (see Figure 5). The structure
is assumed to be of a total length L = 30 mm while the height is H = 10 m. The modulus of
elasticity was chosen E = 1Pa, the mass density ρ = 1 kg/m3 and the Poisson’s ratio ν = 0.25.
The total duration of the numerical experiment for T = to +

2L
c1

= 63 s, where the initial time is
to = 3 s when the source is imposed as a pulse, the number of discrete time steps is chosen as a
power of two 211 and the number of elements for every beam between the main nodes is 200,
which means a total number of 2800 finite elements.

Figure 5. Geometry of 2D frame structure, axes in meters (m). The bright red point is the location
of the source, arrow icons show the direction of each receiver while the numbers give the ID of
main nodes.

During the forward procedure, six receivers are used to collect the response data (displace-
ments and velocities) for every DOF (two translational and one rotational). In Figure 5, the
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possible positions of sensors are indicated together with the respective recording directions for
every receiver. There is one single excitation point on the node of ID = 2 at the bottom horizontal
part of the assembly. The leftmost and rightmost nodes are restrained in zero horizontal and
vertical displacement.

For the backward step, the time when the wave refocuses on the excitation point is
T − t0 = 60 s, that is the tr = 1949 discrete time step. In the plots of Figure 6, the Euclidean
norm of displacements, with respective units, is shown for the tr time step. While in the
plot of Figure 6b, one may observe that ghost refocused signals are not so strong, in the rest
of the plots of Figure 6, there is an obvious appearance of a symmetric-like ghost on node
4 with the value of the same order. Furthermore, we considered a 10% level of Gaussian
noise in the recorded signals of displacement, and observed that the location of the source
can be similarly well reconstructed.

(a) Receiver at node 3 (b) Receiver at node 3

(c) Receiver at node 7 (d) Receiver at node 7
Figure 6. Imaging using the norm for axial (left column) and transverse (right column) displacement (m) DOFs; the green
line is the location of receiver while red line is the location of the source.

4.3. Optimal Placement of Sensors

In this section, the SNR for both the one-dimensional beam and the 2D frame structure
is studied. The framework is the same for both configurations with the previously presented
examples. A fixed set of possible receivers is initially assumed, each of them defined by
the spatial location and the monitored DOF. The first initial receiver is chosen, to check for
the SNR obtained using some specific monitored quantity. Then, the number of receivers
is gradually increased, randomly chosen from the fixed set of possible ones, and the
SNR is tracked. This way one is able to observe the influence of the increasing number
of receivers on the SNR and to choose the optimal placement of receivers for a specific
number of sensors in order to optimize the structural health monitoring system for a certain
SNR measure.

4.3.1. One-Dimensional Beam

For the one-dimensional beam case, we studied sets of receivers chosen from a maxi-
mum number of 12 possible equidistant receivers. Starting from a single receiver, then the
number is gradually increased by one, randomly chosen by the set from the fixed possible
12 sensors. Results for the SNR are shown in Figure 7 where it is obvious that an increasing
number of receivers SNR is improved (increased). The plots indicate an almost linear
relation with respect to the receivers’ number with deviations that occurred because of
ghost superposition or cancellation. For the case of axial motion, the case of the left plot in
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Figure 7a, the factor of the linear evolution with the number of receivers is that of two as it
was expected [36], while in the case of transverse and rotational motion depicted in the
plot of Figure 7b, the corresponding coefficient is smaller.

(a)

(b)

Figure 7. Signal-to-noise ratio (SNR) for various sets of receivers (a) using recordings of axial motion
and (b) using recordings of transverse and rotational motion. The number of receivers is indicated
on the horizontal axis.

4.3.2. Two-Dimensional Frame Structure

In the case of the 2D beam assembly, the 12 possible positions and monitored DOFs
are shown in Figure 5. The main aim of this investigation was to define the optimal set
of receivers from the available fixed number of 12 existing sensors. Figure 8a shows the
SNR for 31 random receiver sets. SNR is defined as the ratio of the max peak value at the
source point and the next max peak value, less than the global maximum one. In order to
determine the optimal solution for a specific number of receivers, the higher SNR is chosen
from Figure 8a at the abscissa corresponding to that number of receivers. In Table 1 (original
signals), one may observe that for 4 (y3, y2, y8, x8) and 10 (y3, y2, y8, x8, x7, y6, x4, x2, y7, x6)
receivers, the optimal solution belongs to the same receiver set (see Figure 8b, optimal
set B). Moreover, the receiver sets for two, six and eight receivers are different, as shown in
Figure 8b as the optimal sets A, C and D, respectively.
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(a)

(b)

Figure 8. (a) SNR plot for 31 random receiver sets; and (b) optimal receiver sets. A is for 2, B is for 4
and 10 receivers; C is for 6 receivers; while D is for 8 receivers. On the horizontal axis, the number of
receivers is indicated.

Considering Gaussian noise, optimal receiver sets for various numbers of sensors
differ from each other, except for the scenarios with 8 and 10 receivers. In Figure 9a, the SNR
is plotted after randomly placing 31 receiver sets. Specifically, in Table 1 (noise considered),
the optimal receiver sets for various numbers of sensors are shown. In Figure 9b, the SNR
evolution with consecutive placement of receivers for these optimal sets is depicted.



Signals 2021, 2 238

(a)

(b)

Figure 9. (a) SNR plot for 31 random receiver sets considering noisy data; and (b) optimal receiver
sets. A is for 2; B for 4; C for 6; and D for 8 and 10 receivers, respectively. On the horizontal axis, the
number of receivers is indicated.

Table 1. Optimal receiver set.

Original Signals Noise Considered

# Recs/Opt.set A B C D B A B C D D

2 y3, y2 y8, y2
4 y3, y2 y8, x8 x8, y6 y8, y2
6 x8, y4 y3, y2 x6, x2 y6, x8 x2, x7 y2, y8
8 x3, y4 x6, y8 x4, y2 y6, x2 x3, y4 y7, x2 y8, y2 x8, y6
10 y3, y2 y8, x8 x7, y6 x4, x2 y7, x6 x3, y4 y7, x2 y8, y2 x8, y6 x6, y3

4.4. Damage Identification
4.4.1. One-Dimensional Beam

In this section, a small damaged area is assumed on the beam, from x1 = 0.1795 L to
x1 = 0.18 L where the modulus of elasticity Esc = 0.2 for the material and the cross-section
Asc = 0.5 are reduced. The corresponding reduced wave speed on that altered area is
csc,1 = 0.2 m/s. For that controlled numerical experiment, it is possible to estimate or
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even with accuracy, calculate the time needed for the incident field to reach the scat-
terer. The source pulse is emitted at 0.75 L and the first damaged boundary is at 0.18 L,
the distance between these nodes is 0.57 L = 17.1 m. The wave speed for axial waves is
c1 = 1 m/s, therefore a time t = 17.1 s. The time ta

sc that the damaged area acts as a
source (scattered field) because of the damage corresponds to the time when the axial wave,
originally created at time t0 because of the primal source, approaches the damaged area.
Therefore, the corresponding refocusing time during the backward step is T−(ta

sc+t0),
where T is the total duration of forward process. Similarly, the refocusing time for trans-
verse waves is T−(tb

sc+t0), with tb the time needed for bending waves initiated from the
source to approach the damaged area. The plots of Figure 10 illustrate refocusing cases
considering different receivers as well as distinguishing the case when axial or bending
waves are examined. As it can be observed, the identification and location of the damage on
the beam for almost any selection of receiver and wave monitoring (DOF type) is possible.
The exception seems to be the case of Figure 10f, which is intentionally presented here,
in order to mention the reason that is the limited duration time of the experiment. Bending
waves initiated from the secondary source at the damage area do not have the necessary
time to approach the rightmost receiver, also keeping in mind the initial time t0 and the
time tb

sc needed for the primal wave to approach the damage area and fire the secondary
wave emission.

(a) Receiver xr = L/3 (b) Receiver xr = L/3

(c) Receiver xr = 2 L/3 (d) Receiver xr = 2 L/3

(e) Receiver xr = L (f) Receiver xr = L
Figure 10. Refocusing for damage detection using the displacements (m), the absolute value of axial response in the left
column and the norm for the transverse and rotational DOFs in the right column of the scattered field. The green line is the
location of the receiver while the red line is that of the source and the grey line indicates the damage.

4.4.2. Two-Dimensional Frame Structure

Some preliminary results from an ongoing study are presented for the case of some
scatter, i.e., damage, in a two-dimensional frame. To be more specific, damage is assumed
to be located at some small area ranging 10 nodes (nine finite elements), located from
(15.0, 4.5) to (15.0, 5.0) (see Figure 5). Moreover, the mechanical features of this area is
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the material’s modulus of elasticity Esc =
E
5 = 0.2 and the cross-section Asc =

A
2 = 0.5.

These values result an important reduction in wave velocities within the damaged area.
The time for which the wave reaches the damaged area is estimated to be between 655 and
670 time steps. As a result, because of time reversibility, the expected discrete refocusing
time range turns out from the subtraction of Nt = 211 resulting a time step range between
1378 and 1393. In Figure 11 (left) it can be observed that in the discrete imaging time step
1373, there is a bright red colour near the scattered area. In Figure 11 (right), the evolution
in time of the maximum value of the monitored variable is plotted, which may serve as an
indicator for defining the appropriate time step for the reconstruction of refocusing. It was
mentioned here that one should further critically consider both the selection of the most
appropriate monitored variable (displacement, velocity, energy based, etc.) as well as the
most proper tracker of that imaging variable’s norm evolution in time (maximum value of
Euclidean norm, Shannon entropy, etc.).

(a) All receivers (b) All receivers
Figure 11. Imaging (a) using the total number of possible receivers and choosing as the imaging variable the norm of
displacements (m); the intersection of the two horizontal and one vertical grey line show the location of scattered field. (b)
plot, evolution in time (s) of the maximum value of the norm of displacements (m).

Figure 12 presents the SNR for 25 random receiver sets. It is worth mentioning
that SNR has an almost linear attitude both for displacements or velocities as monitored
variables. However, there is a considerable focused signal in the damage area when more
than eight or nine receivers are used. As a result, here the ratio is always calculated using
the value of the monitored variable in the damage area divided by the maximal value
outside this area. Figure 12 (right) indicates that nine receivers are required in order to
identify the defect. For this reason, if less than nine receivers are used, the SNR is lower
than 1.

(a) (b)
Figure 12. SNR for various sets of receivers using the norm of displacements (a) and velocities (b). On the horizontal axis,
the number of receivers is indicated.
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4.5. Imaging in Frequency Domain

Imaging techniques traditionally take place in the frequency domain. By this, one
avoids the need to establish the appropriate time step of a refocusing snapshot. The imaging
functional for our case is given as [33]:

Im =
1

2π ∑
ω

Nr

∑
r=1

ĥrs(ω) f̂s(ω)ĥrm(ω) =
1

2π ∑
ω

Nr

∑
r=1

ûr(ω) ĥrm(ω) (21)

which associates a value at the mth DOF by back propagating the recordings (data) reversed
in time, ûr(ω), using all receivers and all available frequencies. For problems of damage
localization in the frequency domain, the scattered field at the receivers are considered
and the imaging functional is defined as (mention here that a typo originally existed in the
respective equation of chapter [33] has been corrected here in Equation (22)):

Im = ∑
ω

Nr

∑
r=1

ûsc
rs(ω) ĥrm(ω)ĥms(ω), (22)

where ûsc
rs(ω) is the scattered field recorded at rth DOF due to an excitation at the sth DOF.

A numerical example based on the same setup as that of Section 3.4 is presented for
the general case of source localization based on Equation (21). To the best of the authors’
knowledge, such an implementation for the case of beam bending has not been published
in the literature to date. Similar implementation was first presented in [40] for the case
of an 1D acoustic field or for the axial deformation of a rod. It has been assumed that
there exist five equidistant stations on the beam that may operate as the source and/or
receiver points to emit signals in the form of Ricker pulses and/or record the response
data of beams’ transverse displacements. The experiment has been conducted numerically,
using 480 nodes with a respective number of finite elements. For the spatial locations
where values for imaging are to be defined, 103 points have been considered including
the two boundaries. The results for imaging where source localization is performed using
Equation (21) are depicted in plots of Figure 13 for several source locations, each time using
the same number of receivers.

(a) Source at xs = L/2

Figure 13. Cont.
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(b) Source at xs = 4 L/6

(c) Source at xs = 5 L/6
Figure 13. Imaging performed using Equation (21) for several source locations (red vertical line), each time using the same
number of receivers (green vertical lines).

5. Conclusions

The time reversal method has been used for the study of structural health monitoring
problems with beam and frame structures. The method is based on solid theoretical
investigations in the area of wave propagation in continuous media and must be specialized
for classes of structures. Beams and two-dimensional frames are studied here, since these
are the most common elements in structural analysis. Future investigations may consider
three-dimensional frame structures and plates or shells.

TR is based on the time reversibility of the wave equation. In theory, if all output
signals can be measured and fed, after reversion, onto the structure, the resulting wave will
refocus on loading sources or damages and other defects. In practice, the measurement and
utilization of all output signals is impossible due to technological and resource limitations.
Therefore, the practical question arises where to put measurement devices, how many of
them and which DOFs one should capture. These questions must be replied for every
specific class of structures, like trusses, frames, plates etc. This justifies the numerical
investigation reported in this paper. On top of that, the structure can not be isolated from
the environment and parasitic reflections from boundaries or structural elements away
from the area of investigation appear. These parasitic parts of data are characterized as
noise. The influence of the signal to noise ratio on the effectiveness of the method was the
second task of our investigation.

The numerical experiments reported here have demonstrated that the source and
damage identification is possible based on TR technique. The investigation has been
based on unit values of elasticity and cross-section constants. The application of real data
is straightforward.
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The applicability of the method to a specific structure and task requires the careful
consideration of several parameters indicated in the present study, such as the number and
placement of the sensors and the quantities to be measured and used. Furthermore, a BEM
time reversal implementation utilizing time reversed boundary conditions, which may
be of interest for certain applications, is under consideration. For practical applications,
signal and measurement errors as well as the existence of stochastically distributed material
parameters, must be investigated. Furthermore, an experimental verification is planned.
All these aspects are left for future research and development work.
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