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Abstract: The ranging error model is generally very complicated in actual ranging technologies. This
paper gives an analysis of the biased distance substitution and proposes an unbiased multilateral
positioning method to revise the biased substitution, making it an unbiased estimate of the squared
distance. An unbiased estimate of the multilateral positioning formula is derived to solve the target
node coordinates. Through simulation experiments, it is proved that the algorithm can improve
the positioning accuracy, and the improvement is more obvious when the error variance is larger.
Experiments using SX1280 also show that the ranging conforms to the biased error model, and the
accuracy can be improved by using the unbiased estimator. When the actual experimental error
standard deviation is 0.16 m, the accuracy can be improved by 0.15 m.

Keywords: multilateral posifigtioning method; unbiased multilateral positioning method

1. Introduction

With the progress of society and the development of science and technology, position-
ing technology is influencing all aspects of people’s lives and has become an indispensable
application for people [1]. The huge application value of positioning technology has at-
tracted many researchers devoting themselves to it, and many mature technologies have
been put into daily use, such as GPS (Global Positioning System) and UWB (Ultra-Wide
Band) technology. As an emerging positioning technology, LoRa (Long Range Radio) also
shows great research potential [2].

At the same time, in order to obtain more accurate positioning information, related
positioning algorithms have also been proposed one after another. It is undeniable that the
advantages and disadvantages of the positioning algorithm affect the positioning accuracy
of the entire system, and different positioning algorithms are proposed according to the
different measured data and the different coordinate calculation methods used. Depending
on whether distances need to be measured, localization algorithms are divided into two
categories: range-based and range-free [3].

For range-based positioning algorithms, a great challenge is to reduce the impact of
ranging errors caused by equipment and the environment, so that the positioning result is
closer to the target node. For the ranging error model that obeys unbiased estimation, there
are many classical algorithms proposed to solve the position of the target node, such as the
Chan algorithm [4] and the Taylor algorithm [5]. These algorithms establish positioning
models with Euclidean distances between anchors whose coordinates are known and the
target node whose coordinates are to be estimated, then an estimator of the target node’s
coordinates can be derived expressed by those distances. Additionally, if the distances be-
tween anchors and the target node can be measured, or if travel time can be measured, these
measurements could be substituted into the estimator to perform the calculation. However,
when error inevitably exists in the measurements, merely substitution of distances with
measurements may cause biased results. In particular, most of the existing localization
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methods are based on simple error model assumptions, which ignore the complexity of the
actual error model, especially the fact that the square of the ranging value may be a biased
estimator. If the squared value of ranging is involved in the solution process, it may lead to
biased results.

In order to illustrate the problem of this biased distance estimator, this paper analyzes
and derives a type of ranging error model, whose error variance increases as distances
increase, and draws a conclusion: for those biased situations, localization accuracy can
be improved if the variance of the ranging error model can be known. Theoretically, the
method in this paper is suitable for a positioning algorithm that adopts the square value of
the ranging, which can make further improvements of localization accuracy. This paper
verifies the improving feasibility of a ranging error model through simulations and practical
experiments. More importantly, it shows that the improvement of unbiased estimation of
complex ranging error models can improve the positioning accuracy. Similar improvements
to unbiased estimators for other ranging error models can also make similar improvements
for localization accuracy.

2. Related Work

The trilateral localization algorithm is a basic algorithm [6] that has been studied and
improved by many researchers. In the ideal trilateral positioning algorithm where there is
no ranging error, there is a unique solution to the position of the target node.

Regarding the ranging error, an improved trilateral centroid localization algorithm was
proposed in [7,8]. The fuzzy C-means clustering method was used to cluster the RSSI (Re-
ceived Signal Strength Indicator) signals transmitted by anchors to target nodes to eliminate
the noise of small probability and large interference. Aiming at the influence of distance
deviation on the multilateral positioning algorithm, Ref. [9] proposed an improved multi-
lateral positioning algorithm KC-Multilaterate, which introduced the K-means clustering
method into the positioning problem of wireless sensor networks to make the positioning
error smaller. On this basis, Ref. [10] proposed a weighted centroid localization algorithm
based on K-means clustering point density (KCPD-WCLA). As a result, its computational
complexity is significantly reduced and the positioning accuracy is significantly improved.
Chen [11] uses the Fang algorithm to calculate the coordinates of target node, but the Fang
algorithm can easily generate double solutions, which can result in the positioning accuracy
being greatly reduced when there is a large measurement value error. Gustafsson [12]
uses the nonlinear least squares algorithm to directly solve the nonlinear equation system,
and uses a Gauss–Newton-like method to find the minimum value of the cost function.
This positioning method is accurate but not stable enough. When the initial value is not
suitable, the formula is prone to local convergence. Other studies [13–17] linearized the
nonlinear equation system through using the Taylor series expansion, which reduced the
computational complexity. However, the optimal solution could not be guaranteed, because
the high-order terms were ignored in the linearization process and a suitable initial value
is still needed to ensure convergence. Further studies [18–22] use the linear least squares
algorithm to convert the nonlinear equation system into a linear equation system, and then
solve the linear equation system through least squares algorithm, which can successfully
solve the initial value problem. However, the positioning results will be greatly affected
by the measurement error. Furthermore, Refs. [23,24] use the Chan algorithm to calculate
the approximate coordinates of the target node. The algorithm adopts the weighted least
squares algorithm, and assigns different weights to each equation in the equation system
according to the ranging error, which improves the positioning accuracy. In the calculation
process of all the above algorithms, the squares of the distances are directly substituted into
the model for calculation. However, from a statistical point of view, it is not an unbiased
estimator. In this context, we take multilateral positioning as an example and explore
the impact of unbiased estimation for the positioning model and verify it using SX1280,
showing that using unbiased estimator can improve the positioning accuracy, and when
the error variance is larger, the improvement of the algorithm is more obvious.
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3. Multilateral Positioning Model

For the multilateral positioning algorithm on a two-dimensional plane shown in
Figure 1, the coordinates of anchor nodes are known as S1(x1, y1), S2(x2, y2). . . . . . Sn(xn, yn).
Assuming that the coordinate of the target node is T(x, y), the true distance between the
target node and anchor node Si is dn, the following equation can be obtained:

(x1 − x0)
2 + (y1 − y0)

2 = d1
2

(x2 − x0)
2 + (y2 − y0)

2 = d2
2

. . .
(xn − x0)

2 + (yn − y0)
2 = dn

2

(1)
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Equation (1) can be transformed to a linear one by subtracting the last equation from
other equations, and after deformation, it can be expressed as a linear one:

A = BX (2)

where the coefficient matrix A is:

A =


2x1 − xn 2(y1 − yn)
2x2 − xn 2(y2 − yn)

. . .
2xn−1 − xn 2(yn−1 − yn)

 (3)

and B is:

B =


x1

2 − xn
2 + y1

2 − yn
2 + dn

2 − d1
2

x2
2 − xn

2 + y2
2 − yn

2 + dn
2 − d2

2

. . .
x1

2 − xn
2 + y1

2 − yn
2 + dn

2 − dn−1
2

 (4)

The estimated coordinate values of the target node can be calculated by least
square method:

X =
(

AT A
)−1

AT B (5)

and if ranging technologies such as UWB or LoRa is utilized, the ranging information
between the target node and anchor node can be obtained. Suppose the ranging distances
are denoted as d̂i, by substituting di as d̂i in Equation (5), we can get an estimator of the
target node.

4. Unbiased Estimator of Multilateration Model

Equation (5) is a classical and simple estimator. However, in the actual positioning
process, ranging errors are inevitable due to the influence of various environments. It is
assumed that the mean square error of the ranging is

σ2
d̂ = E

[
(d̂i − di)

2
]

(6)
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When the ranging error model satisfies d̂i = di + e, the mean square error σ2
d̂

is the
variance of the environmental noise e and is not affected by the actual distance di. This type
of error model satisfies the unbiased estimation, and can use the Chan algorithm, Taylor
algorithm, etc. to solve the coordinates of the target node. In actual positioning, the error
model is often more complicated. As an illustration, the variance of SX1280 meets [25]:

σ2
d̂ = c·

(
1

16·π2·SNR·
√

N·BW2·2SF

)
(7)

where N is the configurable number of CSS (Chirp Spread Spectrum) symbols used in the
ranging data, BW (bandwidth) = 403 kHz, SF (Spreading Factor) and a Signal to Noise
Ratio (SNR), which decreases with distance. It can be concluded that σ2

d̂
will increase with

the increase of di. In order to illustrate the impact of unbiased estimators, the error model is
simplified in this paper as a linear one, in which the relationship between the mean square
error σ2

d̂
and di is constructed to satisfy:

d̂i = di(1 + e) (8)

where the random distribution e follows the normal distribution
(
0, σ2).

Therefore, E(d̂2
i) = E(di

2(1 + e)2) can be obtained from Equation (8). Since the
expectation of a random distribution is 0, we get

E(d̂i
2) = di

2E
(

1 + e2
)

(9)

It can be seen that d̂i
2 is not an unbiased estimator of di

2. If it is directly substituted
into the multilateral positioning formula, the solution value will deviate from the target

node. By deforming Equation (9), it can be found that d̂i
2

1+E(e2)
is the unbiased estimate of

di
2, namely:

di
2 =

d̂i
2

1 + E(e2)
(10)

Substitute this expression into Formula (2), where B is improved as:

B =


x1

2 − xn
2 + y1

2 − yn
2 + d̂n

2

1+σ2 − d̂1
2

1+σ2

x2
2 − xn

2 + y2
2 − yn

2 + d̂n
2

1+σ2 − d̂2
2

1+σ2

. . .

x1
2 − xn

2 + y1
2 − yn

2 + d̂n
2

1+σ2 −
d̂n−1

2

1+σ2

 (11)

When the ranging error model obeys Equation (9), and the statistical variance value
in the ranging error model is known, the squared value of ranging can be corrected by
Equation (10) to obtain an unbiased estimate of the true distance. When the ranging
information used by the positioning algorithm is the squared value of the ranging, such
as dn

2 in (4), the corrected ranging value can be substituted into the formula to locate the
target node, as shown in (11).

5. Experiments and Results

Both simulation and SX1280 based experiments are carried out to verify the effective-
ness of our unbiased estimation. As for positioning error, the commonly used positioning
accuracy evaluation indexes are the root mean square error and the error cumulative dis-
tribution function. Root mean square error (RMSE) refers to the sum of the square error
between the measured value and the corresponding true value [26]:

RMSE =

√
E
[
(x− x′)2 + (y− y′)2

]
(12)
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Cumulative Distribution Function (CDF) can accurately represent the probability
distribution of different random variables, and the cumulative distribution function curve
can more clearly represent the positioning error of the positioning system. The cumulative
distribution function is defined as follows:

F(x) = P (X ≤ x) (13)

5.1. Simulation Experiment

Simulations were carried out in an area of 100 × 100 m. Three anchor nodes were
placed at (100, 100), (0, 100) and (100, 0) respectively, and the target node was assumed to
be at (50, 50). The ranging error model used was d̂i = di(1 + e), where e obeys a normal
distribution with mean 0 and standard deviation σ meters. It can be seen from Figure 2 that
as the variance in the error model increases, the positioning errors of the two algorithms
will increase, but the positioning errors solved by the unbiased multilateral positioning
method grow more slowly, that is, they are less susceptible to fluctuations in ranging errors.
It can be concluded that, when compared with the multilateral positioning method, the
unbiased multilateral positioning method can improve the positioning error, and the degree
of improvement will increase with the increase of the variance in the ranging error model.
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Figure 2. Comparison of root mean square error between multilateral positioning method and
unbiased multilateral positioning method.

For the next experiment, the positions of the three anchor nodes remained unchanged,
namely at (100, 100), (0, 100) and (100, 0) respectively, and the target node was set at (50, 50).
The ranging error model was again d̂i = di(1 + e), where e obeys a normal distribution
with mean 0 and a standard deviation of 1 m. The experiment was repeated 1000 times,
enabling the creation of the scatter plot shown in Figure 3. The cumulative distribution
function graph of the solutions can be shown in Figure 4.

It can be seen intuitively from the Figure 3 that by using the unbiased multilateral
positioning method to locate the target node, the estimated coordinates are closer to
target node, while the estimated coordinates of the multilateral positioning method are
relatively divergent.

It can be seen from Figure 4 that 70% of the positioning errors of the unbiased mul-
tilateral positioning method are within 45 m and 80% are within 50 m of the target node,
while 80% of the positioning errors of the multilateral positioning method are within 60 m.
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Compared with the multilateral positioning method, the unbiased multilateral positioning
method shows an obvious improvement on the error.
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5.2. Experimental Verification and Discussion

Experiments were also carried out to perform the verification based on SX1280 chip
(LoRa 2.4G). A basketball court with an area of about 30 m× 40 m was selected as the actual
test site, as shown in Figure 5. The anchors are at the four corners of the outdoor basketball
court. Three anchors are placed at S1(0, 0), S2(28.2, 0) and S3(28.2, 34.8) respectively, and
the target node is placed at T(24.2, 15.2).
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It is known from the above that the SX1280 ranging error model approximately obeys
the formula d̂i = di(1 + e), so the obtained data is processed: it is known that the actual
distances from the target node to the three anchors are d1 28.5 m, d2 15.7 m, and d3 20 m

respectively. Therefore, the ranging data d̂i is processed to obtain di−d̂i
di

, which is the e in
the error model, and frequency statistics are performed to obtain a histogram, as shown in
Figure 6.
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.

As can be seen from Figure 6, the error data e is a random sequence with a mean
of approximately 0 and a standard deviation of 0.16078 m. Once the standard devia-
tion of the ranging error distribution is known, the unbiased estimator can be used for
positioning optimization.

For the actual experimental data obtained, the position of the target node is estimated
by the multilateral positioning method and the unbiased multilateral positioning method
respectively. The root mean square error is used to evaluate the positioning accuracy of
the two, and the results are shown in Table 1. The results show that unbiased multilateral
positioning method can improve the accuracy of the positioning system.

Table 1. Location error data under two algorithms.

RMSE of Multilateral Positioning Method RMSE of Unbiased Multilateral Positioning Method

6.10904 5.95985
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6. Conclusions

In the study of existing positioning algorithms, a simple substitution of measured
distances is often used in the estimation of the target node’s position. In actual positioning,
the ranging error model is more complicated, and it is often related to the actual ranging
distance, as the experiments using SX1280 exemplified in this paper. Since the squared
value of distance measurement is not an unbiased estimator of the squared value of the
actual distance, when using the traditional multilateral positioning algorithm to solve the
target node, directly substituting the distance measurement data often deviates from reality.
Based on this, this paper adds the correction of the squared value of biased ranging to the
existing positioning algorithm, making it an unbiased estimator. Both theoretical simulation
experiments and actual experiments using SX1280 show that using an unbiased estimator
can improve the positioning accuracy. It can also be concluded from the theoretical data
that the improvement of the algorithm is more obvious when the error variance is larger.
Theoretically, the method in this paper is suitable for the positioning algorithm involving
the square value of the ranging, which is a further improvement of the accuracy of the
existing algorithm.
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