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Abstract: Events detection is a key challenge in power grid frequency disturbances analysis. Ac-
curate detection of events is crucial for situational awareness of the power system. In this paper,
we study the problem of events detection in power grid frequency disturbance analysis using syn-
chrophasors data streams. Current events detection approaches for power grid rely on individual
detection algorithm. This study integrates some of the existing detection algorithms using the con-
cept of machine committee to develop improved detection approaches for grid disturbance analysis.
Specifically, we propose two algorithms—an Event Detection Machine Committee (EDMC) algo-
rithm and a Change-Point Detection Machine Committee (CPDMC) algorithm. Both algorithms use
parallel architecture to fuse detection knowledge of its individual methods to arrive at an overall
output. The EDMC algorithm combines five individual event detection methods, while the CPDMC
algorithm combines two change-point detection methods. Each method performs the detection
task separately. The overall output of each algorithm is then computed using a voting strategy.
The proposed algorithms are evaluated using three case studies of actual power grid disturbances.
Compared with the individual results of the various detection methods, we found that the EDMC
algorithm is a better fit for analyzing synchrophasors data; it improves the detection accuracy; and it
is suitable for practical scenarios.

Keywords: frequency disturbance events; situational awareness; phasor measurement units; event de-
tection; anomaly detection; machine committee; smart grid; artificial intelligence

1. Introduction

Power grid disturbances are caused by various events, including line trips, generator
trips, and load disconnections, among others [1]. The timely detection of these events
are significant to avoid severe consequences including large-scale blackout, which can
cost up to $10 billion in economic losses [2]. In power grid operations, a series of time
series data can be obtained through real-time monitoring and recording of the power
grid frequency using phasor measurement units (PMUs). The objectives of deploying
the PMUs are to [3]: (i) capture slow spontaneous or anomalous oscillatory swings that
are poorly damped; (ii) capture frequency transients from sudden losses of generation
or load; (iii) capture power system disturbance data to support analyses of the events;
and (iv) develop experience in recognizing disturbances as a precursor to the development
of emergent states and unconventional transient state control. One application framework
can be depicted as shown in Figure 1. Specifically, PMUs are deployed closer to the
transmission or distribution lines. The data collected are transmitted to a central data
storage, where methods presented in the paper can be applied. In the future, advanced
PMU technology may incorporate edge computing capabilities such that the methods
presented in this paper are embedded into the PMU devices for real-time event detection;
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thus, eliminating the need for transmitting data to a central location before a detection task
can be performed.

Figure 1. A depiction of how PMUs are used in power systems.

The PMUs collect three types of data—frequency, voltage magnitude, and phase angle.
In this paper, we consider only the frequency data. Frequency data is revealing because
it provides information about the system changes, namely, generation electromechanical
transients, generation demand dynamics, and system operations, such as load shedding,
break closing, and capacitor bank switching [4]. By design the power frequency in the
United States is 60 Hz (or 50 Hz in other countries). However, the power frequency
fluctuates frequently and irregularly throughout the day within an extremely narrow range
due to negligible system changes. These variations are due to insignificant perturbations in
the system. Consider, for example, the frequency data streams shown in Figure 2. The data
is drawn from single-phase PMU that capture response to a generation loss. The resulting
system frequency drop is a sharp decline from steady-state frequency of about 60.01 Hz
around the time of 17:50:58 to a quasi-steady state frequency of about 59.93 Hz around the
time of 17:51:8. The fluctuation in the data before the sharp drop are characterized as normal
fluctuations (insignificant perturbations) that should be treated as parts of the steady state
region before the drop. The same is true for fluctuations around the quasi-steady state
region after the drop in frequency.
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Figure 2. An example of power frequency data streams recorder by a PMU.
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As shown in Figure 2, abnormal behaviors in power frequency due to disturbances
are directly reflected in the PMUs data. Thus, the increasing deployment of PMUs on the
power grid is aiding the understanding of power grid dynamics. Consequently, PMU data
have been used for wide area situational awareness [5], disturbance event detection [6],
load control [7], line outages [8], and inter-area oscillation analysis [9]. In this paper,
we focus on event detection using data-driven approaches. There have been some work,
also, done in this area (e.g., [10–12]). However, the proposed framework uses machine
committee algorithms to achieve a better detection accuracy. We consider two major
detection approaches - event detection and change-point detection.

Event detection in time series refers to finding a point data or a contiguous subse-
quence in the time series that does not conform to the expected behavior of the system.
In power grid, that will mean detecting point data that significantly deviates from the de-
sign frequency; therefore, event detection methods will be looking for significant deviations
from what constitutes the normal power grid operating frequency. Change-point detection,
on the other hand, refers to locating data point in time where there are changes in some
aspect of the power frequency distribution. In other words, where the power frequency
changes from a somewhat steady state to a somewhat quasi-steady state. We evaluate the
proposed approaches using three real-world case studies.

Hence, the main contribution of this paper is four-fold: (1) it presents a machine
committee framework for analyzing disturbances in power frequency using PMUs data;
(2) it develops a machine committee algorithm that uses five event detection methods to
detect anomalous data points in PMUs data; (3) it develops another machine committee
algorithm that uses two change-point detection methods to detect phase changes in PMUs
data; and (4) it conducts an evaluation of the proposed algorithms using three real-world
case studies.

The rest of this paper is organized as follows. Section 2 presents the framework for the
machine committee algorithm and discusses the various event detection and change-point
detection methods. Section 3 describes the three real-world case studies and presents
the results of the evaluation of the proposed algorithms. Section 4 discusses the results
and their implications for practical scenarios. Section 5 concludes the paper with a brief
summary and discusses plans for future studies.

2. Machine Committee Framework

The proposed Machine Committee framework consists of a group of detection meth-
ods, each of which has been widely used in many diverse fields. The framework uses
two different machine committee algorithms; one algorithm is based on event detection
(ED) methods, while the other algorithm is based on change-point detection (CPD) meth-
ods. Specifically, the proposed Event Detection Machine Committee (EDMC) algorithm
invokes five basic ED methods to generate detection outputs with different confidence level.
The ED methods in the EDMC algorithm perform the same detection task individually and
their outputs are combined in a combiner to obtain better event detection performance.
On the other hand, the proposed Change-Point Detection Machine Committee (CPDMC)
algorithm invokes two basic change-point detection methods to generate detection outputs
with different confidence level. The following subsection describes the framework for the
EDMC algorithm and the ED methods it uses. There are different ways of combining the
individual outputs in the combiner. In this paper, the combiner approach is based on a
voting strategy.

2.1. The EDMC Algorithm

Figure 3 shows the framework for the EDMC algorithm. In committee machines,
a computational task is solved by using different methods and then combining the detection
results of these computations. The idea behind the committee machines is that it generates
an aggregated view over a decision of multiple agents which potentially have different
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weaknesses and advantages. Due to the aggregated vote, these weaknesses are minimized,
and the majority vote leads to better results [13].
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Figure 3. Framework for the EDMC Algorithm.

Formally, input frequency data in given as F = [ f1, f2, . . . , fn], where n is the number
of input data over a time window. The event locations in dataset refer to the data points
that do not follow the expected data behavior. The input data will be preprocessed and fed
into the next stage, where five ED methods are used. Those methods detect events using
the preprocessed data individually with three sets of parameters ([p0, p1, p2]) and each
method produces detection results in three levels: high confidence, mid confidence, and low
confidence. By given the parameter p and input data F, prediction results can be given as
P(p, F) = [r1, r2, . . . , rn], where r = 0 if the data is normal, or r = 1 if the data is an outlier.
Thus, the voting results for an agent is calculated as R = P(p0, F) + P(p1, F) + P(p2, F),
where R[i](i ∈ [1, n]) have four potential results: normal data (0), low confidence outlier (1),
mid confidence outlier (2), and high confidence outlier (3).

Then, the final detection results are voted from the results of the detection methods.
Results with the same confidence level from the five methods are aggregated in this stage.
For example, the final high confidence results are voted from the high confident outputs of
the five ED methods.

Voting Strategy

An illustration of the voting strategies are represented in Figure 4. We consider five
detection methods and n time period as shown in Figure 4a. For each time period, the data
classified as anomalies are represented with an X, while normal data are represented with a
0. We can then say that Detector 1 classified all the data points as anomalies, while Detectors
2 and 5 classified data points at t1 and t3 as anomalies. Furthermore, Detectors 3 classified
data points at t1 and tn as anomalies, while Detector 4 classified data points at t1, t3, and tn
as anomalies. Using a control number represented as C, we can generate different outputs.
If the number of the methods that identify the same data as an anomaly is no less than
the control number C, the data is voted as an event. As an illustration, if we set C to 1,
we can obtain outputs based on the Union voting strategy as shown in Figure 4b; in this
case, time t2 is the selected output. The output for C equals to 4 is shown in Figure 4c;
which means that time t3 is the selected output. The output for C set to 5 is shown in
Figure 4d; that is, time t1 is the final output.
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Figure 4. Different voting strategies for the EDMC Combiner. (a) Sample data; (b) results for Union (C set to 1) strategy;
(c) results for Voting (C set to 4); and (d) results for Intersection (C set to 5) strategy.

2.2. Detection Methods

In this section we describe each of the five ED and two CPD methods implemented in
this paper.

2.2.1. Gaussian Anomaly Detection Approach

Gaussian distribution is one common approach for anomaly detection. In this method,
data are modeled on a Gaussian distribution and the Cumulative Distribution Probabilities
(CDP) of each data points are given by Gaussian distribution function, which is given as:

p(x) = p(x; µ, σ2) =
1

σ
√

2π

∫ x

−∞
exp (−1

2
(x− µ)2

σ2 )dx, (1)

where µ is the mean of the distribution and σ is its standard deviation. A set of thresholds
are set to determine the outliers. If the probability of a data point is below or above a
particular threshold, the data will be detected as an anomaly. Specifically, the probability
of the normal data is located in [threshold, 1− threshold]. Some of the advantages of the
Gaussian anomaly detection method include easy interpretation, low calculation time
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and fair performance. However, it is not an all-rounder; the lack of consideration for the
temporal order of data could cause potential information loss.

2.2.2. Nearest Neighbor Approach

The Nearest Neighbor (NN) approach, which is based on a similarity measure, calcu-
lates the distance of the k-th nearest neighbor from the data point. The distance depicts
the sparseness of neighborhoods of a data. For example, data points with larger nearest
neighbor distance typically represent more sparse neighborhoods and more likely they
are outliers. We choose three different numbers of nearest neighbors as the parameters of
the approach. Then, calculating the mean value of the distances of the data point with the
neighbors for each data point. A threshold serves to determine whether a data point is an
anomaly or not.

In our method, we use both the Euclidean Distance based NN (NN-E) approach and
Mahalanobis Distance based NN (NN-M) approach. The Euclidean distance of points f1, f2
in one dimension space, which is the length between the two points, is given as:

De( f1, f2) =
√
( f1 − f2)2, (2)

The Mahalanobis distance is given as:

Dm( f ) =
√
( f − µ)T · Σ−1 · ( f − µ), (3)

where µ is the mean of the neighbors value, and Σ is the covariance matrix of the data.
The standard Euclidean distance matrix is easy to compute and interpret, but is not always
beneficial for distance calculation. The Mahalanobis distance, which takes the correlation
of the data into account, may have better performance in some scenarios [14].

2.2.3. Local Outlier Factor Approach

The local outlier factor (LOF), which is based on the local density, represents the
degree of being outlier in this approach. By comparing the local density of a data point to
the local densities of its neighbors, points with lower density than their neighbors will be
claimed as outliers. The local density is also calculated by the distance matrix. Similar to
the NN method, three different numbers of nearest neighbors are set as the parameters of
the approach. The advantage of this method is that it can capture the outliers that have
short distance with their neighbors but have lower local density comparing with that of
the neighbors.

2.2.4. Prophet Approach

While the above methods have their advantages, they all didn’t consider the time
series factor, which may contains periodic changes and trends. Prophet is an efficient time
series forecasting tool developed by Facebook’s data science team [15].

Prophet uses a decomposed time series model which contains three model compo-
nents: trend, seasonality, and holidays [16]. They are given as:

y(t) = g(t) + s(t) + h(t) + εt, (4)

where g(t) is trend function for non-periodic changes in the time series, s(t) models weekly
and yearly periodic changes in the data, h(t) is the holiday function which models the
irregular changes in the data, and εt is a normal distributed error function representing the
changes that can’t be modeled by previous functions.

2.3. The CPDMC Algorithm

Change-points are characterize as abrupt variations in time series data [17]. Such abrupt
changes may represent transitions from one state to another; in power grid frequency data,
abrupt changes will represent transition from steady state to quasi-steady state as shown
in Figure 2. CPD is the task of finding where those abrupt changes occur in time series
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data. CPD algorithms are usually classified as offline or online CPD. The framework for
the CPDMC algorithm is similar to that of the EDMC algorithm by replacing the five ED
methods with two CPD methods - offline CPD and online CPD methods.

2.3.1. Offline CPD Approach

Offline CPD method considers the entire data set at once, and most appropriate
for batch implementation. Thus, the offline CPD-based algorithms look back in time to
determine where changes have occurred. Various offline CPD algorithms were developed
for different domains [18]. In this paper, we implement the efficient Bayesian offline CPD
of which details can be found in [19].

Basically, we assume the data can be partitioned into a number of K segments.
The marginal likelihood produced by a single model m for data from time s to t is given as:

p( fs:t|m) =
∫
[

t

∏
i=s

p( fi|y1:i−1, θ, m)]p(θ|m)p(m)dθ. (5)

If the segment include data that are generated from different model types or parameters as
it grows, the marginal likelihood will drop which suggests that a change-point and two
models should be applied [6].

2.3.2. Online CPD Approach

Online CPD approach, on the other hand, processes data in real-time; that is, as each
data point becomes available. The goal is to detect a change point as soon as possible after
it occurs, ideally before the next data point arrives [17].

Adams and Mackay present a Bayesian CPD for online inference in their work [20].
By generating an accurate prediction of the next data in the sequence, they used a causal pre-
dictive filtering rather than segmentation methods of offline CPD. Intuitively, the predictive
probability of next unseen data based on the existing data is calculated. If the next data has
a large margin with the prediction, it will be claimed as a change-point data. The predictive
probability is calculated by the marginal predictive distribution, which is given as:

p( ft+1| f 1 : t) = ∑
rt

p( ft+1|rt, f (r)t )p(rt| f1:t), (6)

where rt is the given run length, which is the time steps since the last change-point data.

3. Evaluation

In this section, an evaluation of the proposed EDMC and CPDMC algorithms are
presented using three real-world case studies. We start with the enumeration of the param-
eters used for the experiments; then, description of the synchrophasor data used for the
evaluation; and presentation of the results of the evaluation.

3.1. Parameters for the Methods

Table 1 shows the parameters used for each methods in the experiments. For each
method, three sets of parameters were selected. For the EDMC Combiner, C is set to 2 for the
voting strategy; while for the CPDMC Combiner, C is set to 1 for the final CP probabilities.

The threshold for the Gaussian approach is user defined and it can be regarded as the
user p-value. In this paper, we chose [0.01, 0.05, 0.1] as the three thresholds. Assuming that
the data follow normal distribution, then the CDP of outliers is less than 0.1 or larger than
0.9. Consequently, the CDP for high confidence outliers is less than 0.01 and larger than
0.99; the CDP for mid confidence outliers is in [0.01, 0.05] or in [0.95, 0.99] range; and the
CDP for low confidence outliers is in [0.05, 0.1] or [0.90, 0.95] range.

For the NN method, the detection thresholds are 0.1, 0.2, 0.3. In this case, the threshold
is the percentage of the number of the nearest neighbors used in the method. Through a
trial and error method, we found that when the threshold is more than 0.3, the results have
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fewer differences. By choosing the threshold as 0.1, 0.2 and 0.3, the method shows different
performances, which is suitable for using a voting system.

The reason for choosing the parameter used for LOF is very similar to that of NN.
In order to obtain different performances of the LOF method, the parameter used are 0.3,
0.5, and 0.7 based on empirical experiments.

For the Prophet method, the internal width is set to 0.99 so that the full boundary
of method could be used. Furthermore, we used different range of historical data for
estimating the trend in the data. Specifically, 10%, 30%, and 50% of the data were used to
obtain different performances.

The parameters for the CPD approaches are based on heuristic. We observed that the
probability for the normal data is no more than 0.1 and the probability for high confidence
CP is always larger than 0.5. Then we used 0.25 to distinguish between the low confidence
and mid-confidence results. This subsection describes these CPD methods.

Table 1. Parameters for methods used in experiments.

Detection Methods Parameters Value Description

Gaussian thresholds 0.01, 0.05, 0.1 The probability of normal data locates in
[thresholds, 1− thresholds].

NN_E n_neighbors 0.1, 0.2, 0.3
n_neighbors is the percentage of the number of the nearest
neighbors used in the methods.NN_M n_neighbors 0.1, 0.2, 0.3

LOF n_neighbors 0.3, 0.5, 0.7

Prophet internal_width
anomaly_range

0.99
0.1, 0.3, 0.5

internal_width is the width of the uncertainty intervals
provided for the forecast. anomaly_range is the proportion
of history in which trend anomaly will be estimated.

CPD thresholds 0.1, 0.25, 0.5 The three thresholds split data into non-CP, low-confidence CP,
mid-confidence CP and high-confidence CP.

3.2. Synchrophasor Data

The single-phase synchrophasor data, which contain time stamp and frequency value
(10 or more measurements per second), is collected by thousands of PMUs that are de-
ployed on the power grid in the USA [9]. The high volume, velocity, and variety of PMU
measurement data make it possible to take advantage of artificial intelligence techniques in
applications such as short-time events and faults detection.

For the evaluation of the proposed framework, we consider the following three case
studies of real-world disturbances to the power grid.

3.2.1. Case Study 1

In this case study, an event occurred during a large severe storm system on the Eastern
Interconnection in the USA on 4 April 2011 (Case study 1 Youtube animation video:
https://www.youtube.com/watch?v=KmK2VMG57gw). We used the data collected from
the PMU deployed at the Florida State University for this evaluation.

Figure 5 presents the data and results of the EDMC methods and algorithm. The results
are grouped into three classes: high-confidence events (depicted using red color), mid-
confidence events (orange color), and low-confidence events (green color). Figure 5a–e
show the results of the individual event detection methods; while, Figure 5f shows the
EDMC results; while Figure 6 shows the CPDMC results.

https://www.youtube.com/watch?v=KmK2VMG57gw
https://www.youtube.com/watch?v=KmK2VMG57gw
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(f) EDMC Results

Figure 5. EDMC-related results for study case 1.
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Figure 6. CPDMC results for study case 1.

3.2.2. Case Study 2

In the second case study, an event occurred when a 1600 MW generator trip caused
by the East Coast Earthquake on 23 August 2011 (Case study 2 Youtube animation video:
https://www.youtube.com/watch?v=XUN_h-k8kBg). The data is collected from the PMU
deployed at Atlantic City, New Jersey. Figure 7 shows the results for EDMC algorithm
using this data. From the figure, we can see there is a frequency drop starting around
17:50:58 because of the generator trip. Figure 8 shows the CPDMC results.
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Figure 7. Cont.

https://www.youtube.com/watch?v=XUN_h-k8kBg
https://www.youtube.com/watch?v=XUN_h-k8kBg
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Figure 7. EDMC-related results for study case 2.
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Figure 8. CPDMC results for study case 2.
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3.2.3. Case Study 3

The third case study shows an event that occurred when a 500-kV line connecting
Arizona with San Diego tripped following a capacitor switch-out (Case study 3 Youtube
animation video: https://www.youtube.com/watch?v=YsksUyeLu2Y). Approximately
1.4 million people were affected. The PMU that deployed at Arizona State University
captured the event, which generated a peak frequency between the time 22:38:10 and
22:38:24 and the results for the EDMC algorithm are shown in Figure 9; while, the results
of the CPDMC results are shown in Figure 10.
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(b) NN_Euclidean Results

22
:3

6:
54

.0

22
:3

7:
4.

0

22
:3

7:
14

.0

22
:3

7:
24

.0

22
:3

7:
34

.0

22
:3

7:
44

.0

22
:3

7:
54

.0

22
:3

8:
4.

0

22
:3

8:
14

.0

22
:3

8:
24

.0

22
:3

8:
34

.0

22
:3

8:
44

.0

22
:3

8:
54

.0

Time

59.975

60.000

60.025

60.050

60.075

60.100

60.125

60.150

Fr
eq

ue
nc

y 
(H

z)

data
High-confidence detection
Mid-confidence detection
Low-confidence detection

(c) NN_Mahalanobis Results
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(d) LOF Results
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(e) Prophet Results
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(f) EDMC Results

Figure 9. EDMC-related results for study case 3.

https://www.youtube.com/watch?v=YsksUyeLu2Y
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Figure 10. CPDMC results for study case 3.

3.3. Performance

We use True Positive Rate (TPR) and False Positive Rate (FPR) for performance com-
parison for EDMC and individual approaches of EDMC. The TPR and FPR are given as:

TPR = TP/(TP + FN), (7)

FPR = FP/(FP + TN), (8)

where TP, FN, FP, TN represent the number of true positive, false negative, false positive,
and true negative respectively. The TPRs and FPRs of each approach for the three case
studies are presented in Table 2. The best value in each case is identified in red color; while,
the worst value is identified in blue color. In Case Study 1, LOF has the best TPR; but it
also has the worst FPR. Guassian, NN_E, and NN_M have zero FPR but their TPRs are low.
EDMC has a promising TPR with a better FPR. In Case Study 2, EDMC performed the best
for both TPR and FPR. In Case Study 3, LOF has the best TPR and the worst FPR which
is similar to Case Study 1 results. The FPR of the other basic approaches are not good
compared with EDMC. Overall, the performance of EDMC is a good trade off between
TPR and FPR.

Table 2. TPR and FPR in Case Studies.

Case Study Criteria Gaussian NN_E NN_F LOF Propeht EDMC

Case Study 1
TPR 15.22% 52.90% 52.90% 92.75% 52.89% 86.23%

FPR 0 0 0 8.86% 0.22% 0.13%

Case Study 2
TPR 0 86.44% 86.44% 83.05% 32.21% 89.83%

FPR 0 0 0 2.35% 1.74% 0

Case Study 3
TPR 63.33% 69.17% 69.17% 91.67% 50.83% 72.50%

FPR 0 0 0 25.96% 0 0
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4. Discussions

The early detection of abnormal patterns in frequency data that may be indicative
of disruptive disturbance could help to prevent large-scale outages or limit their impact.
In this section, we discuss the results and their implications for large-scale outages.

4.1. Case Study 1

Looking at the data for case study 1, we notice several smaller fluctuations before and
after the major fluctuations between 21:22:0.4 and 21:22:30.4. Those smaller fluctuations
probably suggest the emergence of the impending major fluctuations. The major character-
istics of this event is the significant fluctuations in the frequency signal around the event
time, which may suggest the presence of oscillation in the system. However, from the
results in Figure 5, we notice that the Gaussian method failed to detect any of these
smaller fluctuations; thus, unable to provide any early warnings before the major fluctu-
ations. Furthermore, the other methods detected the smaller fluctuations to a different
degree. For example, the LOF method seems to detect a lot more data points than the
other methods; the Prophet method, on the other hand, detects only the peak data points.
The NN_Euclidean and NN_Mahalanobis methods have similar results but identified more
data as outliers. All the results shown in Figure 5a–e suggest that the use of a single method
may be providing limiting information. The results shown in Figure 5f minimize the
weaknesses of these methods and maximize their strengths. Overall, the EDMC algorithm
detects extremely higher and lower data points with respect to the other data points in the
data. Unlike in the results for the LOF method, most of the detected data points are of mid
to high confidence.

In addition to the ED methods, the results of the CPD methods are shown in Figure 6.
Looking at these results, we can see that the CPD methods are not a good fit for analyzing
this data set. The CPD methods detected change-point around the event region with low-
to mid-confidence, and detected change points due to regular fluctuations in the data with
high-confidence.

4.2. Case Study 2

For this case study, we would like to see the methods detect data points between
17:50:58.0 and 17:51:8.0. The major recognizable characteristics of this event is the huge
drop in frequency, which is generally attributed to a major drop in load. Interestingly,
the Gaussian method, of which results are shown in Figure 7a, had the worst performance
and didn’t detected any event. However, NN_Euclidean and NN_Mahalanobis detected
the most data in the process of generator trip with high-confidence, which is shown in
Figure 7b,c. The LOF method, on the other hand, detect those same data points with
mid-confidence; but, it also detected several several other data points with low-confidence.
The Prophet method detected data points around the start of the drop in frequency but
with low-confidence, but it didn’t detected any data points with high-confidence and
mid-confidence. Again, we can see the variability in the results of the different meth-
ods. The EDMC results, which are shown in Figure 7f, seem to combine the best of all
these previous results. It detected the start of the frequency drop with low-confidence;
then, detected the data point after that with mid-confidence; and the data points after
that with high-confidence. The results suggest a logical progression in the confidence
of the detection. Furthermore, at the end of the frequency drop, the level of confidence
changed back to mid- and low-confidence, which suggest the start of the quasi-steady state.
Again, the use of a machine committee approach eliminates false alarms as seen using
the LOF method, late detection as seen using the NN-related methods, and/or limited
detection as seen using the Prophet method.

When we compare these results to the results of the CPD methods shown in Figure 8,
we can see that the onset of the frequency drop is detected with high-confidence, which is
similar to the EDMC results. However, there are some false change-point locations with
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higher probability at the start of the data series. Therefore, we can say that the ED methods
are a better fit for this case study.

4.3. Case Study 3

In case study 3, the objective is to detect higher power grid frequency between
22:38:14.0 and 22:38:24.0. For this event, we noticed an increase in frequency that could sug-
gest an instability in the system; thus, a characteristic feature of a blackout. In Figure 9a–e,
we show the results of each of the ED methods. The Prophet method detected the least
number of data points, but most of them are with high-confidence. The NN_Euclidean,
NN_Mahalanobis, and Gaussian methods have similar results while the LOF method de-
tected more data points are possible events; however, most of them are with low-confidence.
In actual sense, all the data points detected with low-confidence are false alarms. Over-
all, the LOF method seems to generate some false alarms for each case study in this paper.
The results for the EDMC method shown in Figure 9f are similar to that of NN_Euclidean
and NN_Mahalanobis methods. In these three methods, the early detected data points
are detected with low-confidence, the next round of data points are detected with mid-
confidence, and the higher value data points are detected with high-confidence. These three
methods have no false alarms.

In comparison to the CPD methods shown in Figure 10, the ED methods are, again, a
better fit for event detection in this case study. For the CPD methods, the probability of a
change point around the higher frequency value is less than 0.5; hence, detected with low
confidence. In addition, data point locations detected as change-point with high probability
of more than 0.5 can be regarded as false alarms.

The EDMC algorithm, which is an ensemble-based event detection algorithm for
synchrophasors data, combines five different event detection methods and automatically
combines their outputs using the voting strategy. As shown in our three case studies,
the EDMC algorithm is more stable and less sensitive to the change of data pattern,
and achieve comprehensive and reasonable results. The results show that the EDMC
algorithm performs better than each of the five detection methods separately by detecting
irregular frequency patterns in synchrophasors data streams. In addition, the EDMC
algorithm performs better than the CPDMC algorithm for power grid disturbance analysis.

5. Conclusions

This paper proposes a machine committee framework for power grid disturbance
analysis using synchrophasors data. The framework consists of two algorithms—EDMC
and CPDMC. Each algorithm is an ensemble-based algorithm that combines different
detection methods and automatically combines their outputs using the voting strategy.
The EDMC algorithm combines five ED methods; while, the CPDMC algorithm combines
two CPD methods. The algorithms were tested using three real-world data sets. From the
results of the evaluation, we can conclude that the EDMC algorithm is a better fit for
analyzing power grid disturbances recorded by synchrophasors. The CPDMC algorithm
generated a lot of false alarms and the probability of detection is very low for event regions.

Our conclusion is limited to the three event cases evaluated in this paper. In the future,
additional studies will include more cases with diverse disturbance events. In addition,
future studies will include longer time series to understand the effect of the length of the
time series on the performance of the algorithms.
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