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Abstract: Brain source localization has been consistently implemented over the recent years to
elucidate complex brain operations, pairing the high temporal resolution of the EEG with the high
spatial estimation of the estimated sources. This review paper aims to present the basic principles of
Electrical source imaging (ESI) in the context of the recent progress for solving the forward and the
inverse problems, and highlight the advantages and limitations of the different approaches. As such,
a synthesis of the current state-of-the-art methodological aspects is provided, offering a complete
overview of the present advances with regard to the ESI solutions. Moreover, the new dimensions
for the analysis of the brain processes are indicated in terms of clinical and cognitive ESI applications,
while the prevailing challenges and limitations are thoroughly discussed, providing insights for
future approaches that could help to alleviate methodological and technical shortcomings.
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1. Introduction

Electrical Source Imaging (ESI) is an imaging technique utilized to localize the acti-
vated brain regions by incorporating temporal and spatial components from electroen-
cephalogram (EEG) signals. Although this imaging method provides fine temporal res-
olution compared to other imaging methods, such as the functional magnetic resonance
imaging (fMRI), the number of electrodes used to record the brain electrical potentials is sig-
nificantly smaller than the number of activated neurons, rendering EEG source localization
an ill-posed problem. To determine the generating source of the brain’s electrical activity,
the scalp potentials (i.e., the potentials created by the synchronous activation of pyramidal
neurons in the brain [1], which are propagated through the different tissues that compose
the head) are recorded by an array of surface electrodes. Then, an estimation of the signals’
origin is calculated through Poisson’s equation [2]. Poisson’s equation is directly derived
from Maxwell’s equations, given that the head tissues have the permeability of free space,
while the localization of the activated regions within the brain is commonly referred to
in the literature as the inverse problem. On the contrary, computing the scalp potentials
from a given source (a prerequisite to calculate inverse solutions) is designated as the EEG
forward problem. As such, given that Poisson’s equation highly depends on the accurate
values of the electrical and geometrical properties (thickness, conductivity, etc.) of the head
tissues (scalp, skull, cerebrospinal fluid (CSF), brain cavities, etc.), it is evident that a precise
head model is critical to solve the forward problem correctly. To address this, anatomical
information can be provided by magnetic resonance imaging (MRI). Nevertheless, it is
extremely difficult to obtain head MRI in a subject-specific fashion. Thus, a large number
of studies rely on template anatomical information [3–5]. Having a proper head model also
facilitates the correct electrode positioning, since the location of each electrode varies for
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each individual (although to a small degree). In this context, the anatomical information
as well as the corresponding electrode locations comprise the Leadfield matrix, the accu-
rate calculation of which is closely related to the accuracy of the solutions of the inverse
problem [6]. The EEG source localization has puzzled researchers since a vast variety of
combinations of sources can produce the same signals recorded by the EEG [7]. This is a
fundamental problem of EEG source localization, because even with a flawless head model
and an excellent noiseless signal, the number of equations that can be solved is minuscule
compared to the number of dipoles (source points) within the brain, leading to non-unique
possible solutions. This non-uniqueness can be handled with mathematical, anatomical or
neurophysical constraints about the location and the direction of dipoles [8,9]. Therefore,
even if non-uniqueness is not guaranteed, these a priori assumptions are utilized, in order
to reduce the computational needs for the source estimation and increase the accuracy of
the solutions.

However, owing to recent advances which incorporate novel methodologies as well
as the introduction of machine learning approaches in solving the inverse problem [10,11],
the required time and the computational resources for the solution have been significantly
reduced. Furthermore, sophisticated algorithms have diminished the localization error
efficiently, estimating the location and activation of the different cortical regions [12]. This
is evident in several applications, ranging from detecting and assisting the therapy of
epilepsy, to interpreting emotions from facial expressions [6,13].

This continually updated progress in both the forward and the inverse problem
solutions, designates ESI as a “living” tool, revolutionizing neurodynamic analysis in
clinical, biomedical and cognitive applications. On this premise, the presentation of the
current advancements in EEG source localization have been the key motivation in this
review paper, which aims to highlight the different approaches of the multiple state-of-the-
art ESI algorithms, pinpointing the advantages and disadvantages of each method, as well
as their related limitations that affect the spatial resolution or the computational complexity.
Moreover, the recent clinical and cognitive applications of EEG source localization are
discussed, as well as the implications and challenges occurring due to methodological and
technical constraints, proposing future actions.

2. State-of-the-Art

In this paper, current ESI implementation approaches, trends and challenges are
presented. The databases examined for the synthesis of the studies presented were—
PubMed, Scopus, ScienceDirect and Google Scholar. Eligibility criteria included research
works that incorporate recent advancements (published after 2015) regarding forward
and inverse solutions, clinical and cognitive applications and methodological/algorithmic
aspects of source imaging.

2.1. Forward Problem

To solve the EEG forward problem, three main configurations are required—(a) the
head and source models (i.e., the location of the solution points in the brain), (b) the
electrode alignment on the head model, and (c) the Leadfield matrix using the channel
locations in relation to the anatomical information of the head model. As such, the solution’s
accuracy highly depends on the efficient generation and composition of the above. The
basic components and the flow of processes are shown in Figure 1.

Regarding the creation of the head model, the integration of anatomical data has
rendered earlier widely adopted spherical head models outdated [14]. Converting MRI
images into head models is a time-consuming process with a high computational cost, and
this procedure presents optimal results in terms of localization accuracy. Nevertheless,
subject-specific MRI recordings are not always available, requiring the head model to
be constructed through computational methods. In this regard, however, it is important
to emphasize that the sophistication of the head models does not display a linear trend
with ESI localization, leading to high implementation complexity (e.g., inclusion of skull
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spongiosa) to demand significant computational resources, with little to no significant
impact in spatial accuracy [15,16].

The most common methods utilized for head-modeling are the boundary element
methods (BEMs), finite difference methods (FDMs) and the finite element methods
(FEMs) [17–20]. The Projective Method (PM) (that incorporates the mathematical de-
scriptors of surfaces, such as Fourier descriptors, and dimensionality reduction methods,
such as Principal Component Analysis), is also well established, albeit less common [21,22].
Of note is that for PM, in contrast with the aforementioned methods, the time required to
extrude the head model and the computational resources is drastically reduced, but with
lower spatial resolution [23].

Regarding the frequently employed algorithms, FEM and FDM provide more analyt-
ical outcomes and can tackle inhomogeneity problems, which is vital if the head model
requires the modeling of anisotropic properties of white matter and the skull. On the other
hand, BEM presents lower computational time and accuracy in comparison to the FEM
and FDM, being unable to treat inhomogeneous and nonlinear problems.

Even though the FEM approach provides a more well-established detailed model,
since it incorporates more than the three standard head tissues, its universal implemen-
tation has been hamstrung due to its computational needs and lack of open-source tools
incorporating a complete FEM approach. However, the Fieldtrip–SimBio pipeline has
been recently introduced, providing an integrated EEG forward problem solution, while
employing an FEM-created head model [24]. On this premise, it should also be noted that
subject-specific MRIs are not always possible to be recorded. For this reason, an averaged
(standardized) volume conductor model using the ICBM 152 anatomical template and
the FEM (“The New York Head”) was created, showing promising results in ESI, com-
pared to other standardized FEM and BEM approaches [25]. While FEM effectiveness is
shown to be comparable with analytical solutions [26], adverse issues could occur due
to skull leakage effects (i.e., the inhomogeneity of skull thickness), which could lead the
implemented model to present similar properties to a simple three-layer sphere model [27].
In order to overcome this inconsistency, different FEM approaches are used, deviating
from the standard continuous Galerkin–FEM method (CG-FEM) by creating a mixed or
discontinuous Galerkin–FEM utilizing the subtraction approach [28,29]. Evidence suggests
that this solution combines the benefits from both approaches, decreasing the skull leak-
age effect [19]. Furthermore, using analytical expressions combined with the subtraction
approach, the accuracy of the forward problem solution was increased compared to other
numerical approaches with similar computational costs [30]. Increments in the precision
of the EEG forward problem results have also been demonstrated by the incorporation of
tissue inhomogeneity, even within the gray and white matter [31]. Apart from FEM, com-
putationally efficient and accurate solutions have also been achieved with the introduction
of anisotropic conductivity equations and utilization of the reciprocity theorem [32] on
FDM head models (AFDRM-NZ) [33]. In this regard, anisotropic conductivity values are
integrated by employing a set of surface integral equations aligning the produced solu-
tions with the analytical results [34]. Of note is that the skull conductivity and, therefore,
the correct modeling is a pivotal point, which, due to head abnormalities or insufficient
imaging tools, can be challenging to approximate [35]. To address this issue, Bayesian
Approximation Error (BAE) approaches displayed high efficiency in reducing the source
localization error by several millimeters, enhancing spatial accuracy, which is crucial in
clinical applications [36].
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Figure 1. Information flow and basic components of the forward and inverse problems. 
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different parts of the brain using spatial filters, thus allowing the solution computations 
to occur independently for each solution point.  
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Figure 1. Information flow and basic components of the forward and inverse problems.

2.2. Inverse Problem

Contrary to the forward problem, the inverse problem cannot be uniquely solved if
there are no a priori restrictions about the source locations [37]. This fact has led researchers
to incorporate various mathematical constraints preceding the source estimation, thus re-
ducing the number of possible solutions deriving from the recorded data. Such constraints
are the core of many of the conventional methods used to solve the inverse problem. The
inverse methods that are commonly used fall into two main categories—non-parametric
(non- adaptive) and parametric (adaptive) distributed source imaging.

Although there is an extremely large number of ESI methodologies for parametric
(e.g., Beamformers, Multiple Signal Classification) and non-parametric (e.g., Minimum
Norm Estimate, Focal Underdetermined System Solution, Local Auto-Regressive Average)
distributed source imaging methods of the inverse solution, in this paper, we focus on the
most commonly employed algorithms, to highlight the progress of ESI. For an extensive
review of the mathematical aspects and properties of several of these conventional methods
and their variants, that are beyond the scope of this review paper, please refer to the
thorough reviews [38,39].

The most frequent non-parametric algorithms employed are the minimum norm
estimate (MNE) solution [40] and its depth-weighted variant (dw-MNE) [41,42], although
several other designs take into account the same principles with modified settings and
additional parameter incorporation. For instance, the low resolution electromagnetic
tomography activity (LORETA) estimates the current density given by the minimum norm
solution but with a more sophisticated regularization, utilizing a discrete Laplace operator
that selects preferentially spread source (“smooth”) distributions, in contrast with the
MNE’s identity matrix [43,44]. On the other hand, parametric distributed source imaging
methods commonly include Linear Constrained Minimum Variance (LCMV) beamformers
that depend on structurally related filters to provide efficient source localization irrespective
of noise covariance [45]. Contrary to the non-parametric approaches for solving the inverse
solution, LCMV beamformers isolate the signals produced by different parts of the brain
using spatial filters, thus allowing the solution computations to occur independently for
each solution point.

Even though conventional methods have been proven to be efficient in determining
the activated brain regions, emerging technologies in the fields of Machine and Deep
Learning have been recently introduced in ESI. As such, a novel method proposed for
solving the inverse problem utilizes the deep recurrent neural network architecture of long-
short term memory (LSTM) units in an auto-encoder framework, presenting exceptional
mean localization error of less than 5 mm on single-source simulated data [10]. This
architecture is able to model the spatio-temporal information provided by training the
network to perceive the correlation between the location of the source and the EEG signals
without needing a priori constrictions, normally provided manually by more conventional
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methods. In a similar manner, ConvDip, a convolutional neural network (CNN), has
demonstrated a lower normalized mean squared error in ESI solutions compared to that
of exact LORETA (eLORETA) and beamformers for a single source, utilizing a shallow
CNN with one convolutional layer and two fully connected layers [11]. Compared to the
LSTM approach, ConvDip was trained with single time-instances on simulated data but
with multiple sources. This is important, since a large variety of inverse solutions, such as
eLORETA and LCMV beamformer, rely on noise covariance matrices that are computed
with the temporal information of EEG signals, significantly affecting the accuracy of the
model if the noise is increased. Moreover, the fact that simple networks can learn the
patterns of single time points and predict reasonable inverse solutions is a major point in
lowering complexity and consequently computational cost. Additional ESI neural networks
frameworks include a denoising AutoEncoder (DST-DAE) consisting of six layers, three
encoding blocks and three decoding blocks. This method was able to directly map the
EEG and magnetoencephalogram (MEG) signals to the cortical sources, reducing the
localization error to less than a millimeter [46]. In this regard, both temporal and spatial
information is utilized on synthetic data, in order to extract inverse mapping. The main
advantage of this method lies in its resistance and robustness against low Signal-to-Noise
ratio (SNR), resulting in efficient source estimation with excellent denoising properties.
Added together, the recent advances in Machine Learning ESI estimation indicate the
efficacy of the employed procedures in contrast to the traditional model-driven approaches,
especially since in all of the data-driven methods, very few or no mathematical priors were
used, while the need for optimizing parameters for new data is absent.

Apart from Deep Learning designs, recent studies include hierarchical Bayesian
analysis methods for source localization. The importance of Bayesian Models relies on the
incorporation of statistical a priori information about the sources, eliminating common
problems such as ghost sources and uncorrelated activation transition [39]. The main
advantage of such solutions is the combination of data-driven learning with sparse priors,
minimizing the cost function and maximizing the probability of correlated sources [47].
Most recently, a modified Bayesian approach was introduced, applying the `20 mixed
norm instead of `21 (primarily used with Bayesian Methods) and multivariate Bernoulli
Laplacian priors [12], with the main difference between the Bayesian Models being the
probability distributions for the correlation of the sources. This method was able to
provide sparser solutions, minimizing the underestimation of the intensity of activations,
indicating higher localization performance than other conventional Bayesian methods, in
both simulated and in real auditory and visual evoked data but at high computational cost,
requiring almost 58 times more time than the `21 mixed norm approaches. In a related
study [48], a computational efficient Expectation-Maximization algorithm with the use
of steady-state Kalman Filter (SS-KF) and steady-state Fixed Interval Smoother (SS-FIS)
provided a significant performance enhancement compared to other existing methods,
while encapsulating the spatial dependencies between the sources. The computational
burden mitigation relies on the use of SS-KF and SS-FIS that are computed once throughout
the estimation of the sources without loss of model accuracy, subsequently reducing 12-fold
the time needed for results output compared to the full KF/FIS method. It should be
pointed out that the aforementioned methods present a theoretically zero localization error,
outperforming the solutions provided by neural networks. Nevertheless, the advantage of
neural networks lies in the small amount of time needed in order to compute the inverse
solution. From this standpoint, the ability of a fast calculation of the source estimates is of
utmost importance in the aspiration of developing real-time ESI applications in the near
future. A comparison of methods presented, illustrating the current state-of-the-art, is
shown in Table 1.



Signals 2021, 2 383

Table 1. Current trends in state-of the-art methods used in ESI.

Method Authors Advantages Disadvantages

Recurrent Neural
Network—Long

Short-Term Memory
[10]

Extremely fast computation of source
estimates, once the training has
completed. Can harness the
spatio-temporal information of EEG,
resulting in more robust solution
regarding noise. Great expandability
and room for improvement.

Trained for single sources. Requires a lot of
time for the training session, even if the
model is simple. Worse accuracy than other
models presented.

Convolutional Neural
Netrwork [11] Simplicity and expandability. Once

trained, produces results extremely fast.

Trained on single time points and does not
incorporate the temporal information of EEG
creating low noise tolerance. Lower accuracy
on multisource scenarios.

Denoising AutoEncoder [46]
Very high noise tolerance, producing
accurate results even with low SNR. Do
not require mathematical priors.

Requires a lot of time for training and offline
computation of the Leadfield matrix.
Susceptible to overfitting due to vanishing
gradient for complex scenarios.

Bayesian
Method—Bernouli

Laplacian priors
[12]

Near-zero mean localization error.
Great recovery and accuracy of dipole
locations in low SNR. Sparser solutions.
Correct estimation of the amplitude of
source currents.

Very high computational cost. Requires
accurate head model for high accuracy.

Bayesian
Method—Kalman Filters [49]

Near-zero mean localization error.
Lower computational cost than other
spatio-temporal dynamic algorithms,
faster than other KF approaches.

Under-estimation of the amplitude of source
currents. Requires a priori information for
the source covariance matrix.

3. ESI-Clinical and Cognitive Research Implementations

Brain source localization provides a new dimension of the recorded EEG data which
can be applied in various conditions, in both clinical and cognitive applications. Of note
is that new algorithms continuously improve the time/efficiency and accuracy of the ESI
solutions. For this reason, the number of applications to which ESI is applied is constantly
increasing. As a result, in this review paper, it was impossible to include all the novel
applications of source imaging. Our goal was to attempt to illustrate the advances in the
field by presenting the most indicative examples, demonstrating the importance of ESI for
clinical and cognitive applications.

3.1. Clinical Applications

The most important employment of ESI is in clinical situations. The high temporal
resolution provided by EEG, combined with the spatial estimation of the sources given
by the ESI, provides non-invasive monitoring of specific brain areas that single modality
analysis cannot. As such, ESI is commonly used in locating the epileptic foci, vital for
epilepsy treatment and/or for subsequent surgery [50]. In a recent long-term study [51],
a synchronously recorded high-density EEG and MEG source localization of ictal and
interictal activity provided more accurate results when the analysis was conducted for
each modality alone than the multi-modal approach. It is also suggested that less emphasis
should be given to mid-phase ictal discharge analysis and include the late-peak phase
in source solutions. EEG source localization as a single modality technique is also an
effective localization technique for focal epilepsy, minimizing the cost of recording different
modalities concurrently, requiring additional expensive equipment [52,53].

Apart from the obvious economic and scientific benefits of ESI applications, the non-
invasiveness of source localization holds significant social and healthcare advantages since
(multiple) intracranial invasive recordings can be avoided in certain types of epilepsy, thus
relieving preoperative anxiety from patients as well as risk of surgical site infections. On
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this account, the prevalent utilization of EEG source localization is in presurgical evaluation
of drug-resisting epileptic patients [13]. During this procedure, the information provided by
the ESI about epileptiform discharges can have significant impact in the management plan,
in terms of placing more accurately the intracranial electrodes [54,55]. The identification
of the Seizure Onset Zones can not only define the exact cortical structures for surgical
extraction but also provide important information concerning the neurodynamic state of
the epileptic brain activity, especially in generalized (e.g., absence epilepsy) [56] or focal
epilepsies (e.g., structural, non-lesional epilepsy) [52,57,58].

Although high-density EEG is not always available, low-density EEG source localiza-
tion has been consistently effective in localizing epileptic brain activity, achieving over 90%
accuracy in some cases, while indicating that performance could be further enhanced by
including connectivity analysis [58–60]. ESI has also been employed in pediatric epilepsy.
In a recent study [61], using a visual working-memory task as a stimulus and a source
localization framework, critical biomarkers (that could not be detected by sensor-level
analysis alone) were identified, leading to a more localized and specified treatment policy.

The fine temporal communication of the different brain regions in source space has
also been applied in neurodegenerative diseases [62]. Frequently, it is used in the evalu-
ation of Alzheimer’s disease progress or even in its prognosis, since the brain activation
related to cognitive performance is commonly altered in the disease’s progression [63].
As such, eLORETA and connectivity analysis has been adopted for Alzheimer’s disease
diagnosis [64,65]. Another interesting approach is the use of ESI in localizing the origin of
epileptic spikes using the differences created by non-Rapid Eye Movement (NREM) and
Rapid Eye Movement (REM) sleep [66]. In view of the fact that EEG has been consistently
employed to study sleep-related cycles and disorders, source localization can efficiently
identify the main areas that are involved in the sleep onset transition and the activity alter-
ations in the brain regions affected by sleep deprivation recovery [67,68]. Furthermore, ESI
is effective in detecting the areas and the associated activity during different NREM sleep
stages with the use of MEG and EEG recordings [69], the areas responsible for generating
sleep spindles [70] and slow wave generation [71]. Interestingly, source localization has
been applied for sleepwalking and sleep terror origin decoding, used not only to estimate
the brain areas that were affected by the sleep arousal disorder, but also for computing the
decrement of slow wave activity power [72].

Despite the prognostic and diagnostic capabilities of ESI, rehabilitation processes
can also be substantially supported. In this context, distinguishing direction by decoding
movement intensions on people suffering from motor deficits (such as stroke patients) is of
utmost importance in the optimal management and evaluation of rehabilitation planning.
Multiple approaches have contributed in classifying multi-direction hand movement,
using weighted MNE source localization [73], or Overlapping Averaging weighted MNE
(OA-wMNE) [74]. Moreover, detecting the brain source locations of complex imaginary
movements, like flexion, extension, supination and pronation, is also feasible with source
localization methods and feature selection algorithms [75,76]. On this premise, ESI has
been employed to assess the allocation of brain functions with regard to the attempts
made by stroke patients in limb movement [77]. Recent approaches have employed high-
density EEG and beamformer techniques to facilitate functional connectivity analysis, thus
measuring the connection between alpha and beta band coherence with motor learning
and cortical plasticity of post-stroke impairments [78–80].

3.2. Cognitive Applications

Apart from the clinical applications, brain source localization helps in gradually
elucidating the underlying neural substrates in various conditions and mental states. As
such, ESI has been consistently utilized in the decryption of cognitive functions in various
tasks, such as word interpretation and fatigue analysis.

Multiple paradigms include source localization in Event-Related Potentials (ERPs)
to illuminate the brain activity related to certain stimuli or events. For instance, event-
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related responses in Go-Nogo tasks combined with ESI have been employed to identify
and interpret somatosensory response inhibition [81,82]. Specifically, ERP analysis and
standardized LORETA (sLORETA) were used to link the differences of amplitude of Nogo-
N2 ERP-component with the changes of activation in the right inferior gyrus, showing
that response inhibition is correlated with sensory gain modulation [82]. Another recent
study [83] employed beamformers on ERP analysis to provide evidence of the regions
responsible for generating the P300 signal related to attention and memory operations of
the brain.

The interpretation of facial expressions and emotions in source space has also been
consistently investigated in various studies. As such, taking into account that cognitive
face processing is evolving during the early stages of life, the employment of LORETA has
been able to provide insight into the underlying process [84]. In a similar way, using an
MNE algorithm, ESI was able to further advance the brain state decoding by deciphering
the neural operations of facial recognition [85], while the utilization of the LAURA method
and harnessing of the “Kuleshov effect” has effectively highlighted the facial expression
cognitive functions [86]. Furthermore, combining ESI with a self-organizing feature map
(SOMF) resulted in accurate categorization of emotions perceived from physiognomic
components, (up to 91% of classification accuracy) [14]. Similar source localization studies
have also been conducted for identifying and analyzing the processing of facial features in
autism, distinguishing the regions activated in different cases [87].

More recently, ESI has been applied in visual and auditory evoked data, in an effort to
understand the underlying brain connections and the related inhibitory networks [5,88].
In fact, since source imaging is able to analyze the paths of brain activity through time,
connectivity analysis presents a novel prospective in identifying the transmission of in-
formation between cortical areas. In this regard, language understanding and the impact
on the brain has been studied using connectivity and sLORETA, revealing individual
networks active during lexico-semantic processing of single words [89]. Additionally, pat-
tern recognition frameworks combined with ESI have effectively identified common and
distinct functional connections (representing a link between the various brain structures)
in different workload levels in two working memory tasks [90]. Moreover, in simulated 2D
and 3D flight simulation experiments, eLORETA and graph theory was utilized to assess
the dynamic rewiring of functional connections among brain areas as a result of mental
workload, establishing the basis for potential real-world applications [91].

4. ESI Challenges and Limitations

During the last decade, significant advancements have been made regarding ESI
methodologies, both in computational time as well as in the accuracy of solutions for
the EEG inverse problem. However, the very nature of the inverse problem, given its
underdetermined properties, is a major obstruction. Despite the fact that recent approaches
have successfully alleviated several limitations, a number of challenges that need to be
addressed are still present.

The greatest drawback of EEG, and by extension source localization calculations,
is its sensitivity to signal noise, which can consist of background noise, distortions and
movement artifacts. These interferences affect greatly the accuracy of the inverse solution,
producing ghost sources, or even displace the predicted brain activity areas completely [92].
In this context, the corresponding results can be misleading and might present safety
risks, especially regarding presurgical planning and evaluation. Several methods for
specific signal processing have been proposed to tackle these problems, like Independent
Component Analysis [93] for artifacts removal and Faraday/empty room recordings, in
order to resolve background and instrument noise. However, unrelated signal noise from
inhibitory brain functions can be still present, while critical signal properties could be
embedded in the identified artifact-related independent components and thus be removed
alongside them [9,94].
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The number of electrodes and the number of dipoles defined by the source model
creation is also crucial. As described in the previous sections, the number of source points
vastly exceeds the number of electrodes and, thus, the solution is never unique and can
be only estimated using priors (spatial, mathematical or anatomical). Furthermore, a
very high number of source points would increase the resolution of the ESI solution, but
would also increase the complexity of the process. More specifically, a small number of
dipoles would result in lower spatial resolution and location accuracy, evidently making
the produced solution more prone to misinterpretations, but require less memory and
computational time to calculate. On the other hand, a higher number of source points
leads to solutions with higher spatial resolution with smaller sparsity of the brain activity
around each computed point, due to the larger number of neighboring points [9]. The
main reason for the increased accuracy is that the Leadfield matrix is more complete and
is calculated more thoroughly, indubitably requiring additional resources. As such, there
is a fine balance on the computational cost and the ESI output where one has to consider
minimizing the cortical activity sparsity (i.e., the extent of the source localization activation
in terms of brain area surface) at the expense of high computational complexity. Leadfield
calculation is also dependent on the number of electrode channels. The actual number of
electrodes contributes significantly in the accuracy of the ESI, with limited channel number
leading to the mislocalization of sources [40]. However, even if Low-Density ESI (LD-ESI)
is less accurate compared to High-Density ESI (HD-ESI), LD-ESI is far more accessible and
it could provide enough information given the appropriate recording time. Specifically,
in hospital settings where High-Density EEG is unavailable, methods that could harness
the power of a smaller number of electrodes could boost the usability of ESI. In Figure 2,
different paradigms of electrode and source point numbers are displayed.
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Figure 2. Examples of how the number of electrodes and dipoles (source points) affect the ESI output. In each panel the
calculated Leadfield matrix (heat map) depends on the electrode channels and the source points corresponding to a specific
brain surface. In turn, the EEG recordings deriving from the different sensor settings are combined with the Leadfield
matrix to estimate the locations of activity in the brain. In (a), a small number of electrode channels and source points leads
to a more sparse and lower resolution outcome, while in (b), Medium-Density EEG and more dipoles refine the resulting
solution and in (c), High-Density EEG and ultra-high resolution of the source model produces a solution with high spatial
resolution and accuracy.
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Equally important is the co-registration of EEG sensors, i.e., the location of the elec-
trodes, related to the head model and how coherent the electrode alignment is with the
actual position of the electrodes during the EEG recordings. In this regard, minor mis-
placements during computational modeling could lead in inaccurate solutions [95]. New
techniques and pipelines include 3D scanners in order to perform digitization of electrodes
correctly and eliminate registration errors from the analysis [96,97]. Nevertheless, such
systems are often very expensive, whereas the electrode alignment is done interactively [89].
It must also be taken into account that correct calculations of ESI relies on conductivity
values that are provided to the head model [95]. On this premise, anatomical MRI could
contribute to the correct solution of the forward (and as a result the inverse) problem,
since the information concerning the thickness and conductivities of each head tissue
is needed for the source localization computation [40]. For this reason, it is optimal to
use subject-specific MRI in order to reconstruct the individual head model, additionally
incorporating the anisotropic properties of the skull and white matter [36,98]. However,
in several cases, individual MRI is unavailable or the head model cannot be created, due
to brain abnormalities and impairments, such as brain malformation or tumors. In such
conditions, pre-existing template solutions, such as standardized head models, could be
used, albeit results could be controversial or designate non-existent areas [99].

Concerning the current state-of-the-arts methods presented in this paper, several
limitations are still present. As far as the pattern recognition approaches are concerned,
the main obstacle for effective localization is the lack of labeled real data to be used
in order to train the Deep Learning architectures. Annotating real EEG data with the
true source locations, for instance via simultaneous EEG-fMRI recordings, could be an
encumbering task, but crucial in the progress of Deep Learning approaches in ESI. On the
contrary, Bayesian Models provide enhanced localization accuracy, though these methods
are extremely time-consuming in solving the inverse problem, which is an unbearable
obstacle for real-time applications.

Recent advances focus towards this direction, increasing the efficiency of the algo-
rithms employed. Future multi-modal approaches could combine the advantages of both
data-driven and model-driven methods, exploiting the localization precision of statistical
methods applied in Bayesian models with the computational speed of the Deep Learn-
ing processes.

5. Conclusions

In this paper, we present a review of recent approaches in solving both the forward and
the inverse problem of EEG source imaging. Moreover, we tried to encapsulate the progress
of ESI implementations in both clinical and cognitive research applications, while pointing
out present challenges and limitations. As such, although state-of-the-art advancements
demonstrate progress to a high degree in both the computational speed and precision
aspects of ESI procedures, and further developments need to be incorporated into the
source localization frameworks so that the new technologies can adapt to the existing
protocols. Future mathematical approaches, computational methods and integration of
source localization with other medical imaging methods, could enhance the value of
ESI, resulting in significant progress in neuroscience, rehabilitation techniques and brain
perception. By doing so, the high temporal resolution of a spatially accurate ESI would not
only significantly improve cognitive evaluation and clinical applications, but also serve as
a progressive step to explore the frontiers of the human mind.
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