
Citation: Al-Aali, Y.; Hamood, M.T.;

Boussakta, S. Radix-22 Algorithm for

the Odd New Mersenne Number

Transform (ONMNT). Signals 2023, 4,

746–767. https://doi.org/10.3390/

signals4040041

Academic Editor: Jozef Juhár

Received: 31 August 2023

Revised: 10 October 2023

Accepted: 19 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Radix-22 Algorithm for the Odd New Mersenne Number
Transform (ONMNT)
Yousuf Al-Aali 1,* , Mounir T. Hamood 2 and Said Boussakta 1

1 School of Engineering, Newcastle University, Newcastle NE1 7RU, UK
2 Department of Electrical Engineering, University of Tikrit, Tikrit P.O. Box 42, Iraq
* Correspondence: y.al-aali2@newcastle.ac.uk; Tel.: +974-77666639

Abstract: This paper introduces a new derivation of the radix-22 fast algorithm for the forward odd
new Mersenne number transform (ONMNT) and the inverse odd new Mersenne number transform
(IONMNT). This involves introducing new equations and functions in finite fields, bringing particular
challenges unlike those in other fields. The radix-22 algorithm combines the benefits of the reduced
number of operations of the radix-4 algorithm and the simple butterfly structure of the radix-2
algorithm, making it suitable for various applications such as lightweight ciphers, authenticated
encryption, hash functions, signal processing, and convolution calculations. The multidimensional
linear index mapping technique is the conventional method used to derive the radix-22 algorithm.
However, this method does not provide clear insights into the underlying structure and flexibility
of the radix-22 approach. This paper addresses this limitation and proposes a derivation based on
bit-unscrambling techniques, which reverse the ordering of the output sequence, resulting in efficient
calculations with fewer operations. Butterfly and signal flow diagrams are also presented to illustrate
the structure of the fast algorithm for both ONMNT and IONMNT. The proposed method should
pave the way for efficient and flexible implementation of ONMNT and IONMNT in applications
such as lightweight ciphers and signal processing. The algorithm has been implemented in C and is
validated with an example.

Keywords: radix-22; ONMNT; IONMNT; fast algorithm

1. Introduction

Number theoretic transforms (NTTs) [1] have many applications [2] in signal process-
ing and cryptography [1]. Two well-known NTTs are the Mersenne number transform
(MNT) [3,4] and the Fermat number transform (FNT) [5,6], which are based on Mersenne
numbers and Fermat numbers, respectively. MNT has been given particular attention as it
has simple arithmetic and favorable reduction operations compared to FNT. However, MNT
has limitations in terms of its transform length, which is short and has limited factorability,
making it unfeasible to use the fast algorithm.

To address the limitations of MNT, Bousssakta and Holt introduced the new Mersenne
number transform (NMNT) [7]. Later, two new variants named the odd new Mersenne num-
ber transform (ONMNT) and the odd square new Mersenne number transform (O2NMNT)
were proposed; these are known as generalized new Mersenne number transforms (GN-
MNTs) [8]. These two transforms have shown promising results in signal processing,
image processing, and cryptography [9]. Parameterized implementation, strong diffusion
performance, and simple arithmetic operations are critical advantages of NMNT-based
cryptographic ciphers over conventional ciphers.

One of the advantages of the NMNT family of transforms is their suitability for fast
algorithms, as their transform length is always a power of 2. A detailed discussion on
different fast algorithms such as radix-2, radix-4, and split-radix for NMNT and GN-
MNT can be found in [9,10]. Hue et al. [11] presented a realization of NMNT using the

Signals 2023, 4, 746–767. https://doi.org/10.3390/signals4040041 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals4040041
https://doi.org/10.3390/signals4040041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0002-0409-7327
https://doi.org/10.3390/signals4040041
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals4040041?type=check_update&version=1

Signals 2023, 4 747

Walsh–Hadamard Transform (WHT) to speed up the calculation. The split-radix algorithm
has the lowest arithmetic complexity. It avoids the limitation of the radix-4 algorithm,
which can only be applied for a transform length N with an odd power of 4. However,
the structure of the split-radix algorithm is highly complex, and its implementation in a
simple hardware system is challenging. A new class of fast algorithms called radix-22 [12]
algorithms has been proposed, incorporating a twiddle factor decomposition technique
in an efficient divide and conquer method, which leads to a regular signal flow graph
structure. The structure of the radix is a crucial factor in determining the architecture
of the fast Fourier transform (FFT) [13] processor. A simple and regular radix structure
allows for an efficient implementation of the architecture [14]. The radix-22 algorithm
retains both the low multiplicative complexity of the radix-4 algorithm and the simple
structure of the radix-2 algorithm. Thus, it solves both these limitations. This algorithm
can be used directly for even values of n, where N = 2n, and for odd values of n simply by
utilizing a mixed-radix algorithm at the beginning or end of the radix-22 algorithm. The
radix-22 algorithm can, therefore, be implemented for any value of N that is a power of
2. Moreover, significant memory savings have been achieved using this algorithm [15].
Therefore, multiple efficient implementations of the radix-22 FFT algorithm have been
proposed for application-specific integrated circuits (ASIC) [16] and field-programmable
gate arrays (FPGA) [16–18], primarily in the field of wireless communication.

Lightweight cryptography [19] is another area of research that can benefit from the
efficient implementation of radix-22 algorithms in resource-constrained devices, such as in
radio frequency identification (RFID), sensors, wireless Internet of Things (IoT) devices [20],
smart home automation, telemedicine, smart money [21], healthcare, and military applica-
tions. Efficient hardware implementations [22] are important in lightweight cryptography.
In recent years, number theoretic transform-based cryptographic systems have been pro-
posed, especially for the IoT [23–25]. One of the advantages of number theoretic transforms
such as ONMNT is the ability to use fast algorithms. As the radix-22 fast algorithm offers a
simple butterfly structure while maintaining the multiplicative complexity of the radix-4
algorithm, the derivation of the radix-22 fast algorithm for ONMNT will improve the
efficiency for ONMNT-based lightweight ciphers. In the literature, there are two main
approaches to implementing the radix-22 algorithm. The first approach is based on mul-
tidimensional index mapping [26], while the second is the twiddle factor unscrambling
technique [27]. In conventional multidimensional index mapping, the transform length N is
mapped onto a multidimensional array, following a similar approach to the Cooley–Tukey
algorithm. In the twiddle factor unscrambling technique [28], the segment is divided into
N/4 equal segments, and each smaller butterfly is rearranged to be in base 2 or bit-reversed
order rather than in base 4 or in word-reversed order, which is typical for the general
radix-4 algorithm. This technique is comparatively efficient, and in this paper, we use the
twiddle factor unscrambling technique to derive a radix-22 algorithm for ONMNT. The
benefit of using the bit-unscrambling technique is that a higher-order radix, such as 4, 8,
16 or 2i, can use the same bit-unscrambling counter, which speeds up the calculation [29]
without needing extra calculations and data processing. This fast algorithm can be used
in a lightweight cipher, in which reducing the number of operations leads to a compact
implementation and efficient convolution calculations in signal processing applications.
In [30], the authors presented promising results on using the bit-unscrambling technique
for radix 22. It showed the dual advantages of a simpler structure and a reduced number of
calculations. However, the paper was limited to NMNT. ONMNT is a more recent GNMNT,
and it offers strong diffusion performance [9]. Unlike NMNT and O2NMNT, the kernel
matrix for ONMNT is transposed in the inverse transform. Moreover, the derivation of
the ONMNT fast algorithm requires considering retrograde points. Fast algorithms for
ONMNT using radix 22 have not been explored yet. Therefore, the aim of this paper is to
develop the radix-22 fast algorithm for the calculation of the ONMNMT and IONMNT.

The original contributions of this paper are as follows:

Signals 2023, 4 748

1. A novel mathematical derivation of a radix-22 algorithm for ONMNT and the inverse
ONMNT (IONMNT) using the radix-22 bit-unscrambling technique.

2. A detailed derivation of the transform kernel relationships incorporating retrograde
points.

3. Butterfly diagrams and signal flow graphs of the Radix-22 algorithm for ONMNT
and IONMNT.

Regarding the rest of the paper, Section 2 describes the most common fast algorithms.
Sections 3 and 4 provide a detailed derivation of the radix-22 algorithm for the forward and
inverse ONMNT with a butterfly diagram and a signal flow diagram, respectively. Section 5
discusses the arithmetic complexity of the proposed fast algorithm and compares it with
direct calculation and radix-22. Section 6 presents an example to demonstrate the accuracy
of the proposed fast algorithm. Section 7 concludes the paper and provides suggestions for
future work.

2. Odd New Mersenne Number Transform

ONMNT is the first of the two new NMNT-based transforms introduced by Boussakta
et al. [8]. An odd member of the transform parameter is chosen to form the kernel matrix.

The ONMNT of an integer sequence x(n), where n = 0, 1, 2, 3, . . . , N − 1 with trans-
form length N = 2m for m = 1, 2, 3, . . . , p− 1, is defined as follows:

Xo(k) =
〈 N−1

∑
n=0

x(n)β

(
n(2k + 1)

2

)〉
Mp

(1)

where k = 0, 1, 2, . . . , N− 1, 〈.〉Mp represents modulo Mp where Mp = 2p − 1 is a Mersenne

prime for p = 2, 3, 5, 7, 13, 17, 19, . . . and β

(
n(2k+1)

2

)
is the transform kernel. For the

ONMNT, the transform kernel can be expressed by the following matrix:

Mo f =

β(0) β(0) . . . β(0)
β
(1

2
)

β
(3

2
)

. . . β
(2N−1

2
)

β(1) β(3) . . . β
(
2(N − 1)

)
β
(3

2
)

β
(9

2
)

. . . β

{
3(2N−1)

2

}
...

...
. . .

...

β
(N−1

2
)

β

{
3(N−1)

2

}
. . . β

{
(2N−1)(N−1)

2

}

(2)

The IONMNT is defined as follows:

x(n) =
〈

N−1
N−1

∑
k=0

X0(k)β

(
k

2n + 1
2

)〉
Mp

(3)

where n = 0, 1, 2, 3, . . . , N − 1, X0(k) is the input sequence and β
(
k 2n+1

2
)

is the kernel
parameter for IONMNT. When comparing (1) and (3), the IONMNT differs from the
ONMNT in two ways: it has a scaling factor N−1 and the transform matrix is transposed
(i.e., Moi = MT

o f
) to let the kernel matrix be orthogonal. Therefore, the following is the

kernel matrix of the inverse ONMNT:

Signals 2023, 4 749

Moi =

β(0) β
(1

2
)

. . . β
(N−1

2
)

β(0) β
(3

2
)

. . . β

{
3(N−1)

2

}
β(0) β

(5
2
)

. . . β

{
5(2N−1)

2

}
...

...
. . .

...

β(0) β
(2N−1

2
)

. . . β

{
(N−1)(2N−1)

2

}

(4)

The maximum transform length for ONMNT is Nmax = 2p−1.

3. Derivation of Radix-22 Algorithm for ONMNT

An ONMNT radix-22 algorithm can be developed by decomposing (1) into 22 = 4
equal partial sums of transform length N

4 , where n = 0, 1, 2, . . . N
4 − 1, and by replacing n

with 4n + l, where l = 0, 1, 2, . . . N
4 − 1. Therefore, (1) can be written as follows:

Xo(k) =
〈 3

∑
l=0

N−1

∑
n=0

x(4n + l).β
(
(4n + l)

2k + 1
2

)〉
Mp

(5)

where x(4n + l) is the input sequence of each segment, β

(
(4n + l) 2k+1

2

)
is the kernel

parameter of ONMNT and 〈.〉Mp means that the calculation is modulo a Mersenne prime.
From the above equation, it can be seen that the output Xo(k) of the ONMNT is the

summation of four equal segments Xo
(

k + λ N
4

)
with N

4 consecutive elements indexed by

λ and where 0 ≤ λ ≤ 3. A general equation for each partial sum or segment is

Xo
(

k + λ
N
4

)
=

〈 3

∑
l=0

N
4 −1

∑
n=0

x(4n + l)β

{
(4n + l)

(
2k + 1

2
+ λ

N
4

)}〉
Mp

. (6)

In the next step of the derivation, the twiddle factor, β(.) from (3), is simplified
as follows:

β

{
(4n+ l)

(
2k + 1

2
+λ

N
4

)}
= β

[{(
2k + 1

2

)
l +λl

N
4

}
+

{
4n
(

2k + 1
2

)
+λnN

}]
. (7)

Equation (7) can be expanded using the β properties of β(m + n) = β1(m)β(n) +
β2(m)β(−n) from [31] as follows:

β

[{(
2k + 1

2

)
l + λl

N
4

}
+

{
4n
(

2k + 1
2

)
+ λnN

}]
= β1

{(
2k + 1

2

)
l + λl

N
4

}
β

{
4n
(

2k + 1
2

)
+ λnN

}
+ β2

{(
2k + 1

2

)
l + λl

N
4

}
β

{
− 4n

(
2k + 1

2

)
+ λnN

)}
(8)

Signals 2023, 4 750

where, using the periodic property of β(n), i.e., β(aN + m) = β(m) [30], (8) can be written
as follows:

β

[{(
2k + 1

2

)
l + λl

N
4

}
+

{
4n
(

2k + 1
2

)
+ λnN

}]
= β1

{(
2k + 1

2

)
l + λl

N
4

}
β

{
4n
(

2k + 1
2

)}
+ β2

{(
2k + 1

2

)
l + λl

N
4

}
β

{
− 4n

(
2k + 1

2

)}
. (9)

Substituting β1(.) and β2(.) with the relations β1(m + n) = β1(m)β1(n)− β2(m)β2(n)
and β2(m + n) = β1(m)β2(n) + β2(m)β1(n) from (9) into (7) yields the following:

β

{
(4n + l)

(
2k + 1

2
+ λ

N
4

)}
=

[
β1

{(
2k + 1

2

)
l
}

β1

(
λl

N
4

)
− β2

{(
2k + 1

2

)
l
}

β2

(
λl

N
4

)]
β

{
4n

2k + 1
2

}
+

[
β1

{(
2k + 1

2

)
l
}

β2

(
λl

N
4

)
+ β2

{(
2k + 1

2

)
l
}

β1

(
λl

N
4

)]
β

{
− 4n

2k + 1
2

}
. (10)

Substituting the values from (10) into (3), ignoring the modulo operator
〈〉

Mp
and

rearranging yields

Xo
(

k + λ
N
4

)
=

3

∑
l=0

[[N
4 −1

∑
n=0

x(4n + l)β

{
4n
(

2k + 1
2

)}
β1

(
λl

N
4

)

+

N
4 −1

∑
n=0

x(4n + l)β

{
4n

2k + 1
2

}
β2

(
λl

N
4

)]
β1

{(
2k + 1

2

)
l
}

+

[N
4 −1

∑
n=0

x(4n + l)β

{
− 4n

(
2k + 1

2

)}
β1

(
λl

N
4

)

−
N
4 −1

∑
n=0

x(4n + l)β

{
− 4n

(
2k + 1

2

)}
β2

(
λl

N
4

)]
β2

{(
2k + 1

2

)
l
}]

(11)

The following two sequences, where l = 0, 1, 2 and 3, can be defined:

Xo
l (k) =

N
4 −1

∑
n=0

x(4n + l)β

{
4n
(

2k + 1
2

)}
, (12)

Xo
l

(
N
4
− k− 1

)
=

N
4 −1

∑
n=0

x(4n + l)β

{
− 4n

(
2k + 1

2

)}
. (13)

Signals 2023, 4 751

Substituting Xo
l (k) and Xo

l

(
N
4 − k− 1

)
from (12) and (13) into (11), and rearranging

and applying re-indexing l of β1
(2k+1

2 l
)

and β2

(
2k+1

2 l
)

from (11) according to the bit
reverse order, yields the following:

Xo
(

k + λ
N
4

)
=Xo

0(k)

+

{
Xo

1(k)β1

(
λ

N
4

)
+ Xo

1

(
N
4
− k− 1

)
β2

(
λ

N
4

)}
β1

(
2

2k + 1
2

)
+

{
Xo

1

(
N
4
− k− 1

)
β1

(
λ

N
4

)
− Xo

1(k)β2

(
λ

N
4

)}
β2

(
2

2k + 1
2

)
+

{
Xo

2(k)β1

(
λ

N
2

)
+ Xo

2

(
N
4
− k− 1

)
β2

(
λ

N
2

)}
β1

(
2k + 1

2

)
+

{
Xo

2

(
N
4
− k− 1

)
β1

(
λ

N
2

)
− Xo

2(k)β2

(
λ

N
2

)}
β2

(
2k + 1

2

)
+

{
Xo

3(k)β1

(
λ

3N
4

)
+ Xo

3

(
N
4
− k− 1

)
β2

(
λ

3N
4

)}
β1

(
3

2k + 1
2

)
+

{
Xo

3

(
N
4
− k− 1

)
β1

(
λ

3N
4

)
− Xo

3(k)β2

(
λ

3N
4

)}
β2

(
3

2k + 1
2

)
.

(14)

Equation (14) is the general decomposition equation. The four main points for radix

22 are Xo(k), Xo
(

k + N
4

)
, Xo

(
k + N

2

)
and Xo

(
k + 3N

4

)
, which are derived by setting

λ = 0, 1, 2, 3 in (14) and using the following beta relationships:

β1(0) = 1 (15)

β2(0) = 0 (16)

β1

(
a

N
4

)
=

{
(−1)

a
2 , a is even

0, a is odd
(17)

β2

(
a

N
4

)
=

{
0, a is even

(−1)
a−1

2 , a is odd
(18)

β1

(
a

N
2

)
= (−1)a (19)

β2

(
a

N
2

)
= 0. (20)

Then, the following mapping relations are applied:

Xo
0(k) = Xo(k) (21)

Xo
1(k) = Xo

(
k +

N
4

)
(22)

Xo
1

(
N
4
− k− 1

)
= Xo

(
N
2
− k− 1

)
(23)

Xo
2(k) = Xo

(
k +

N
2

)
(24)

Xo
2

(
N
4
− k− 1

)
= Xo

(
3N
4
− k− 1

)
(25)

Signals 2023, 4 752

Xo
3(k) = Xo

(
k +

3N
4

)
(26)

Xo
3(k) = Xo

(
N − k− 1

)
(27)

Xo(k) =Xo(k)

+

{
Xo
(

k +
N
4

)
β1

(
2

2k + 1
2

)
+ Xo

(
N
2
− k− 1

)
β2

(
2

2k + 1
2

)}
+

{
Xo
(

k +
N
2

)
β1

(
2k + 1

2

)
+ Xo

(
3N
4
− k− 1

)
β2

(
2k + 1

2

)}
+

{
Xo
(

k +
3N
4

)
β1

(
3

2k + 1
2

)
+ Xo(N − k− 1)β2

(
3

2k + 1
4

)}
(28)

Xo
(

k +
N
4

)
=Xo(k)

+

{
Xo
(

k +
N
4

)
β1

(
2

2k + 1
2

)
+ Xo

(
N
2
− k− 1

)
β2

(
2

2k + 1
2

)}
−
{

Xo
(

3N
4
− k− 1

)
β1

(
2k + 1

2

)
− Xo

(
k +

N
2

)
β2

(
2k + 1

2

)}
−
{

Xo
(

N − k− 1
)

β1

(
3

2k + 1
2

)
− Xo

(
k +

3N
4

)
β2

(
3

2k + 1
2

)}
(29)

Xo
(

k +
N
2

)
=Xo(k)

+

{
− Xo

(
k +

N
4

)
β1

(
2

2k + 1
2

)
− Xo

(
N
2
− k− 1

)
β2

(
2

2k + 1
2

)}
+

{
Xo
(

k +
N
2

)
β1

(
2k + 1

2

)
+ Xo

(
3N
4
− k− 1

)
β2

(
2k + 1

2

)}
+

{
− Xo

(
3N
4

+ k
)

β1

(
3

2k + 1
2

)
− Xo

(
N − k− 1

)
β2

(
3

2k + 1
2

)}
(30)

Xo
(

k +
3N
4

)
=Xo(k)

−
{

Xo
(

k +
N
4

)
β1

(
2

2k + 1
2

)
+ X0

(
N
2
− k− 1

)
β2

(
2

2k + 1
2

)}
−
{

Xo
(

3N
4
− k− 1

)
β1

(
2k + 1

2

)
− Xo

(
k +

N
2

)
β2

(
2k + 1

2

)}
+

{
Xo(N − k− 1)β1

(
3

2k + 1
2

)
− Xo

(
3N
4

+ k
)

β2

(
3

2k + 1
2

)}
.

(31)

There are also four retrograde points. The butterfly diagram consists of all eight points.

For ONMNT, the four retrograde points, Xo
(

N
4 − k− 1

)
, Xo

(
N
2 − k− 1

)
, Xo

(
3N
4 − k− 1

)
and Xo

(
N − k − 1

)
, can be derived by replacing k with −k, where −k = N

4 − k − 1,
in (28)–(31) and using the following beta relations:

β1

{
2
(N

4 − k− 1
)
+ 1

2

}
= β2

(
2k + 1

2

)
(32)

Signals 2023, 4 753

β2

{
2
(N

4 − k− 1
)
+ 1

2

}
= β1

(
2k + 1

2

)
(33)

β1

{
2

2
(N

4 − k− 1
)
+ 1

2

}
= −β1

(
2

2k + 1
2

)
(34)

β2

{
2

2
(N

4 − k− 1
)
+ 1

2

}
= β2

(
2

2k + 1
2

)
(35)

β1

{
3

2
(N

4 − k− 1
)
+ 1

2

}
= −β2

(
3

2k + 1
2

)
(36)

β2

{
3

2
(N

4 − k− 1
)
+ 1

2

}
= −β1

(
3

2k + 1
2

)
(37)

The proof of the beta relations (32)–(37) is given in Appendix A.
Figure 1 shows the butterfly diagram for radix-22 ONMNT using the four main points

and the four retrograde points. The signal flow graph (SFG) for different transform lengths
can be drawn using the ONMNT butterfly diagram presented in Figure 1. For example,
SFG for N = 16 using the ONMNT butterfly diagram is shown in Figure 2.

Figure 1. An in-place butterfly diagram of the radix-22 ONMNT algorithm; solid lines and dashed
lines represent addition and subtraction operations, respectively.

Signals 2023, 4 754

Figure 2. A signal flow graph of radix-22 ONMNT for the transform length N = 16 ; solid lines and
dashed lines represent addition and subtraction operations, respectively.

4. Derivation of Radix-22 Algorithm for IONMNT

The derivation of the radix-22 algorithm starts by replacing
(

2k+1
2

)
with

(
2k+1

2 + λ N
4

)
and n with 4n + l in (2), where λ = 0, 1, 2, 3 and l = 0, 1, 2, 3, ignoring (N−1) in (3):

x(4n + l) =
〈 N

4 −1

∑
k=0

Xo(k)
3

∑
λ=0

β

{
(4n + l)

(
2k + 1

2
+ λ

N
4

)}〉
Mp

. (38)

The twiddle factor from (38) can be written as follows:

β

{
(4n + l)

(
2k + 1

2
+ λ

N
4

)}
=β

{(
4n

2k + 1
2

+ λnN
)(

2k + 1
2

l + λl
N
4

)}
=β

{(
2k + 1

2
l + λl

N
4

)(
4n

2k + 1
2

+ λnN
)} (39)

Signals 2023, 4 755

Using the relationship β(m + n) = β1(m).β(n) + β2(m).β(−n) and the periodic prop-
erties of β(.), (39) can be written as follows:

β

{(
2k + 1

2
l + λl

N
4

)(
4n

2k + 1
2

+ λnN
)}

= β1

(
2k + 1

2
l + λl

N
4

)
β

(
4n

2k + 1
2

)
+ β2

(
2k + 1

2
l + λl

N
4

)
β

(
− 4n

2k + 1
2

)
(40)

β1(m + n) = β1(m)β1(n)− β2(m)β2(n) (41)

β2(m + n) = β1(m)β2(n) + β2(m)β1(n). (42)

Using the relationships (41) and (42) yields

β1

(
2k + 1

2
l + λl

N
4

)
= β1

(
2k + 1

2
l
)

β1

(
λl

N
4

)
− β2

(
2k + 1

2
l
)

β2

(
λl

N
4

)
(43)

and

β2

(
2k + 1

2
l + λl

N
4

)
= β1

(
2k + 1

2
l
)

β2

(
λl

N
4

)
+ β2

(
2k + 1

2
l
)

β1

(
λl

N
4

)
. (44)

Substituting (43) and (44) into (40) gives the updated values of β(.):

β

{(
2k + 1

2
l + λl

N
4

)(
4n

2k + 1
2

+ λnN
)}

=

{
β1

(
2k + 1

2
l
)

β1

(
λl

N
4

)
− β2

(
2k + 1

2
l
)

β2

(
λl

N
4

)}
β

(
4n

2k + 1
2

)
+

{
β1

(
2k + 1

2
l
)

β2

(
λl

N
4

)
+ β2

(
2k + 1

2
l
)

β1

(
λl

N
4

)}
β

(
− 4n

2k + 1
2

)
=β1

(
2k + 1

2
l
)

β1

(
λl

N
4

)
β

(
4n

2k + 1
2

)
− β2

(
2k + 1

2
l
)

β2

(
λl

N
4

)
β

(
4n

2k + 1
2

)
+ β1

(
2k + 1

2
l
)

β2

(
λl

N
4

)
β

(
− 4n

2k + 1
2

)
+ β2

(
2k + 1

2
l
)

β1

(
λl

N
4

)
β

(
− 4n

2k + 1
2

)
.

(45)

Rearranging and simplifying (45) results in the following:

β

{(
2k + 1

2
l + λl

N
4

)(
4n

2k + 1
2

+ λnN
)}

=

{
β

(
4n

2k + 1
2

)
β1

(
λl

N
4

)
+ β

(
− 4n

2k + 1
2

)
β2

(
λl

N
4

)}
β1

(
2k + 1

2
l
)

+

{
β

(
− 4n

2k + 1
2

)
β1

(
λl

N
4

)
− β

(
4n

2k + 1
2

)
β2

(
λl

N
4

)}
β2

(
2k + 1

2
l
)

. (46)

Signals 2023, 4 756

Substituting the value from (46) into (38) and ignoring 〈〉Mp for the derivation,

x(4n + l) =

N
4 −1

∑
k=0

3

∑
λ=0

Xo

(
k + λ

N
4

)
[{

β

(
4n

2k + 1
2

)
β1

(
λl

N
4

)
+ β

(
− 4n

2k + 1
2

)
β2

(
λl

N
4

)}
β1

(
2k + 1

2
l
)

+

{
β

(
− 4n

2k + 1
2

)
β1

(
λl

N
4

)
− β

(
4n

2k + 1
2

)
β2

(
λl

N
4

)}
β2

(
2k + 1

2
l
)]

.

(47)

Reorganizing the equation and factoring out the shared summation term ∑3
λ=0 from (47)

yields the following result:

x(4n + l) =
3

∑
λ=0

[{ N
4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β1

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
β1

(
λl

N
4

)}

+

{ N
4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β1

(
2k + 1

2
l
)

β

(
− 4n

2k + 1
2

)
β2

(
λl

N
4

)}

+

{ N
4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β2

(
2k + 1

2
l
)

β

(
− 4n

2k + 1
2

)
β1

(
λl

N
4

)}
{ N

4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β2

(
2k + 1

2
l
)

β

(
− 4n

2k + 1
2

)
β2

(
λl

N
4

)}]
.

(48)

Let us define the two following terms:

N
4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β1

(
2k + 1

2
l
)

β

(
− 4n

2k + 1
2

)

=

N
4 −1

∑
k=0

Xo

(
λ

N
4
− k− 1

)
β1

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
, (49)

N
4 −1

∑
k=0

Xo

(
k + λ

N
4

)
β2

(
2k + 1

2
l
)

β

(
− 4n

2k + 1
2

)

= −
N
4 −1

∑
k=0

Xo

(
λ

N
4
− k− 1

)
β2

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
. (50)

Signals 2023, 4 757

Substituting the relations (49) and (50) into (48) leads to

x(4n + l) =
3

∑
λ=0

[{ N
4 −1

∑
k=0

Xo

(
λ

N
4
+ k
)

β1

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
β1

(
λl

N
4

)}

+

{ N
4 −1

∑
k=0

Xo

(
λ

N
4
− k− 1

)
β1

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
β2

(
λl

N
4

)}

−
{ N

4 −1

∑
k=0

Xo

(
λ

N
4
− k− 1

)
β2

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
β1

(
λl

N
4

)}

−
{ N

4 −1

∑
k=0

Xo

(
λ

N
4
+ k
)

β2

(
2k + 1

2
l
)

β

(
4n

2k + 1
2

)
β2

(
λl

N
4

)}]
.

(51)

Upon reorganizing the terms and isolating the common summation term ∑
N
4 −1

k=0 (.) and

β
(

4n 2k+1
2

)
from Equation (51), the result is as follows:

x(4n + l) =

N
4 −1

∑
k=0

[
3

∑
λ=0

[{
Xo

(
k + λ

N
4

)
β1

(
λl

N
4

)
+ Xo

(
λ

N
4
− k− 1

)
β2

(
λl

N
4

)}
β1

(
l
2k + 1

2

)
−
{

Xo

(
λ

N
4
− k− 1

)
β1

(
λl

N
4

)
+ Xo

(
k + λ

N
4

)
β2

(
λl

N
4

)
β2

(
l
2k + 1

2

)}]]
β

(
4n

2k + 1
2

)
.

(52)

Equation (52) can be rewritten as follows:

x(4n + l) =

N
4 −1

∑
k=0

y(l, k)β

(
4n

2k + 1
2

)
(53)

where

y(l, k) =
3

∑
λ=0

[{
Xo

(
k + λ

N
4

)
β1

(
λl

N
4

)
+ Xo

(
λ

N
4
− k− 1

)
β2

(
λl

N
4

)}
β1

(
l
2k + 1

2

)
−
{

Xo

(
λ

N
4
− k− 1

)
β1

(
λl

N
4

)
+ Xo

(
k + λ

N
4

)
β2

(
λl

N
4

)}
β2

(
l
2k + 1

2

)]
.

(54)

Signals 2023, 4 758

Expanding λ, substituting β2

(
a N

2

)
= 0 and rearranging (54) leads to the following:

y(l, k) =
{

Xo(k) + Xo

(
k +

N
4

)
β1

(
l
N
4

)
+ Xo

(
N
4
− k− 1

)
β2

(
l
N
4

)
+ Xo

(
k +

N
2

)
β1

(
l
N
2

)
+ Xo

(
k +

3N
4

)
β1

(
l
3N
4

)
+ X0

(
3N
4
− k− 1

)
β2

(
l
3N
4

)}
β1

(
l
2k + 1

2

)
−
{

Xo

(
N − k− 1

)
+ Xo

(
N
4
− k− 1

)
β1

(
l
N
4

)
+ Xo

(
k +

N
4

)
β2

(
l
N
4

)
+ Xo

(
N
2
− k− 1

)
β1

(
l
N
2

)
+ Xo

(
3N
4
− k− 1

)
β1

(
l
3N
4

)
+ Xo

(
k +

3N
4

)
β2

(
l
3N
4

)}
β2

(
l
2k + 1

2

)

(55)

By substituting l = 0, 1, 2 and 3 in (55) using the β relationships from (15)–(20) and
applying the bit-unscrambling technique, the temporary main points are found as follows:

y(0, k) =Xo(k) + Xo

(
k +

N
4

)
+ Xo

(
k +

N
2

)
+ Xo

(
k +

3N
4

)
(56)

y(1, k) =
{

Xo(k)− Xo

(
k +

N
4

)
+ Xo

(
k +

N
2

)
− Xo

(
k +

3N
4

)}
β1

(
2

2k + 1
2

)
−
{

Xo

(
N − k− 1

)
− Xo

(
N
4
− k− 1

)
+ Xo

(
N
2
− k− 1

)
− Xo

(
3N
4
− k− 1

)}
β2

(
2

2k + 1
2

)
(57)

y(2, k) =
{

Xo(k) + Xo

(
N
4
− k− 1

)
− Xo

(
k +

N
2

)
− Xo

(
3N
4
− k− 1

)}
β1

(
2k + 1

2

)
−
{

Xo

(
N − k− 1

)
+ Xo

(
k +

N
4

)
− Xo

(
N
2
− k− 1

)
− Xo

(
k +

3N
4

)}
β2

(
2k + 1

2

)
(58)

y(3, k) =
{

Xo(k)− Xo

(
N
4
− k− 1

)
− Xo

(
k +

N
2

)
+ Xo

(
3N
4
− k− 1

)}
β1

(
3

2k + 1
2

)
−
{

Xo

(
N − k− 1

)
− Xo

(
k +

N
4

)
− Xo

(
N
2
− k− 1

)
+ Xo

(
k +

3N
4

)}
β2

(
3

2k + 1
2

)
. (59)

By substituting k with −k, where −k = N
4 − k− 1, in Equations (56)–(59), and employ-

ing the beta relations from (17)–(19), the outcome entails the determination of four tempo-
rary retrograde points:

Signals 2023, 4 759

y
(

0,
N
4
− k− 1

)
=Xo

(
N − k− 1

)
+ Xo

(
N
4
− k− 1

)
+ Xo

(
N
2
− k− 1

)
+ Xo

(
3N
4
− k− 1

)
(60)

y
(

1,
N
4
− k− 1

)
=

{
Xo

(
N − k− 1

)
− Xo

(
N
4
− k− 1

)
+ Xo

(
N
2
− k− 1

)
− Xo

(
3N
4
− k− 1

)}
β1

(
2

2k + 1
2

)
+

{
Xo(k)− Xo

(
k +

N
4

)
+ Xo

(
k +

N
2

)
− Xo

(
k +

3N
4

)}
β2

(
2

2k + 1
2

)
(61)

y
(

2,
N
4
− k− 1

)
=

{
Xo(k) + Xo

(
N
4
− k− 1

)
− X0

(
k +

N
2

)
− Xo

(
3N
4
− k− 1

)}
β2

(
2k + 1

2

)
+

{
Xo

(
N − k− 1

)
+ Xo

(
k +

N
4

)
+ Xo

(
N
2
− k− 1

)
+ Xo

(
k +

3N
4

)}
β1

(
2k + 1

2

)
(62)

y
(

3,
N
4
− k− 1

)
=

{
Xo(k)− Xo

(
N
4
− k− 1

)
− Xo

(
k +

N
2

)
+ Xo

(
3N
4
− k− 1

)}
β2

(
3

2k + 1
2

)
+

{
Xo

(
N − k− 1

)
− Xo

(
k +

N
4

)
− Xo

(
N
2
− k− 1

)
+ Xo

(
k +

3N
4

)}
β1

(
3

2k + 1
2

)
. (63)

Substituting the temporary points from (56)–(59) into (53) for the main four points is
carried out as follows:

x(4n) =

N
4 −1

∑
k=0

[
Xo(k) + Xo

(
k +

N
4

)
+ Xo

(
k +

N
2

)
+ Xo

(
k +

3N
4

)]
β

(
4n

2k + 1
2

)
(64)

x(4n + 1) =

N
4 −1

∑
k=0

[{
Xo(k)− Xo

(
k +

N
4

)
+ Xo

(
k +

N
2

)
− Xo

(
k +

3N
4

)}
β1

(
2

2k + 1
2

)
−
{

Xo

(
N − k− 1

)
− Xo

(
N
4
− k− 1

)
+ Xo

(
N
2
− k− 1

)
− Xo

(
3N
4
− k− 1

)}
β2

(
1

2k + 1
2

)]
β

(
4n

2k + 1
2

)
(65)

x(4n + 2) =

N
4 −1

∑
k=0

[{
Xo(k) + Xo

(
N
4
− k− 1

)
− Xo

(
k +

N
2

)
− X0

(
3N
4
− k− 1

)}
β1

(
2k + 1

2

)
−
{

Xo

(
N − k− 1

)
+ Xo

(
k +

N
4

)
− Xo

(
N
2
− k− 1

)
− Xo

(
k +

3N
4

)}
β2

(
2

2k + 1
2

)]
β

(
4n

2k + 1
2

)
(66)

x(4n + 3) =

N
4 −1

∑
k=0

[{
Xo(k)− Xo

(
N
4
− k− 1

)
− Xo

(
k +

N
2

)
+ Xo

(
3N
4
− k− 1

)}
β1

(
3

2k + 1
2

)
−
{

Xo

(
N − k− 1

)
− Xo

(
k +

N
4

)
− Xo

(
N
2
− k− 1

)
+ Xo

(
k +

3N
4

)}
β2

(
3

2k + 1
2

)]
β

(
4n

2k + 1
2

)
Like ONMNT, the butterfly diagram for IONMNT consists of eight points. Figure 3

presents the butterfly diagram for IONMNT.

Signals 2023, 4 760

Figure 3. An in-place butterfly diagram of the radix-22 IONMNT algorithm; solid lines and dashed
lines represent addition and subtraction operations, respectively.

Using the butterfly diagram given in Figure 3, the signal flow diagram can be drawn
for any length of N. For example, Figure 4 presents a signal flow diagram of radix-22

IONMNT for the transform length N = 16.

Figure 4. Signal flow graph of radix-22 IONMNT for the transform length N = 16; solid lines and
dashed lines represent addition and subtraction operations, respectively.

Signals 2023, 4 761

5. Arithmetic Complexity of Radix-22 Algorithm

There are two general formulas for computing complexity: the closed formula used
for single-butterfly implementation and the recursive formula used for multiple-butterfly
implementation. In this paper, we used single-butterfly implementation for simplicity in
calculation. The arithmetic complexity is a summation of the number of initial additions
and multiplications in a single butterfly, along with the number of stages and points. A
comparison of arithmetic complexity for ONMNT using direct calculations for the radix-2
and radix-22 algorithms is presented below. In the direct calculation of the transform, the
numbers of addition and multiplication operations are N(N − 1) and N2, respectively,
where N is the transform length. The number of stages in the radix-2 fast algorithm is
log2(N). Each butterfly processes N/4 points and requires 6 additions and 4 multiplications
using the single-butterfly implementation. Therefore, the number of additions A(N) and
multiplications M(N) for radix 2 can be calculated using the following equations:

A(N) =
N
4

6 log2(N) =
3N
2

log2(N) (67)

M(N) =
N
4

4 log2(N) = N log2(N) (68)

In the radix-22 algorithm, the number of stages S is log4(N) or 1
2 log2(N), where N

is the number of points in each butterfly. The numbers of multiplication and addition
operations required in each stage are 12 and 22, respectively. As the radix-22 butterfly
has eight points—four main points and four retrograde points—the number of points to
calculate at each stage is N

8 . Therefore, the arithmetic complexity can be calculated in
terms of the number of additions A(N) and the number of multiplications M(N) using the
following equations:

A(N) =
N
8
× 22× 1

2
log2 N =

11N
8

log2(N) (69)

M(N) =
N
8
× 12× 1

2
log2 N =

3N
4

log2(N) (70)

Figure 5 shows the total calculations for direct calculations, radix-2, and radix-22, in a
graph where the x-axis shows the transform length in the logarithm scale and the y-axis
shows the total number of calculations, including addition and multiplication. As can be
seen from the figure, both the radix-2 and radix-22 algorithms require significantly fewer
calculations than the direct method. Moreover, the total number of calculations increases
exponentially as the transform length increases.

Table 1 presents the number of additions, multiplications, and total calculation re-
quired for ONNMT using a direct calculation as well as the radix-2 and radix-22 algorithms
for transform length N = 8, 16, 32, 64, 128 and 256. Comparing (67) and (68) with (69)
and (70) for direct calculations, the numbers of saved operations in the radix-22 algorithm
relative to radix 2 can be written as follows:

∆A(N) =
N
8

log2(N) (71)

∆M(N) =
N
4

log2(N) (72)

Signals 2023, 4 762

Figure 5. Comparison of total calculations for direct calculations, radix-2 and radix-22.

Table 1. Comparison of arithmetic complexity for ONMNT using a single butterfly.

Direct Radix-2 Radix-22

N Add. Multi. Total Add. Multi. Total Add. Multi. Total

8 56 64 120 36 24 60 33 18 51
16 240 256 496 96 64 160 88 48 136
32 992 1024 2016 240 160 400 220 120 340
64 4032 4096 8128 576 384 960 528 288 816

128 16,256 16,384 32,640 1344 896 2240 1232 672 1904
256 65,280 65,536 130,816 3072 2048 5120 2816 1536 4352

The radix-22 algorithm offers an 8.55% reduction in the number of additions and a
25% reduction in the number of multiplications compared to radix 2. It is important to note
that the multiplication operation is more CPU-intensive than the addition operation, so a
25% saving in the number of multiplications in the radix-22 algorithm is notable and makes
it more suitable for a lightweight cipher application. Overall, this algorithm achieves a 15%
reduction in total calculations. The number of calculations for radix-4 and split radix is not
included in the comparison because the transform length of radix-4 [32] fast algorithm is
only limited to the power of 4, and it has more complex implementations than radix-22.
Radix-22 has the same non-trivial multiplicative complexity of radix-4, but it retains the
butterfly structure of radix-2 [33]. The saving percentage will be higher as the transform
length increases.

6. An Example of the Proposed Fast Algorithm

To validate the accuracy of the derived algorithm, a short data packet was transformed
using the radix-22 fast algorithm for the ONMNT forward transform. Then, IONMNT was
applied to the transformed data using the radix-22 algorithm to recover the original data.
The experiment was implemented in the C programming language. Moreover, the outputs
of the proposed fast algorithm for forward ONMNT and IONMNT were compared with

Signals 2023, 4 763

the direct calculations and verified. A brief description of the experiment and the results
are presented below:

6.1. Forward ONMNT Transform

First, the text “Encryption story” was converted into ASCII values and transformed
using the proposed algorithm with transform parameters α1 = 2, α2 = 3, N = 16, p = 7,
Mp = 127, n = {0, 1, 2, . . . , 15}, and k = {0, 1, 2, . . . , 15}. The original and transformed
values are as follows:

x[n]: 69 110 99 114 121 112 116 105 111 110 32 115 116 111 114 121
X[k]: 56 52 33 52 53 35 83 80 85 82 14 63 21 113 79 76

6.2. IONMNT Transform

IONMNT was applied to the transformed data X[k] using the same transform parame-
ters, recovering the original data. Moreover, the results match with the direct calculations.

X[k]: 56 52 43 52 53 35 83 80 85 82 14 63 21 113 79 76
x[n]: 69 110 99 114 121 112 116 105 111 110 32 115 116 111 114 121

Therefore, this experiment confirms the proposed solution’s validity and shows no
rounding or truncation errors, which is a good attribute of the ONMNT.

7. Conclusions

An efficient derivation of a radix-22 fast algorithm for both ONMNT and IONMNT
has been presented in this paper. A bit-unscrambling technique provides a more straightfor-
ward implementation of the radix-22 algorithm compared to traditional multidimensional
index mapping. The butterfly and signal flow diagrams presented in the paper offer flexi-
bility in implementing ONMNT using the radix 22 algorithm. The proposed fast algorithm
offers an 8.55% reduction in the number of additions, a 25% reduction in the CPU-intensive
multiplication operations, and an overall reduction of 15% compared to radix-2 while
retaining the butterfly structure of radix-2. This efficient and fast algorithm can be used
for lightweight ciphers and hash functions to take advantage of both the reduced num-
ber of calculations offered by the radix-4 algorithm and the simple butterfly structure of
the radix-2 fast algorithm. In future research, the proposed algorithm could be imple-
mented in multiple hardware platforms and used in real-life applications to understand its
performance better. Moreover, the derivation could also be extended to O2NMNT.

Author Contributions: Conceptualization, Y.A.-A. and S.B.; methodology, Y.A.-A., M.T.H. and S.B;
software, Y.A.-A., M.T.H. and S.B.; validation, Y.A.-A., M.T.H. and S.B.; writing—original draft
preparation, Y.A.-A. and S.B.; writing—review and editing, Y.A.-A., M.T.H. and S.B.; visualization,
Y.A.-A., M.T.H. and S.B.; supervision, S.B. and M.T.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is a continuation of previously funded research by EPSRC under grant
number GR/S98160/02.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Signals 2023, 4 764

ASIC Application-Specific Integrated Circuit
GNMNT Generalized New Mersenne Number Transform
IONMNT Inverse Odd New Mersenne Number Transform
WHT Walsh–Hadamard Transform
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
NMNT New Mersenne Number Transform
NTT Number Theoretic Transform
ONMNT Odd New Mersenne Number Transform
O2NMNT Odd Squared New Mersenne Number Transform

Appendix A

Appendix A.1. Beta Relationships

In the following proof, β1(.) and β2(.) are two components of the kernel parameter of
the ONMNT β(.), i.e., β(.) = β2(.) + β2(.), and N is the transform length.

β1

[
2
(N

4 − k− 1
)
+ 1

2

]
= β2

(
2k + 1

2

)
. (A1)

β2

[
2
(N

4 − k− 1
)
+ 1

2

]
= β1

(
2k + 1

2

)
. (A2)

β1

[
2
(N

4 − k− 1
)
+ 1

2
× 2
]
= −β1

(
2k + 1

2
× 2
)

. (A3)

β2

[
2
(N

4 − k− 1
)
+ 1

2
× 2
]
= β2

(
2k + 1

2
× 2
)

. (A4)

β1

[
2
(N

4 − k− 1
)
+ 1

2
× 3
]
= −β2

(
2k + 1

2
× 3
)

. (A5)

β2

[
2
(N

4 − k− 1
)
+ 1

2
× 3
]
= −β1

(
2k + 1

2
× 3
)

. (A6)

Appendix A.2. Proof of (A1)–(A6)

β1

[
2
(N

4 − k− 1
)
+ 1

2
× a
]
= β1

[N
2 − (2k + 1)

2
× a
]

= β1

[{
N
4
− (2k + 1)

2

}
× a
]

= β1

[{
N
4
× a
}
−
{
(2k + 1)

2
× a
}] (A7)

β2

[
2
(N

4 − k− 1
)
+ 1

2
× a
]
= β2

[N
2 − (2k + 1)

2
× a
]

= β2

[{
N
4
− (2k + 1)

2

}
× a
]

= β2

[{
N
4
× a
}
−
{
(2k + 1)

2
× a
}]

.

(A8)

The following beta properties are required below:

β1(m− n) = β1(m)β1(n) + β2(m)β2(n) (A9)

Signals 2023, 4 765

β2(m− n) = β2(m)β1(n)− β1(m)β2(n) (A10)

Using (A9) and (A10), (A8) can be written as follows:

β1

[{
N
4
× a
}
−
{
(2k + 1)

2
× a
}]

= β1

(
N
4
× a
)

β1

{
(2k + 1)

2
× a
}
+ β2

(
N
4
× a
)

β2

{
(2k + 1)

2
× a
}

(A11)

β2

[{
N
4
× a
}
−
{
(2k + 1)

2
× a
}]

= β2

(
N
4
× a
)

β1

{
(2k + 1)

2
× a
}
− β1

(
N
4
× a
)

β2

{
(2k + 1)

2
× a
}

(A12)

β1

(
a

N
4

)
=

{
(−1)

a
2 a = even

0 a = odd

β2

(
a

N
4

)
=

{
0 a = even

(−1)
a−1

2 a = odd

(A13)

Substituting a = 1 in (A13) leads to the following:

β1

(
N
4

)
= 0, and

β2

(
N
4

)
= 1.

(A14)

Substituting the values of β1
(N

4
)

and β2
(N

4
)

from (A14) and setting a = 1 in (A11)
and (A12),

β1

[{
N
4

}
−
{
(2k + 1)

2

}]
= β2

{
(2k + 1)

2

}
(A15)

β1

[
2
(N

4 − k− 1
)
+ 1

2
× 2
]
= −β1

{
(2k + 1)

2
× 2
}

(A16)

β2

[
2
(N

4 − k− 1
)
+ 1

2
× 2
]
= β2

{
(2k + 1)

2
× 2
}

. (A17)

When a = 3 in (A13),

β1

(
N
4
× 3
)
= 0

β2

(
N
4
× 3
)
= −1.

(A18)

Substituting the values of β1
(N

4
)

and β2
(N

4
)

from (A13) and setting a = 3 in (A11)
and (A12),

β1

[{
N
4
× 3
}
−
{
(2k + 1)

2
× 3
}]

= −β2

{
(2k + 1)

2
× 3
}

(A19)

β2

[{
N
4
× 3
}
−
{
(2k + 1)

2
× 3
}]

= −β1

{
(2k + 1)

2
× 3
}

(A20)

β1

[
2
(N

4 − k− 1
)
+ 1

2
× 3
]
= −β2

{
(2k + 1)

2
× 3
}

(A21)

β2

[
2
(N

4 − k− 1
)
+ 1

2
× 3
]
= −β1

{
(2k + 1)

2
× 3
}

. (A22)

Signals 2023, 4 766

References
1. Nussbaumer, H.J. Number Theoretic Transforms, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1982; pp. 211–240. [CrossRef]
2. Yan, K. A Review of the Development and Applications of Number Theory. J. Phys. Conf. Ser. 2019, 1325, 012128. [CrossRef]
3. Rader, C.M. Discrete convolutions via Mersenne transforms. IEEE Trans. Comput. 1972, C-21, 1269–1273. [CrossRef]
4. Kehil, D.; Ferdi, Y. Signal encryption using new Mersenne number transform. In Proceedings of the 2010 7th International

Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP 2010), Newcastle Upon Tyne, UK, 21–23
July 2010; pp. 736–740. [CrossRef]

5. Křížek, M.; Luca, F.; Somer, L. Fermat number transform and other applications. In 17 Lectures on Fermat Numbers: From Number
Theory to Geometry; Springer: New York, NY, USA, 2001; pp. 165–186. [CrossRef]

6. Agarwal, R.C.; Burrus, C.S. Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans.
Acoust. 1974, 22, 87–97. [CrossRef]

7. Boussakta, S.; Holt, A.G.J. New number theoretic transform. Electron. Lett. 1992, 28, 1683–1684. .:19921070. [CrossRef]
8. Boussakta, S.; Hamood, M.T.; Rutter, N. Generalized new Mersenne number transforms. IEEE Trans. Signal Process. 2012,

60, 2640–2647. [CrossRef]
9. Rutter, N. Implementation and Analysis of the Generalised New Mersenne Number Transforms for Encryption. Ph.D. Thesis,

Newcastle University, Newcastle upon Tyne, UK, 2015. Available online: http://theses.ncl.ac.uk/jspui/handle/10443/3236
(accessed on 25 July 2023).

10. Hamood, M.T. Development of Efficient Algorithms for Fast Compution of Discrete Transforms. Ph.D. Thesis, Newcastle
University, Newcastle upon Tyne, UK, 2012.

11. Hua, J.; Liu, F.; Xu, Z.; Li, F.; Wang, D. A fast realization of new Mersenne number transformation and its applications. Int. J.
Circuit Theory Appl. 2019, 47, 738–752. [CrossRef]

12. He, S.; Torkelson, M. New approach to pipeline FFT processor. In Proceedings of the International Conference on Parallel
Processing, Honolulu, HI, USA, 15–19 April 1996; pp. 766–770. [CrossRef]

13. Pollard, J.M. The Fast Fourier Transform in a Finite Field. Math. Compulation 1971, 25, 365–374. [CrossRef]
14. Cortés, A.; Vélez, I.; Sevillano, J.F. Radix rk FFTs: Matricial representation and SDC/SDF pipeline implementation. IEEE Trans.

Signal Process. 2009, 57, 2824–2839. [CrossRef]
15. Anguraj, P.; Krishnan, T.; Natesan, K. Design of an area-efficient various N-point support radix-2/22 FFT using modified butterfly

units. Int. J. Recent Tech. Eng. 2019, 8, 10189–10198. [CrossRef]
16. Samir Algnabi, Y.; Teymourzadeh, R.; Othman, M.; Shabiul Islam, M. FPGA implementation of pipeline digit-slicing multiplier-

less radix 22 DIF SDF butterfly for fast Fourier transform structure. arXiv 2018, arXiv:1806.04570.
17. Santhosh, L.; Thomas, A. Implementation of radix 2 and radix 22 FFT algorithms on Spartan6 FPGA. In Proceedings of the 2013

Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India,
4–6 July 2013; pp. 1–4. [CrossRef]

18. Li, N.; Van Der Meijs, N.P. A radix 22 based parallel pipeline FFT processor for MB-OFDM UWB system. In Proceedings of the
2009 IEEE International SOC Conference (SOCC), Belfast, UK, 9–11 September 2009; pp. 383–385. [CrossRef]

19. Eisenbarth, T.; Kumar, S.; Paar, C.; Poschmann, A.; Uhsadel, L. A Survey of Lightweight-Cryptography Implementations. IEEE
Des. Test Comput. 2007, 24, 522–533. [CrossRef]

20. Philip, M.A.; Vaithiyanathan. A survey on lightweight ciphers for IoT devices. In Proceedings of the 2017 International
Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; pp. 1–4.
[CrossRef]

21. Fragkos, G.; Minwalla, C.; Plusquellic, J.; Tsiropoulou, E.E. Artificially Intelligent Electronic Money. IEEE Consum. Electron. Mag.
2021, 10, 81–89. [CrossRef]

22. Parvatham, N.; Professor, A. LEA-SIoT: Hardware Architecture of Lightweight Encryption Algorithm for Secure IoT on FPGA
Platform. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2020, 11, 720–725. [CrossRef]

23. Nabeel, N.; Habaebi, M.H.; Rafiqul Islam, M. LNMNT—New Mersenne number based lightweight crypto hash function for IoT.
In Proceedings of the 8th International Conference on Computer and Communication Engineering, ICCCE 2021, Kuala Lumpur,
Malaysia, 22–23 June 2021; pp. 68–71. [CrossRef]

24. Maetouq, A.; Daud, S.M. HMNT: Hash function based on new Mersenne number transform. IEEE Access 2020, 8, 80395–80407.
[CrossRef]

25. Nabeel, N.; Habaebi, M.H.; Islam, M.D.R. Security analysis of LNMNT-lightweight crypto hash function for IoT. IEEE Access
2021, 9, 165754–165765. [CrossRef]

26. Burrus, C. Index mappings for multidimensional formulation of the DFT and convolution. IEEE Trans. Acoust. Speech Signal
Process. 1977, 25, 239–242. [CrossRef]

27. Burrus, C. Bit reverse unscrambling for a radix-2M FFT. In Proceedings of the ICASSP ’87, IEEE International Conference on
Acoustics, Speech, and Signal Processing, Dallas, TX, USA, 6–9 April 1987; Volume 12, pp. 1809–1810. [CrossRef]

28. Burrus, C.S. Unscrambling for fast DFT algorithms. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1086–1087. [CrossRef]
29. Papamichalis, P.E.; Burrus, C.S. Conversion of digit-reversed to bit-reversed order in FFT algorithms. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; Volume 2, pp. 984–987.
[CrossRef]

http://doi.org/10.1007/978-3-642-81897-4
http://dx.doi.org/10.1088/1742-6596/1325/1/012128
http://dx.doi.org/10.1109/T-C.1972.223497
http://dx.doi.org/10.1109/CSNDSP16145.2010.5580327
http://dx.doi.org/10.1007/978-0-387-21850-2_15
http://dx.doi.org/10.1109/TASSP.1974.1162555
http://dx.doi.org/10.1049/el:19921070
http://dx.doi.org/10.1109/TSP.2012.2186131
http://theses.ncl.ac.uk/jspui/handle/10443/3236
http://dx.doi.org/10.1002/cta.2614
http://dx.doi.org/10.1109/IPPS.1996.508145
http://dx.doi.org/10.1090/S0025-5718-1971-0301966-0
http://dx.doi.org/10.1109/TSP.2009.2016276
http://dx.doi.org/10.35940/ijrte.D8604.118419
http://dx.doi.org/10.1109/ICCCNT.2013.6726840
http://dx.doi.org/10.1109/SOCCON.2009.5398013
http://dx.doi.org/10.1109/MDT.2007.178
http://dx.doi.org/10.1109/TAPENERGY.2017.8397271
http://dx.doi.org/10.1109/MCE.2020.3024512
http://dx.doi.org/10.14569/IJACSA.2020.0110189
http://dx.doi.org/10.1109/ICCCE50029.2021.9467180
http://dx.doi.org/10.1109/ACCESS.2020.2989820
http://dx.doi.org/10.1109/ACCESS.2021.3133097
http://dx.doi.org/10.1109/TASSP.1977.1162938
http://dx.doi.org/10.1109/ICASSP.1987.1169492
http://dx.doi.org/10.1109/29.1631
http://dx.doi.org/10.1109/ICASSP.1989.266595

Signals 2023, 4 767

30. Hamood, M.T.; Boussakta, S. Efficient algorithms for computing the new Mersenne number transform. Digit. Signal Process. 2014,
25, 280–288. [CrossRef]

31. Agarwal, R.C.; Burrus, C.S. Number theoretic transforms to implement fast digital convolution. Proc. IEEE Inst. Electr. Electron.
Eng. 1975, 63, 550–560. [CrossRef]

32. Chu, E.; George, A. Inside the FFT Black Box—Serial and Parallel Fast the Serial and Parallel Fast Algorithms; CRC Press: Boca Raton,
FL, USA, 2000; pp. 109–117.

33. Selvakumar, S.; Stephy Jasmine Rani, L.; Vijayalakshmi, G.; Vishnudevi, N.; Janakiraman, N. Radix 25 Fft Architecture
Implementation In Xilinx Fpga. In Proceedings of the 2014 International Conference on Innovations in Engineering and
Technology, Tamil Nadu, India, 21–22 March 2014; pp. 1507–1511.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.dsp.2013.10.018
http://dx.doi.org/10.1109/PROC.1975.9791

	Introduction
	Odd New Mersenne Number Transform
	Derivation of Radix-2-squared Algorithm for ONMNT
	Derivation of Radix-2-squared Algorithm for IONMNT
	Arithmetic Complexity of Radix-2-squared Algorithm
	An Example of the Proposed Fast Algorithm
	Forward ONMNT Transform
	IONMNT Transform

	Conclusions
	AppendixA
	AppendixA.1
	AppendixA.2

	References

