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Abstract: The platform of a microscopic traffic simulation provides an opportunity to study the
driving behavior of vehicles on a roadway system. Compared to traditional conventional cars
with human drivers, the car-following behaviors of autonomous vehicles (AVs) and connected
autonomous vehicles (CAVs) would be quite different and hence require additional modeling efforts.
This paper presents a thorough review of the literature on the car-following models used in prevalent
micro-simulation tools for vehicles with both human and robot drivers. Specifically, the car-following
logics such as the Wiedemann model and adaptive cruise control technology were reviewed based
on the vehicle’s dynamic behavior and driving environments. In addition, some of the more recent
“AV-ready (autonomous vehicles ready) tools” in micro-simulation platforms are also discussed in
this paper.

Keywords: car-following models; microscopic traffic simulation; autonomous and connected vehicles;
PTV VISSIM; AV-ready

1. Introduction

The transport simulation models provide opportunities for decision-makers to eval-
uate the potential benefits and associated risks of future vehicle technologies and infras-
tructure automation. The automation industry for vehicle technologies is progressively
improving nowadays to provide benefits for the end-users in terms of traffic congestion
reduction, safety enhancements, fuel cost savings, and reduction in driver’s stress levels.
In native terms, autonomous vehicles (AVs) are referred to as self-driving cars that do
not require or require limited inputs from human drivers [1]. The AVs and connected au-
tonomous vehicles (CAVs) are expected to improve the traffic flow and overall road safety
issues. Many states in the USA are currently testing the autonomous concepts, innovations,
and the availability of this technology for the general public in the coming years [2]. A
number of public and private sectors from such as automobile industries and universities
are conducting research and development work on machine-learning algorithms, artificial
intelligence, sensors technology innovation, and in-vehicle equipment [2,3]. However,
currently, the penetration rate of the AVs is still very low, and it will still need decades for
the AVs to penetrate fully into the market [1]. With the low actual penetration rate of AVs
in traffic, the use of transport simulation modeling tools to analyze the impacts of AVs on
transportation networks will be a significant approach for studies related to the AVs.

In general, transport simulation models can be divided into three major categories,
including macroscopic, mesoscopic, and microscopic modeling, depending upon the level
of details required for network analysis. The macroscopic models are developed and
operated by transport planners for managing large-scale traffic networks [4] such as motor-
ways, freeways, corridors, urban traffic congestion [5], mass transit operations, and travel
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demand models. These models consider deterministic characteristics of a traffic stream,
such as speed, flow, and density [6,7]. The microscopic-simulation models, on the other
hand, records the behavior of all individual cars for each simulation time-step based on the
directions given by car-following, lane-changing, and gap-acceptance algorithms. It models
the complex urban street network systems, interchanges, pedestrian movements, traffic
signals, multi-modal systems, and proposed mitigations for existing network problems.
Lastly, the mesoscopic models combine both macroscopic and microscopic simulation
models, however, it provides less reliable information for individual vehicles as compare
to micro-simulation. The use of mesoscopic models is typically for transport planning
analysis techniques [7]. Among all the three categories of simulation modeling tools, since
the micro-simulation presents the impact of each individual AVs on the road network, in
the condition of low penetrations of AVs, the application of micro-simulation to analyze
the behaviors of AVs would generate very useful information for their future development,
which will be the focused review topic in this paper.

In micro-simulation, the driving behaviors of the AVs can be achieved either by
modifying the driving model parameters of the commonly applied human drivers and/or
by developing new smart logics for vehicle cooperation and communications [8,9]. No
matter if it is a modified driving model from human drivers or a new smart driving logic,
a car-following model is required to state the driving behavior of individual vehicles
in a longitudinal direction in the simulated traffic condition of micro-simulation, which
describes how the simulated vehicles interact with the preceding vehicle (leader) in the
same lane [10,11].

A car-following model for either human or robot drivers can be achieved based on the
driving strategies that are derived from the assumptions of a real driving phenomenon,
such as keeping a “safe-gap” from the preceding vehicle, cruising at a desired velocity, or
choosing the accelerations from the desired limits [12]. Different researchers have explained
the car-following behavior through acceleration distributions, safety gaps, and reaction
times of the subjected following-vehicle under numerous traffic conditions. This paper
first presents a detailed review of traditional car-following models used in prevalent micro-
simulation tools for conventional and self-driving cars. Secondly, VISSIM microsimulation
software is taken into the spotlight as it shows potentials for a wide range of applications
(i.e., human, and robotic driving) compared with other commercially available simulation
tools in the market. The objective of this paper is to establish a comprehensive review of
human and AV/CAVs car-following models and investigate the responses of microsimula-
tion tools towards the performance of each model, which will be beneficial for users who
are interested in advancing the modeling capacities of AV/CAVs.

2. Car-Following Models for Human-Driven and Autonomous Vehicles

Figure 1 shows the basic illustration of a typical car-following, lane-change, and
gap-acceptance behaviors of any vehicles in a micro-simulation. For a human driver, the
driving logic of a vehicle tends to illustrate how a real human driving phenomenon would
be on a typical roadway in both longitudinal and lateral directions [10]. In the longitudinal
direction, a vehicle with human drivers would follow preceding cars with appropriate
gap acceptance, speed adoption, and desired acceleration or deceleration. In the lateral
direction, the human drivers need to decide when and how to perform lane changes,
merging/diverging, and overtaking [13].

For any car-following model, the micro-simulation tool uses various statistical distribu-
tions and functions for defining the maximum, minimum, desired acceleration/deceleration
values, maximum, desired speed values, and other vehicular characteristics. To determine
an acceptable or safe gap from the leading vehicle before applying any following mod-
els for the human drivers, a micro-simulation tool employs a user-defined value for the
required critical gap or suggested gap-rejection criteria for congested and uncongested net-
works [6,14]. A driver needs to decide such a gap value at multiple locations while driving
on a roadway such as a vehicle approaching an intersection or leaving any intersection
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(especially signalized), joining a weave section, merging, diverging, and yield locations,
etc., which determines the quality of the network throughput and traffic flow. With the
acceptable gap determined, the car-following models can then be implemented.

Figure 1. Typical illustration for car-following, lane-change, and gap-acceptance.

For human drivers and autonomous vehicles, there are several models that can be
applied. In 2004, Olstam classified the car-following model based on utilized logic [10].
Table 1 shows a summary comparison of three classes of car-following models accordingly.
Specifically, these car-following models include the General Motors (GM) model, the Safety-
distance or collision avoidance model, the psychophysical model such as the Wiedemann
model, the optimal velocity model (OVM), the intelligent driver model (IDM), and the
adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) models,
which are detailed in this section. In addition, since the lane-changing behavior is also
closely related to the car-following model, a brief review was also performed on the
lane-changing models for human drivers.

Table 1. Car-following models based on utilized logic [10].

Model Class Model Logic and Assumption

Gazis-Herman-Rothery (GHR) model

“The following vehicles’ acceleration is
proportional to the subjected vehicle (own
vehicle), the speed difference between the

follower and the leader, and the
space headway.”

Safety-distance model “The follower always keeps a safe distance to
the vehicle ahead”

Psychophysical car-following model

“These models use threshold values.” Drivers
react to vehicles when the set threshold for

relative velocity (speed difference between a
follower and a lead vehicle) or spacing

is reached.

2.1. The GM Car-Following Model

In 1961, General Motors (GM) research laboratories developed a car-following model
by using the acceleration/deceleration as a stimulus [15,16]. This model calculated the
driver’s reaction time by estimating the acceleration/deceleration values by subtracting
the leader’s current speed from the speed of the following vehicle. The GM model is very
simple and it established a basis for all other car-following models with varying sensitivity
parameters [17]. The GM model is a linear car-following model with a constant sensitivity
parameter [18] and the acceleration of the following vehicle [17] can be estimated as:

an(t) = α·∆V f ront
n (t− τn) (1)
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where, an(t) is the acceleration applied by driver “n” at the time “t”, ∆V f ront
n (t− τn) is the

leader-relative speed recorded at the time (t− τn), τn is the driver’s reaction time, and α is
a constant term.

The basic GM linear model has an impractical approach because the spacing between
the leading and the following vehicle does have its impact on stimulus. Later, researchers
overcame some of the GM model limitations by suggesting several extensions. Herman
et al.’s extension allows the following driver to accelerate if the relative speed of the leader
is increased. Additionally, different sets of acceleration and deceleration parameters were
proposed to make a decision [19]. Subramanian proposed an improvement that allows
the driver to react faster under deceleration scenarios as compared to the acceleration
cases [20]. A further extension to the driver alertness models includes the drivers’ behavior
concerning the headway with the lead vehicle as either a free-flow or car-following behavior.
A critical headway value is assigned to determine the state of driving behavior [21]. The
GM model was further expanded to consider the non-linearity behavior in the sensitivity of
relative distance between the following and leading vehicles and the sensitivity of relative
speed for the subject vehicle [16]. The extended model was also known as Gazis–Herman–
Rothery (GHR) model. In the GHR model, the acceleration of the following vehicle was
modified [17] as:

an(t) = α· Vn(t)
β

∆X f ront
n (t− τn)

γ
·∆V f ront

n (t− τn) (2)

where, Vn(t) is the speed of the subject “n” vehicle measured at a time “t”, ∆V f ront
n (t− τn)

is the relative speed of the leading vehicle, and ∆X f ront
n (t− τn) is the relative spacing

measured at the time (t− τn), τn is the driver’s reaction time, and α > 0, β, γ are con-
stant parameters.

The acceleration equation in Equation (2) was expanded to incorporate traffic density
as sensitivity terms and different drivers’ reaction times. However, the models based on
GM-type has their own behavioral limitations [22,23], such as that the drivers react to
arbitrary small changes in the stimulus, e.g., relative speed and the driver following the
lead vehicle remains affected by the actions of its leader even when the distance is very
large and that the follower’s response dismisses as the relative speed is zero.

2.2. The Safety-Distance or Collision Avoidance Car-Following Model

Unlike the GM family models that describe the relationship of stimulus-response
type function, the safety-distance model always maintains a safe distance between the
following and the lead vehicles. These collision avoidance models are based on the basic
newton’s equation of motion that explains that the collision would be unavoidable if the
lead vehicle behaves unpredictably [24]. The basic rule of safety-distance was quoted by
Pipes in 1953 [25] as “a good rule for following another vehicle at a safe distance is to allow
yourself at least the length of a car (about 15 ft) between you and the vehicle ahead for
every 10 miles of hour speed at which you are traveling”.

The first general acceleration model was developed by Gipps in 1981 that records
the car-following (vehicle ahead) and free-flow (no vehicle ahead) conditions. This model
confirms a “no-collision” behavior between the follower and the leader if the time-gap is
equal or greater than 3T/2 (safe-headway), and the follower’s approximation about the
leader’s deceleration is equal or larger than the leader’s actual deceleration value (apply
limits to a driver’s braking rate) [26]. The acceleration model has two limitations that
the desired speed must not surpass, and a critical safe headway should be maintained.
The acceleration (vacc

n ) and deceleration (vdecc
n ) of these models correspond to empirical

formulations [26,27], which can be expressed as:

vacc
n (t + T) = vn(t) + 2.5·an·T

(
1− vn(t)

vd
n

)
·

√
0.025 +

vn(t)
vd

n
(3)
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vdecc
n (t + T) = −T· dn +

√√√√T2·d2
n + dn

{
2xn−1(t)− xn(t)− (Sn−1)− T· vn(t) +

vn−1(t)
2

d′n−1
(4)

where T is the reaction time, “n”, “n − 1” is the follower and leader, respectively,
vn(t), vn−1(t) are the vehicle speeds of follower and leader respectively at the time “t”,
vd

n, an are the follower’s maximum desired speed and maximum acceleration, respectively,
dn, d′n−1 are the most severe braking that the follower wishes to undertake and his estimate
of the leader’s most severe braking capability (dn > 0 and d′n−1 > 0), xn(t), xn−1(t) are the
longitudinal position of the follower and leader at the time “t”, Sn−1 is the intervehicle
spacing at a stop, which includes the length of the leader’s vehicle added to the follower’s
desired intervehicle spacing at the stop. Based on Equations (3) and (4), the output result
of these models is the speed of each vehicle at a time “t” corresponding to its previous
time-step speed.

The Gipps’ model has gained numerous extensions, modifications, and calibration
by various researchers [28–30] to meet the needs of problem-solving through the use
of microsimulation tools. Most of the leading micro-simulation tools use the Gipps
model [31–34] as a default driving behavior because of its simple calibration that requires
the common-sense assumption about human driving behavior. One of the weaknesses of
such safety-models, as explained in a review article [35] is that the model does not consider
the driver’s perception. Further, a minor variation causes an end to the reaction for the
following driver.

2.3. The Psychophysical Car-Following Models and the Wiedemann Model

Another approach of car-following models is the psychophysical or action point
models [24]. The psychophysical models use a “perceptual threshold” which is a function
of space headway and relative speed for the following vehicle pairs. The drivers react to the
changes in spacing or relative velocity only when the threshold values are reached. In this
way, it also records the driver’s attentiveness for small spacing and lack of the following
behavior for larger spacings [17]. In 1992, Wiedemann and Reiter applied a psychophysical
approach (perceptual thresholds) to a simulation system using a tool named “MISSION”.
Four different threshold and regimes are defined to describe the interaction of a follower-
leader vehicle pair [36], including the free-flowing (the subject vehicle is not influenced by
the lead vehicle), the approaching/closing (the subject vehicle is consciously influenced by
the slower-leading vehicle), the following/closing (the subject vehicle in unconsciously
influenced by being in the following process), and the emergency (the headway between
vehicle pair drops below the desired safety distance).

In the psychophysical car-following model developed by Wiedemann, also known
as the Wiedemann model, the driving behavior of humans is considered to be naturally
distributed [36], which essentially means that each driver has different driving capabilities
for perception, reaction, and estimation of surrounding traffic environment, safety needs,
desired speed, and aggressiveness towards maximum acceleration/deceleration values.
Similarly, the same principle applies to vehicle abilities in exercising basic features such
as maximum speed and maximum acceleration/deceleration. According to Wiedemann,
the varying behavior of drivers can be explained by normal distributions. Hence, this
car-following model uses several ranges of different random parameters for the calculation
of threshold values and the driving functions [36]. Wiedemann defines different thresholds
and regimes in the relative speed/space (DX/DV) diagram for the psychophysical follower-
leader pair, including the desired distance (AX), the desired minimum following distance
(ABX), the maximum following distance (SDX), the perception threshold (SDX), and the
decreasing and increasing speed differences (CLDV, OPDV) [10,22].
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The desired distance for a stationary vehicle (front-to-front) is denoted by the threshold
of “AX”. This threshold contains the length of the front vehicle and the desired front-to-
front distance (L), which can be defined as [10,22,36]:

AX = Ln−1 + AXadd + RND1n ∗ AXmult (5)

where “n” is for the subject vehicle and “n − 1” is for the leading vehicle, “AXadd” and
“AXmult” are calibration parameters as also detailed in Table 2 for typical values in simu-
lation, and RND1n is a normally distributed parameter for desired front-to-rear distance
that depends on the driver’s safety.

Table 2. Typical values for Wiedemann calibration parameters in simulation tools [10,11,36].

Parameter Description Value

AXadd Additive calibration parameter 1.25 (m)

AXmult Multiplicative calibration parameter 2.5 (m)

BXadd Additive calibration parameter 2.0 (m)

BXmult Multiplicative calibration parameter 1.0 (m)

EXadd Additive calibration parameter 1.5 (m)

EXmult Multiplicative calibration parameter 0.55 (m)

OPDVadd Additive calibration parameter 1.5

OPDVmult Multiplicative calibration parameter 1.5

CX Calibration Parameter 40 *

BNULLmult Multiplicative calibration parameter 0.1 (m/s2)

NRND Normally distributed random number N (0.5, 0.15) **

RND1 Normally distributed driver number N (0.5, 0.15) **

RND2 Normally distributed driver number N (0.5, 0.15) **

RND4 Normally distributed driver number N (0.5, 0.15) **

Bmax Maximum acceleration 3.5− 3.5
40 ∗ v ***

Bmin Maximum deceleration −20− 1.5
60 ∗ v ***

* estimation from graphs [11], ** mean values have been used [36], *** estimation from graphs [36].

The desired minimum following distance at low-speed differences is denoted by the
threshold of “ABX”. At higher speeds, the driver would undervalue the safe distance and
drive closely unlike at slower speed with safe gaps, which can be estimated as:

ABX = AX + BX (6)

BX = (BXadd + BXmult ∗ RND1n)∗
√

v (7)

in which BXadd and BXmult are calibration parameters with typical values shown in Table 2.
The speed v is defined as:

v =

{
vn−1 f or vn > vn−1

vn f or vn ≤ vn−1
(8)

The maximum following distance is denoted by the threshold of “SDX”. At this
threshold, the driver realizes that the following distance is growing. Therefore, an appli-
cation of acceleration is required to maintain the ideal headway. The threshold distance
ranges between 1.5 and 2.5 times the minimum following distance (“ABX”), which can be
estimated as:

SDX = AX + EX ∗ BX (9)

EX = EXadd + EXmult ∗ (NRND− RND2n) (10)
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where EXadd and EXmult are calibration parameters with typical values shown in Table 2,
the “NRND” is an independent random parameter and the RND2n is a normally distributed
driver-dependent parameter that represents the driver’s estimation ability.

The perception threshold for approaching a point at long distances is denoted by
“SDV”. The driver reaches to appoint where he or she met with a slow-moving vehicle,
hence the driver will react by decreasing the speed of his vehicle to maintain a gap higher
than the minimum desired distance (“ABX”) as:

SDV =

(
∆x− Ln−1 − AX

CX

)2
(11)

CX = CXconst ∗ (CXadd + CXmult ∗ (RND1n + RND2n)) (12)

where “CXconst”, “CXadd”, and “CXmult” are calibration parameters with typical values
shown in Table 2, and the Wiedemann model defines the range for “CX” as between 25
and 75.

The “CLDV” is a threshold that recognizes decreasing speed differences. This is similar
to the behavior of the approaching point (SDV). In this threshold, the driver develops a
perception of small speed differences, in short, decreasing distances. In VISSIM, “CLDV” is
ignored and is assumed to be equal to SDV [11]. The “OPDV” is a threshold that recognizes
increasing speed differences. This threshold defines a point where the driver observes that
he or she is moving at a slower speed than the leader as:

OPDV = CLDV ∗ (−OPDVadd−OPDVmult ∗ NRND) (13)

in which “OPDVadd” and “OPDVmult” are calibration parameters with typical values also
shown in Table 2.

Using all the thresholds as mentioned above, the driver of the following-vehicle falls
in the four different regimes that decide the driving behavior, i.e., the value of acceleration
in the longitudinal direction [36]. For the following behavior, the thresholds “ABX”, “SDX”,
“SDV”, and “OPDV” influences the driver’s following behavior. Wiedemann defines that
in the following regime if the vehicle passes “SDV” or “ABX” thresholds, it is assigned a
deceleration rate −Bnull . The reason is that the vehicle should slow down to prevent an
accident. Whereas, if the vehicle passes “SDX” or “OPDV” regime, it is assigned with an
acceleration rate +Bnull [10,36]. The Bnull can be estimated as:

Bnull = BNULLmult ∗ (RND4n + NRND) (14)

where BNULLmult is a calibration parameter with typical values shown in Table 2 and the
RND4n is a normally distributed driver-dependent parameter that represents the driver’s
capability to govern acceleration. For free-driving behavior, the driver is not influenced
by the surrounding traffic environment and drives at the maximum acceleration in order
to attain the desired speed [10,36]. The maximum acceleration for a passenger car Bmax is
given as:

Bmax = BMAXmult ∗ (vMAX −V ∗ FaktorV) (15)

FaktorV =
vMAX

vDES + Faktormult ∗ (vMAX − vDES)
(16)

in which, vMAX and vDES are the maximum and desired speed, respectively, and FaktorV
is a calibration parameter.

For the closing-in (approaching) behavior, the driver is in the “SDV” threshold and
realizes that he or she is approaching a slower vehicle. A deceleration is required to avoid
the collision [10,36] as:

Bn =
1
2
∗ (∆v)2

ABX− (∆x− Ln−1)
+ Bn−1 (17)
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where Bn−1 is the acceleration of the leader. For the breaking behavior (emergency), the
following driver experience a sudden decrease in the front-to-rear distance as compare to
“ABX” because of the dangerous situation created by the leading vehicle. In such a scenario,
the following driver applies a maximum deceleration BMIN to avoid vehicle crashes, which
can be defined as:

Bn =
1
2
∗ (∆v)2

AX− (∆x− Ln−1)
+ Bn−1 + BMIN ∗

ABX− (∆x− Ln−1)

BX
(18)

BMIN = −BMINadd− BMINmult∗RND3n = BMINmult ∗ vn (19)

where BMINadd and BMINmult are calibration parameters with typical values shown in
Table 2 and RND3n is a normally distributed random driver parameter.

2.4. The Optimal Velocity Model (OVM) Car-Following Model

Traffic flow observes instabilities which usually creates congestion in highways and
freeways. A dynamic model is required to model this behavior of instability. The optimal
velocity model (OVM) describes the dynamical formulation of traffic congestions using the
equation of motion for each vehicle. In this traffic flow model, the stimulus is a function of
the following headway and all the drivers possess constant sensitivities. Three assumptions
are made by Bando [37] for the OVM model, including (1) each driver responds to a
stimulus from the preceding vehicle and has a legal velocity of V, (2) each driver controls
the acceleration/deceleration observing the motion of the preceding vehicle to maintain a
safe velocity, and (3) no response-lag time is considered. The OVM dynamical acceleration
of the following vehicle can be obtained as [37]:

..
xn(t) = a

{
V(∆xn)−

.
xn(t)

}
(20)

where ∆xn = xn+1 − xn, is the headway of vehicle n (following) and n + 1 (preceding), t is
the time, n is the total number of vehicles, a is the driver’s sensitivity constant (independent
of the vehicle), xn is the position for the nth vehicle with respect to time (t) and V is optimal
velocity of a vehicle n. The calculated optimal velocity V(∆xn) of a vehicle (n) depends on
the following distance of the preceding vehicle number (n + 1).

Based on Equation (20), it can be seen that the velocity (V) of a vehicle increases as
the headways (∆xn) gets larger but does not surpass the maximum allowable velocity.
Similarly, the velocity reduces to minimal value as the headways get narrower to prevent
the crash. After the numerical simulations of the OVM model and by considering the stable
and unstable cases [37], the optimal velocity function V(∆xn) can be defined as:

V(∆xn) = tanh(∆x− 2) + tanh(2) (21)

Using the above equation, the driver manages the acceleration and braking behavior
and would never pass the preceding vehicle in any case. This model ensures that traffic
flow creates congestion phenomena instead of accidents. A noticeable weakness of the
OVM outlined through a research paper [35] is that the model develops idealistically large
acceleration in some conditions.

The Intelligent Driver Model (IDM) Car-Following Model

A car-following model for mixed traffic conditions is named the intelligent driver
model (IDM). This model describes the acceleration as a function of the gap Sα(t), the speed
vα(t), and the speed difference ∆vα(t) between vehicle “α” and the vehicle in front [38]
using the following expressions:

d
dt

vα(t) = α·
(

1−
(

vα

v0

)δ

−
(

S∗ vα·∆vα

Sα

)2
)

(22)
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where “δ” is the acceleration component and the desired gap “S∗”, which can be given as:

S∗(vα, ∆vα) = So + S1·
√

vα

v0
+ T·vα +

vα·∆vα

2
√

a·b
(23)

in which a is the maximum acceleration, b is the maximum deceleration, So is the stopping
distance, T is the minimum time headway, and v0 is the free speed. The above expression
has been simplified in [39] and described as:

d
dt

vα = a

(
1−

(
vα

desired velocity

)δ

−
(

minimum desired gap
gap

)2
)

(24)

S∗(vα, ∆vα) = So + S1·
√

vα

desired velocity
+ T·vα +

vα·∆vα

2
√

a·b
(25)

As shown above, the IDM model considers factored maximum acceleration and
minimum headway to achieve the desired velocity and to maintain a minimum gap with
the lead vehicle, respectively. Researchers have formulated the potential following behavior
of autonomous vehicles, advanced driver assistance features such as adaptive cruise control
(ACC), and cooperative adaptive cruise control (CACC) [40] using the IDM algorithms as a
basis of model construction.

2.5. The Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control
(CACC) Models

In the ACC system, the following vehicle records the vehicular characteristics of the
preceding vehicle, such as headway speed, acceleration, and automatically adjusts its
speed and controls or maintains a safe gap [41]. The ACC system provides convenience to
the following driver by reducing the stresses and fatigues for continuously matching the
vehicle’s speed with the preceding vehicle [9]. The following vehicle in the ACC system
evaluates the leading car in the same lane through cameras, laser, or radar sensors [9,42,43].
If the desired gap between the follower and the leader is fading, such as the preceding
vehicle decelerates or travel at a low speed, the following vehicle will adjust its speed to
maintain a safe desired gap. Similarly, if the preceding vehicle accelerates or moves to
another lane, the following vehicle likewise accelerates in the presence of clear space ahead.

The CACC technology is an extension of ACC, which can communicate with multiple
vehicles through effective V2V communication systems [44] and therefore forming a vehicle
platoon. The first vehicle in a platoon is a leader that transmits a message about the
recommended cruising speed (and often lane-assignment) to the following vehicles. The
followers record the signal and adjust their speed and gap according to the recommended
values without the contribution of the driver [43]. The CACC system provides traffic
stability and improvements to the throughput by increasing the network capacity up to
a lane drop [9]. The concept of CACC is in the development stage, and therefore, no
consensus or definition is fixed at this stage. The implementation of CACC logic under
the simulation environment has shown smooth, safe, and efficient traffic operations from
different research work.

Van Arem defines ACC/CACC using automated longitudinal control combined with
intervehicle communications [8,9]. Each objected vehicle in the traffic stream is occupied
by a leading vehicle and the following vehicle, i.e., the fourth vehicle, follows the third
vehicle but leads the fifth vehicle in the platoon. The acceleration model for ACC/CACC is
provided as [9,45]:

ac = ka ∗ ap + kv ∗
(

vp − v f

)
+ ks ∗ (s− v ∗ td) (26)

a = max[amin,min(ac, amax)] (27)
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where, ac is the control acceleration with the liner function, a is the acceleration in the next
step of the objective vehicle, ap is the acceleration of the preceding vehicle, vp is the speed
of the preceding vehicle, v f is the speed of the following vehicle, amin is the minimum
allowed acceleration (−3 m/s2), amax is the maximum allowed acceleration (2 m/s2), and
ka, kv, ks are constant factors (ka = 0; for ACC).

2.6. Lane-Change Models

The extent of possibility or prohibition for vehicles departing from the current lane
on a multi-lane road network is defined by a lane-change model in a micro-simulation
tool [6]. The lane-change logic is followed by the gap acceptance models because when the
driver finds a safe gap (critical gap), the lane-change rule triggers immediately in order
to reach the desired destination. In 1986, Gipps introduced a famous lane-change model
for urban driving and maneuvering conditions that covered the impacts of traffic signals,
obstructions, and the presence of heavy vehicles in a mixed traffic stream. The Gipps
models focus on the risk of the possible collision between vehicle to vehicle, vehicle to
obstructions, and other logical driving behaviors. The driver’s decisions for a lane-change
are based on a “set of rules” [46] as shown in Table 4 and categorized into two classes such
as mandatory lane-change (or necessary lane-change) and discretionary lane-change (or
free lane-change) [47] as seen in Table 3.

Table 3. Lane change classification in micro-simulation tools [47].

Mandatory Lane-Change Discretionary Lane-Change

The current lane is blocked for a specific vehicle type. The driver overtakes another
slow-moving or heavy vehicle.

The current lane will drop by merging into another lane. A driver yields its way to
provide a safe gap for another

merging vehicle.
The driver must change a lane to reach the

desired destination.

Table 4. Set of rules for Gipps lane-change model [48].

Situation Decision

Is it possible to change a lane safely without
meeting the risk of a collision?

The driver looks for a safe gap and speed of
vehicles (front and back) in the target lane.

Where are the permanent locations of
obstructions and how to avoid them?

The driver avoids blocked lanes or dropping
lanes.

Are there any dedicated lanes for transit and
high occupancy vehicles (HOV)?

The driver does not consider transit or HOV
lanes to avoid being trapped.

When to consider a lane-change for the
intended turning movements?

The driver inspects the distance from the
intended turning and makes a necessary lane

change. It becomes critical when the threshold
is crossed and it is not safe for the driver to

take a turn without a possible collision in the
adjacent lanes.

The presence of heavy vehicles in urban traffic?

Heavy vehicles drive at slower speeds in
mixed traffic. Hence, the driver maintains a

substantial gap from heavy vehicles to ease the
lane-change procedure and also to avoid being

trapped behind it.

Is it useful to change lanes for a potential gain
in the average speed?

This driver gains potential speed by either lane
changing or overtaking a slow-moving vehicle.
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Another well-known lane-change model was proposed by Sparmanns in 1978 that
categorized the behavior of lane-change as slower-to-faster and faster-to-slower lanes
depending upon the desire and need of the driver. A driver would move to a faster lane
if the front vehicle in the actual lane is moving at a slower speed (as compared to the
subject vehicle) or there is any other obstruction in the roadway. The potential obstruction
is a function of speed differences between the current speed of the lead vehicle and the
desired speed of the subject vehicle. Whereas, a driver would move to a slower lane if the
following faster vehicle in the actual lane needs to overtake the subjected slow-moving
vehicle or a general desire of the driver to keep the car on the right-side [49]. It is important
to have safety as a priority element before the initiation of the lane-changing process, such
as estimating optimum distances and speed differences of the preceding and the following
vehicle on the particular lanes.

3. Micro-Simulation Modeling Tools for Human-Driven and Autonomous Vehicles

A number of traffic micro-simulation packages are available commercially in the
market that simulate various real-world network configurations, problems, and solutions.
Each computer simulation software package employs different car-following behaviors,
lane-change, and gap-acceptance models, as discussed in the previous section. The four
most popular simulation tools are the Advanced Interactive Microscopic Simulator for
Urban and Non-urban Network (AIMSUN), the CORridor SIMulation (CORSIM), the
PARAMICS, and the Verkehr In Städten –SIMulationsmodell (VISSIM) [6,10,50].

The AIMSUN uses the Gipps’ safety distance models and developed by Traffic Sim-
ulation System, Barcelona, Spain. This tool is potentially famous for modeling traffic
dynamic assignment, incident management, and ITS applications such as ramp metering
and vehicle guidance systems [31]. The AIMSUN is mostly used in Europe, but now a
wide-use is observed in the U.S. which can simulate urban streets, freeways, interchanges,
and roundabouts [50]. Additionally, one of the reasons for the selection of this tool by
modeling practitioners is its strong 3-D animation capabilities. Recently, the AIMSUN has
introduced capabilities for modeling autonomous and connected vehicles.

The CORSIM software was developed in 1988 by the US Federal Highway Adminis-
tration (FHWA) by combining several previous micro-simulation tools such as the NETSIM,
which can simulate urban traffic streams whereas and the FRESIM (FREEway SIMulation),
which can simulate complex freeway networks. The car-following logic of the NETSIM
is that the lead vehicle moves to a new position (i.e., coordinate) as the simulation time
proceeds with one time-step. The following vehicle is then moved to a new location in a
way that reads the lead vehicle, such as if the lead vehicle decelerates at the maximum
deceleration limit, the following vehicle will stop at a speed of zero to prevent the vehicle
crash with the lead vehicle [51]. The FRESIM uses the Pitt car-following model that can be
considered as a stimulus-response model. The logic for this model works idealistically the
same as the GM-type model such that the following vehicle always maintains a safe space-
headway [52]. The CORSIM has the most application in the US because of its reliability for
driving behaviors and vehicle performance models [50].

The PARAMICS tool was developed by the UK Department for Transportation (DfT)
in 1990. This software uses the Fritzsche car-following model that is an acceleration model
based on psychophysical logic [53]. The Fritzsche model records human perception in five
different regimes, including the free following, the following 1, the following, the closing
in, and the danger. Each regime has a specific threshold value in the relative speed/space
(DX/DV) diagram for the psychophysical follower-leader pair [10]. For example, the driver
will only react to the vehicle if the change in speed falls within the specified threshold.

The PTV VISSIM is one of the most predominant micro-simulation tools developed
by a German company PTV Vision (Planung Transport Verkehr) in 1992. The VISSIM
uses a psychophysical car-following model which was first developed by Wiedemann in
1974 [22] and further enhanced in 1992 by Wiedemann and Reiter [36], which is now called
Wiedemann 99 car-following model. This simulation tool is capable of performing complex
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network and capacity analysis, including signalized junctions, transit operations, passenger
commute, corridor modeling, multimodal systems, active traffic management, emission
modeling, connected vehicles, and facility operations such as airport and terminals [11].
In VISSIM, the Wiedemann model decides how the following vehicle behaves based on
the distance and difference of speed to the vehicle ahead. The model used numerous
random numbers, statistical distributions, and stochastic variations that ensure each car
has different behavior in each time-step [54]. Similarly, the lane-change algorithm works
on the rule-based model as explained earlier [48,49]. This software package allows the
user to adjust the parameters of lane-change, gap-acceptance, and car-following models.
Specifically, the primary benefits of using the VISSIM micro-simulation tool can be summa-
rized as (1) built-in features for connected autonomous vehicles, (2) effective evaluation
techniques for capacity and safety, (3) allowing the user to calibrate the car-following
model parameters, (4) application of external driver models (e.g., replacing internal default
car-following model with a user-defined car-following algorithm), (5) use of a psychophys-
ical car-following model as it is based on the assumptions and perceptions of the driver
behavior, (6) robustness of the graphic user-interface, and (7) effective evaluation tech-
niques for capacity and safety. Thus, the VISSIM simulation tools show potentials for wide
application compared with other commercially available simulation tools in the market and
the following of this section focuses on the review of car-following models in the VISSIM
software for human drivers and AVs.

3.1. Modeling Human Drivers Using VISSIM

VISSIM also provides two Wiedemann car-following models for different application
conditions, including [11] the Wiedemann 74 and 99. The Wiedemann 74 model can be used
for urban traffic and merging areas. The minimum desired safety distance at low-speed
differences is calculated using the same equation of the ABX threshold as discussed in
Section 2.3. The Wiedemann 99 can be used for freeway with no merging areas. The
model parameters affect the saturation flow rate of vehicles in simulation. The behavior
of autonomous modeling is possible by using the Wiedemann 99 model as it contains at
least nine parameters that assist the users in conducting sensitivity tests and also for trial
and error of multiple parametric combinations. A detailed description of each parameter is
presented in Table 5.

Table 5. VISSIM Wiedemann 99 car-following parameters [11].

Variable Description Default Value

Thresholds for Safety Distance (∆x)

CC0
Standstill distance: desired minimum distance between the two
standing vehicles (lead and following) at v = 0 [mph]. The value

for this parameter is fixed.
4.92 ft (1.5 m)

CC1

Headway time (Gap): Desired time in seconds between the two
vehicles (lead and following). The higher the value, the more

cautious the driver is. Thus, at a given speed v [mph], the safety
distance dx_safe is computed to: dx_safe = CC0 + CC1 × v.
The safety distance is defined in the model as the minimum

distance a driver will keep while following another car.
In the case of high volumes, this distance highly influences the

capacity of the network.

0.90 s

CC2

Following variation: this is an added value to a safe distance.
Restricts the longitudinal oscillation (distance difference) as a

driver moves closer to the car ahead. Hence if this value is set to
30 ft, the following distance will be dx_safe and dx_safe + 30 ft.

The default value is 13.12 ft which results in a quite stable
following process

13.12 ft
(4.0 m)

CC3

Threshold for entering “Following” state: time in seconds before
a vehicle starts to decelerate in order to reach the required safety

distance (negative). Hence, it defines the number of seconds a
driver needed to decelerate earlier reaching the safety distance

(dx_safe).

−8.00 s
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Table 5. Cont.

Variable Description Default Value

Thresholds for Speed (∆v)

CC4

Negative “Following” Threshold: defines a negative speed
variation between the following process. This parameter controls

the speed differences of Wiedemann’s “following-state”. A
smaller value generates a more sensitive driving behavior to the
acceleration or deceleration of the preceding vehicle. The default

value models a potentially tight following condition for the
following drivers.

−0.35 ft/s

CC5

Positive “Following Threshold”: defines a positive speed
variation between the following process. This parameter controls

the speed differences of Wiedemann’s “following-state”. A
smaller value generates a more sensitive driving behavior to the
acceleration or deceleration of the preceding vehicle. The default

value models a potentially tight following condition for the
following drivers.

0.35 ft/s

CC6

Speed dependency of oscillation: influence of distance on speed
oscillation. If set to 0, the speed oscillation is independent of the

distance. Whereas larger values, lead to a greater speed
oscillation with increasing distances.

11.44

Acceleration Rates

CC7 Oscillation Acceleration: minimum acceleration/deceleration
during the following process. 0.82 ft/s2

CC8
Standstill acceleration: desired acceleration when starting from a

standstill (limited by maximum acceleration defined within
acceleration curves).

11.48 ft/s2

CC9
Acceleration at 50 mph (80 km/h): desired acceleration at 50 mph

(limited by maximum acceleration defined within
acceleration curves)

4.92 ft/s2

The VISSIM lane-change model is based on Sparmann’s model as discussed in
Section 2.6 [55]. Additionally, there are two types of lane-changing procedures avail-
able in the software package as the necessary lane-change (or mandatory lane change)
and the free-lane change (or discretionary lane-change). In the necessary lane-change, the
driver must change its lane to reach the next connector of a route. VISSIM controls this
behavior by a parameter called “maximum acceptable deceleration” for lane changing
vehicle (own) and the vehicle which will be its follower in the target lane (trailing vehicle)
after the lane-change is completed. The free lane-change method is initiated when the
vehicle demands to obtain the benefits of speed increment while maintaining the desired
safety distance in the target lane. This safety distance is computed by the speed of the
lane-changing vehicle (own) and the trailing vehicle in the target lane [11]. Table 6 outlines
some of the important parameters that control the lane-changing logic of vehicles.

Table 6. Lane-change logic parameters [11].

Parameters Explanation

General behavior
Defines the behavior for overtaking by two methods such as (1) free lane selection

in which vehicles can overtake on each lane, (2) slow-lane rule, which allows
overtaking on freeways.

Necessary lane change (route)

This parameter is subdivided into two columns for its own (subject) vehicle and a
trailing (target) vehicle. It consists of three sub-components. The deceleration

thresholds for the own and trailing vehicle are defined to adjust the aggressiveness
of the necessary lane-change [55]. The “maximum deceleration” (upper bound

value) and “acceptable deceleration” (lower bound value) are the limits of
deceleration value while performing a lane change. The “−1 m/s2 per distance” is
the reduction rate that defines the pace at which the maximum deceleration will

reduce with the increasing distance from the emergency stop distance.
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Table 6. Cont.

Parameters Explanation

Waiting time before diffusion

When a vehicle requires to make a mandatory lane change in a congested road
network to follow its desired route (when no acceptable lane-change gap is

available), it comes to a halt (emergency stop), and it waits until a suitable gap for
lane-change is available. VISSIM defines a threshold for the maximum amount of
time a vehicle can wait at the emergency stop before making a lane-change. If the

vehicle is not successful in this defined period, it is removed from the network
(disappear from the simulation). VISSIM will generate a warning message (about
the removal of a vehicle) when the simulation period is completed. In this way a

network would not choke because of certain vehicle which comes to a halt.

Minimum clearance The minimum distance that must be available between the lead and preceding
vehicles after a lane-change.

Safety distance reduction factor A drop in the safety distances for vehicles involved in lane-change maneuvers.
Smaller the value, more aggressive lane-change.

Maximum deceleration for
cooperative breaking

Defines the maximum deceleration which the trailing vehicle would accept to help
the maneuver of lane-changing vehicles.

Cooperative lane-change Through the use of this option, the trailing vehicle in the target lane would move
to another side of a lane and providing room for lane change-vehicle.

3.2. Modeling of Autonomous Vehicles in VISSIM

The behavior of autonomous and connected driving is predictable and determinis-
tic, unlike the stochastic behavior of human drivers. The existing car-following models
(e.g., Wiedemann psychophysical model) and other driving behavior parameters (e.g., lane-
change, gap-acceptance, acceleration/deceleration distributions, etc.) in the traffic simula-
tion software need to be modified or replaced with external driving models for autonomous
cars. This section discusses the available tools in VISSIM software (until version 2020)
and associated external APIs (application programming interface) for the modeling of
autonomous driving, platoon formation, connected driving, advanced driver assistance op-
tions, and recommendations for Wiedemann model driving behavior parameters (e.g., CC0
to CC9 as presented previously in Table 5). To date, many car manufacturers and other
companies have already built partial autonomous vehicles, i.e., SAE (Society of Automotive
Engineers) automation levels or working towards the production of fully autonomous driv-
ing. The companies are restrictive in revealing the information of car-following algorithms.
The concept of autonomous driving is also in the development stage and this process varies
for different manufacturers. Therefore, the simulation experiments can aid in modeling
the expected driving behavior of autonomous vehicles and can inspect the associated risk
before the diving logics are ready for implementation on the roads.

3.2.1. Parameters for AVs and CAVs Using Wiedemann Car-Following Model in VISSIM

Many studies have used different parametric values for the autonomous vehicle’s
simulation using Wiedemann’s-99 car-following model. A recent study by Karlsruhe
Institute of Technology-Institute for Transport Studies and PTV Group investigated the
following behavior of autonomous vehicles using the Wiedemann car-following model.
The study uses the data collected through the CoEXist project for three test vehicles, out of
which two are real-world autonomous vehicles that drive autonomously on public roads
under normal traffic conditions [56]. The leading vehicle is manually driven, whereas
the following two cars are in the autonomous driving mode. The autonomous cars are
equipped with two longitudinal control communications, such as CACC (autonomous
car communicates with the leading vehicle) and degraded CACC (dCACC—autonomous
car does not communicate with the leading vehicle). Hence the longitudinal behavior of
two autonomous cars is analyzed to propose the adjustment in Wiedemann’s model for
autonomous driving behaviors, as shown in Table 7. It is also important to mention that
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most of the urban driving would have active dACC mode because the leader is sometimes
lost at a traffic light or a manual vehicle cut in the platoon formations [57].

Table 7. Parameters for AV simulation using Wiedmann 99 model [57].

Parameter Autonomous CACC
(Communication with the Leader)

Autonomous dCACC
(No Communication with Leader)

CC0 4 (m) 6 (m)

CC1 0.3, 0.6, 1.0 (s) 1.0 (s)

CC2 0 (m) 0 (m)

CC3 −40 (s) −40 (s)

CC4 0 (m/s) 0 (m/s)

CC5 0 (m/s) 0 (m/s)

CC6 0 0

CC7 0.25 (m/s2) 0.25 (m/s2)

CC8 3.5 (m/s2) 3.5 (m/s2)

CC9 1.5 (m/s2) 1.5 (m/s2)

A study by Atkins suggested model parameters for autonomous cars for different SAE
levels (i.e., Level 2 to Level 4), as shown in Table 8. The level 3 AVs are subdivided into four
categories depending upon the aggressiveness of the driving parameters. The parameters
such as “minimum clearance (front/rear)” and the “safety distance reduction factor” are
defined in Section 3.1. The other two user-defined merging behavior parameters are the
minimum time-gap to measure the minimum time required by a vehicle on the mainline to
achieve minimum headway at its present speed, and the minimum clearance or headway
to measure the minimum headway required by a vehicle to merge into the mainline [58].
In another study, Peter et al. investigated the impacts of autonomous and conventional
vehicles on the traffic flow for different market penetrations using Wiedemann-74 (for
urban roads) and Widemann-99 (for freeway) car-following models using slightly different
parameters as described in Table 8 [59].

Table 8. Parameter variation for Wiedemann model and VISSIM user-defined attributes [58].

Capability Levels CC0
(m)

CC1
(s)

CC7
(m/s2)

CC8
(m/s2)

CC9
(m/s2)

Min. Clearance
or Headway

(front/rear) (m)

Safety Distance
Reduction

Factor

User-Defined
Minimum

Time-Gap (s)

User-Defined Minimum
Clearance or
Headway (m)

Level 2 1.5 0.9 0.25 3.5 1.5 0.5 60% 3 5

Level 3

Cautious 2.5 1.8 0.1 3.2 1.2 0.8 90% 3.6 6.5

Normal
cautious 2 1.2 0.2 3.4 1.4 0.6 70% 3.2 5.5

Normal
assertive 1 0.8 0.3 3.6 1.6 0.4 50% 2.8 4.5

Assertive 0.5 0.6 0.4 3.8 1.8 0.2 30% 2.4 3.5

Level 4 * 0.5 0.6 0.4 3.8 1.8 0.2 30% 2.4 3.5

* Level 4 vehicles are subject to use a fixed desired speed distribution. Rest all the categories uses the VISIM default desired speed
distribution according to a link type.

3.2.2. CoEXist and VISSIM—Automation-Ready Framework

The CoEXist (https://www.h2020-coexist.eu/ (accessed on 1 March 2021)) is a funded
project by European Commission that prepares the concerned authorities for a transition
phase during which both the automated vehicles (i.e., AVs and CAVs) and conventional
vehicles will co-exist on the roadways. The basic effort for this project is to bridge a gap
between emerging AV technology, transport planning, infrastructure development, and

https://www.h2020-coexist.eu/
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enabling city authorities to effectively deploy AVs using the best practices [60]. The CoEXist
project has simulated real examples of AVs in four European cities such as; Milton Keynes-
UK, Stuttgart-Germany, Gothenburg-Sweden, and Helmond-Netherland. The outcomes
of this exercise provide certain resources to the authorities for the potential impacts of
automated technology and market penetration of AVs and CAVs.

The AV-ready (autonomous vehicles ready) framework develops specialized tools for
microsimulation and macroscopic modeling of autonomous and connected cars. To date,
VISSIM 2020 is the latest version released by the PTV Group, which contains all the updated
AV related tools that are developed under the CoEXist study. However, PTV Group has
initially provided autonomous features starting from VISSIM 9, VISSIM 10, VISSIM 11,
and now VISSIM 2020 [11]. The following section introduces some of the autonomous
features in VISSIM 2020. In the VISSIM 2020, there are some AV-related features and
behavior parameters such as communication and cooperation, functions, and distributions.
The communication and cooperation between vehicles (conventional or autonomous) are
improved by introducing two options under the lane-change tab for driving behavior. The
first option is “cooperation lane-change” which facilitates the process of a lane change in
such a way that the trailing vehicle in the target lane would move to another side of a
lane and providing room for lane change-vehicle as discussed in Section 2.6. The second
option is “advanced merging,” where a lane-changing vehicle would initiate the process
earlier so that no disruption of the traffic occurs and therefore the capacity of the network
increases [11]. The vehicle cooperation can also be modeled by choosing smaller headways
between vehicles through CC0, CC1, CC2, and CC6 parameters [61].

As discussed earlier, it is expected that autonomous cars will have deterministic
behavior, unlike the random behavior of human drivers. Hence the spread of values
for individual vehicles can be reduced for several functions such as desired acceleration,
desired deceleration, maximum acceleration, and maximum deceleration [61]. Similarly,
the distribution function such as the desired speed is an important factor for link capacity
and travel times. In VISSIM, this desired speed value is assigned to each vehicle, and the
vehicle desires to match this speed throughout the simulation network. However, due to
the varying speed of other surrounding vehicles, human behavior towards accepting the
risks, and congestions in the network; a large spread of desired speeds can be observed.
The automated cars are expected to have a lower spread as they will obey the speed limit
regularly. The conventional vehicle as a spread of desired speed values ranging from 88
km/h (54.7 mph) to 130 km/h (80.7 mph) whereas the automated vehicles have a minimal
spread of values ranging from 99km/h (61.5 mph) to 100km/h (62.1 mph).

To facilitate autonomous driving, the CoEXist project has developed multiple addi-
tional tools to simulate the expected behavior of future autonomous and connected cars,
which introduces three AV-ready VISSIM driving logics under driving behaviors such as
cautious, normal, and aggressive including [11]:

(1) The AV cautious (CoEXist): the vehicle maneuvers in a safe manner at all times
and maintains larger headways. This logic is conservative if compared with default urban
(motorized) driving logic. Refer back to Table 7, which explains the values of a conventional
human driver;

(2) AV normal (CoEXist): this logic behaves similarly to a default urban(motorized)
driving behavior. Additionally, the vehicle can sense the vehicle’s distance to other vehicles
in the range and their real-time speed;

(3) AV aggressive (CoEXist): the vehicle is “all-knowing” of the entire traffic situation,
equipped with traffic situation prognosis, and maintains a minimum gap to other vehicles.
This aggressive logic leads to cooperative driving.

Each above driving logic uses different parameters for Wiedemann 99 car-following
model, lane-change, and following behaviors, as shown in Table 9. Nevertheless, this
section has summarized most of the available internal autonomous features in VISSIM
2020 (available at the time of writing this review paper). Since this topic is getting lots of
attraction from professionals in the industry, university researchers, the general public,
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and others, it is expected that the PTV Group will provide more AV-ready options in the
upcoming software releases and service packs.

Table 9. Driving behavior parameters for three different AV-ready logics.

Driving Parameters CoEXist AV-Ready Driving Behaviors *

AV Cautious
(CoEXist)

AV Normal
(CoEXist)

AV Aggressive
(CoEXist)

Following behavior

Max look ahead distance (m) 250.0 250.0 300.0

Number of interaction objects 2 2 10

Number of interaction vehicles 1 1 8

Car-following (Wiedemann 99)

CC0 (m) 1.5 1.5 1.0

CC1 (s) 1.5 0.9 0.6

CC3 (s) −10.0 −8.0 −6.0

CC8 (m/s2) 3.0 3.5 4.0

CC9 (m/s2) 1.20 1.5 2.0

Lane-change

Necessary lane change—max
deceleration (m/s2) for own vehicle −3.5 −4.0 −4.0

Necessary lane change—max
deceleration (m/s2) for trailing vehicle −2.5 −3.0 −4.0

Necessary lane change—1 m/s2 per
distance (m)

80 100 100

Necessary lane change—accepted
deceleration (m/s2) for own vehicle −1.0 −1.0 −1.0

Necessary lane change—accepted
deceleration (m/s2) for trailing vehicle −1.0 −1.0 −1.5

Safety distance reduction factor 1.0 0.6 0.75

Max deceleration for cooperative
braking (m/s2) −2.5 −3.0 −6.0

Cooperative merging No Yes Yes

Autonomous driving

Enforce absolute braking distance Yes No No
* Note: The values for AV-ready driving behaviors are copied from VISSIM 2020 software.

3.3. VISSIM DLL-APIs and COM Interface for New Future AV Car-Following
Model Development

Modifying the default car-following model parameters such as headway, safety dis-
tance, acceleration functions, or speed distributions is one approach to model the antici-
pated behavior of AVs and CAVs. However, it uses the same logic as by other conventional
vehicles, i.e., Wiedemann Model 74 or 99. Further, VISSIM contains about 190 parameters
for car-following, lane-change, gap-acceptance, and others which makes it very difficult
to calibrate the model [62]. Another approach to model AVs and CAVs in the VISSIM
software is through the use of external scripting (such as COM-Interface) and VISSIM
DLL-APIs (application programming interfaces). The APIs are an add-on module which
allows user to integrate external applications into the VISSIM [11] and thus enhancing the
user’s experience. It includes DriverlModel-DLL, DrivingSimulator-DLL, EmissionModel-
DLL, and SignalControl-DLL [11]. The advanced features of vehicle communication and
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infrastructure automation, i.e., V2V (vehicle-to-vehicle) or V2I (vehicle-to-infrastructure)
are modeled through VISSIM APIs by various researchers [45,54,61,63].

The Microsoft COM (component object model) provides communication, connection,
and access to different applications. The data and functions contained in the VISSIM appli-
cation can be accessed externally through the COM-Interface using different programming
languages such as VBA, Python, C++, C#, MATLAB, and JAVA [64]. It can access each
vehicle’s attribute (e.g., current position, acceleration, orientation on the lane, vehicle’s
receiving traffic light status, etc.) during a simulation run and can also edit some of the
parameters (e.g., arrival pattern of vehicles in the network, create or remove vehicles, etc.).
As per the requirement of the user to run the scripts for a specified amount of time, VISSIM
“event-based” COM scripts only activate during the user-defined simulation time value, or
if required, it stays active throughout the simulation period. The software package contains
a detailed instruction document of COM-Interface explaining the procedures for accessing
the objects and attributes. COM-Interface assist in modeling the behavior of autonomous
and connected vehicles such as platooning, shorter and steady headways, and the vehicle
adjusting the speed to arrive at an intersection at the status of the green traffic light. The
VISSIM package contains some AVs-related COM scripts example files for users.

This API module enables the user to completely replace the internal-car following
model (i.e., Wiedemann 74 or 99) and lane-change models with a user-defined algorithm for
selected or all vehicle types. The external driver model (EDM) can control the longitudinal
(acceleration and deceleration), lateral (lane-change) behavior of the vehicles. The user-
defined car-following logic code is programmed using C++ language, which outputs a
DriverModel.cpp file. The CPP file can be compiled into a Dynamic Link Library (.DLL)
file using the Microsoft Visual Studio software. The VISSIM package contains an example
of a DLL file and a Visual Studio Project (.vcproj) that contains an example code structure.
The DLL file is loaded through the “external driver model” dialog box window under the
“vehicle type” tabs.

During a simulation run, VISSIM calls the DLL code for each vehicle using the EDM
for each simulation time-step and decides the behavior of the vehicle. The current state
of the affected vehicle and surrounding vehicles is delivered to DLL, and in return, the
user-defined algorithm computes the longitudinal behavior, i.e., acceleration/deceleration
values, and lateral behavior, i.e., lane-change values. Finally, the DLL file passes the
computed values back to VISSIM in the current simulation-time step [65], as shown in
Figure 2 [45]. The DriverModel-DLL is a potential tool for modeling the autonomous and
connected behavior of vehicles such as cruise controls, platooning, and getting real-time
traffic data of surrounding vehicles, e.g., headway, current speed, current acceleration, and
current lane.

Figure 2. VISSIM and External DriverModel-DLL working procedure.

Zhao et al. developed an external driver model using ACC/CACC framework through
VISSIM API, i.e., DriverModel-DLL [45]. The following steps explain the procedure of
implementing the ACC/CACC DLL files into the VISSIM including:
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(1) Development of a VISSIM simulation network (e.g., links, connectors, etc.).
(2) Writing code in C++ for ACC and CACC.
(3) Compiling the code into a DLL file.
(4) The DriverModel-DLL is loaded into VISSIM for a specific vehicle type.
(5) VISSIM reads the DLL logic for each time step.
(6) Using the “Set” function, the driver behavior is sent from VISSIM to DLL for ev-

ery time-step.
(7) Using the “Get” function, the update driver behavior is sent from DLL to VISSIM.
(8) Using the “Execute” function, VISSIM moves the driver (i.e., DLL affected vehicle)

The driving simulator interface connects the VISSIM software to a real-world driving
simulator (DS) hardware (e.g., containing steering and wheel pedals) or any other external
vehicle simulation program which runs using its own algorithms (for a single vehicle
or multiple vehicles). For example, a DS controls a specific vehicle type in a network
while the rest of the vehicles are using the VISSIM default car-following and lane-change
behaviors. The information is exchanged between the VISSIM and a DS for each simulation
time-step. VISSIM provides the information for the surrounding traffic (e.g., position,
acceleration/deceleration, speed, etc.) to the DS, and in return, the DS provides back
the current position and orientation of the simulator vehicles [66]. The DS provides an
opportunity for the users to model AVs and CAVs using the data from the real-world
autonomous cars and built-in sensors.

4. Conclusions

This paper presents a review of the car-following models used in prevalent micro-
simulation tools with the modeling capabilities of human and autonomous driving behav-
iors. The conclusions of the review of this paper can be summarized as below:

• Autonomous and connected cars would observe a longer transition period during
which the robotic and the conventional human drivers will share the roadways,
thus creating mixed traffic, until achieving complete market penetration. The micro-
simulation tool provides an opportunity for the user and policymakers to investigate
the anticipated impacts of mixed traffic by either modifying the internal car following
model, i.e., driving behavior parameters or implement an external smart logic for AVs
and CAVs.

• The car-following models for human drivers can be classified into three categories
including the GM-type models such as Gazis–Herman–Rothery (GHR) model, the
safety-distance such as the Gipps model, and the psychophysical car-following such as
Wiedemann models. The GM model provides a basis for all other car-following models.
For AVs and CAVs, dynamic car-following model, i.e., OVM, and a mixed condition
car-following model, i.e., IDM, the ACC/CACC models can be used. It is noticeable
that researchers have implemented the cruise control approach for modeling the AVs
and CAVs.

• Among various simulation tools, the VISSIM simulation tool is a popular tool that
uses a psychophysical car-following model, i.e., Wiedemann 74 and Wiedemann 99. A
user can model the expected behavior of AVs/CAVs by modifying the Wiedemann
model parameters and other driving behaviors. In addition, the dedicated features
for autonomous diving were also provided in the recent version of VISSIM, such as
“AV-ready” through which a user can effectively model autonomous behaviors such
as platooning, communication between vehicles and infrastructures, and others. The
DLL-APIs and COM interface is an additional tool that can completely replace the
internal car-following model with a user-defined future AV-car following model. The
COM interface, on the other hand, enables the users to perform operations that are
not possible in a typical GUI of the software.

The developments in the field of driving behaviors for future autonomous and con-
nected cars are in the evolution stage. The micro-simulation tools can provide a potential
platform for researchers to investigate and implement safe and effective driving logics for
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AVs and CAVs. Interests also exist in using the simulation tools to investigate the impacts
of autonomous and connected vehicles on traffic flow and safety.
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