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Abstract: The location placement of pick-up/drop-offs of ride hailing usually only considers spatial
distribution within a certain area. Previous studies often mapped out the potential hotspots for pick-
up/drop-offs, benefitting the ride-hailing company and not considering the passengers. Therefore,
in this study, we incorporated the spatiotemporal distribution of mobility-on-demand on generating
pick-up/drop-off location placement using a genetic algorithm considering the walking distance
and minimum demand data served within the radius. The data collected are analyzed through the
clustering method, and the resulting cluster centers are fed into the location optimization algorithm.
The genetic algorithm is used to optimize the location placement with the consideration of the user’s
walking distance and demand. The algorithm is able to find an appropriate placement and determine
reliable pick-up/drop-off stations within the study area based on observed spatiotemporal demand
despite the difference in demand distribution through different time periods.

Keywords: location placement; pick-up/drop-off hotspots; genetic algorithm

1. Introduction

The traditional method of transport data often used manual traffic survey to identify
and analyze traffic patterns. This method suffers from a lack of reliability and accessibility
as the amount of data collected is often limited and inadequate. However, the rapid
technological development in navigation and communication systems such as GPS, mobile
phones and Wi-Fi, etc., has allowed the convenience and availability of detecting large-scale
individual travel data and subsequently recording vehicle trajectories [1]. Various data
such as vehicle trajectories, origin–destination, pick-up, drop-off locations, trip length, and
duration can be retrieved and analyzed.

The convenience of location-aware technologies was previously implemented widely
in hired mobility such as taxi services. Mobility services navigation data proved to be a
significant source in exploring various traffic research subjects such as travel patterns and
characteristics and traffic models. Yuan et al. [2] utilized historical taxi trajectories and
used a variance–entropy clustering approach to estimate travel time between locations.
Alexander et al. [3] investigated the effects of ridesharing adoption the network-wide traffic
congestion by analyzing origin–destination trips from both auto and non-auto travelers
that were extracted from mobile phone data. The results suggested that a significant
reduction in total vehicle and total travel time were obtained when 50% of the drivers
adopted the ridesharing scheme. Qu et al. [4] developed an adaptive routing method using
a probabilistic network model taking into consideration between supply and demand.
Using the availability of large data, some researchers analyzed the characteristics of urban
mobility to understand overall traffic mobility [5] better and subsequently provide insights
on urban planning [6]. Some research focuses specifically on defining traffic congestion
patterns [7,8].
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Furthermore, the advancement of technologies has brought out the flexibility of
mobility-on-demand to customer’s fingertips through the transportation network compa-
nies (TNCs), such as Uber and Grab, by conveniently requesting trips through a personal
mobile phone instead of traditional taxi-hailing from the sidewalk. These trips have become
the bulk of current transportation services, and records of these trips are stored in the TNC
database. Hence, analyzing these data rather than the conventional taxi trips have become
essential in visualizing and analyzing traffic demand.

Meanwhile, several kinds of research have also incorporated taxi data in determining
pick-up and drop-off (PUDO) zones to integrate taxi operation management better and
incorporate the user’s travel pattern analysis. Different clustering methods are often used
in determining such hotspots considering the spatiotemporal distribution of taxi traffic
data [9–11]. However, all of these studies do not consider possible station placement within
the area and their possible advantages. By incorporating station placement, the operators
will be able to identify prominent PUDO spots and possibly decrease PUDO occurrences in
random places. In place of this, optimizing PUDO stations can potentially be deployed to
minimize random on-road PUDO events and decrease traffic congestion [12]. By analyzing
current PUDO demand as well as other defining factors such as minimum capacity and
walking distance, PUDO stations can be optimized and implemented strategically in
improving overall traffic condition in the system.

Therefore, the objective of this study is to identify potential PUDO stations based on
the spatial–temporal distribution of traffic patterns in Jakarta, Indonesia using the ride
hailing trajectories data provided by Grab-Posisi [13]. Grab-Posisi is Southeast Asia’s first
GPS trajectory dataset. The data were collected in April 2019 with a 1 s sampling rate that
consisted of ride hailing’s GPS trajectory data from both developed countries (Singapore)
and developing countries (Jakarta, Indonesia).

The PUDO location optimization algorithm was developed using a genetic algorithm
and the optimum walking distance and capacity were set as constraints. Analysis of
spatial–temporal distribution was carried out to observe the PUDO distribution within
the study area. Spatial filtering of the provided area was conducted based on the travel
demand distribution. Based on the spatio-temporal travel demand, three PUDO location
optimization algorithms were developed; morning peak, off-peak, and evening peak.
Spatial clustering was conducted for the initial pre-processing of each PUDO location
optimization and the resulting analysis was fed into the genetic algorithm where optimal
PUDO locations were then determined by incorporating certain placement requirements.
Thus, this paper contributes to the following areas:

• The proposed location placement using a genetic algorithm was able to find a promi-
nent location for pick-up/drop-offs for the convenience of both the ride-hailing com-
pany and potential riders.

• The proposed algorithm used a refined fitness function that consists of the combination
of applied constraints of distance and demand coverage by modifying the potential
interaction of the gravity model.

• The algorithm was able to adapt to find an appropriate placement based on observed
demand that assisted in determining the optimum pick-up and drop-off (PUDO)
zones to improve taxi and ride hailing operation management.

The remainder of this article is structured as follows. In Section 2, reviews of mul-
tiple studies are examined and described for the motivation of this study. In Section 3,
details of research methodology are presented. The results and conclusion are presented
in Sections 4 and 5, respectively.

2. Literature Review
2.1. PUDO Location

Several approaches that consider the different types of features and constraints to
improve ridesharing and ride-hailing operations have been introduced. These approaches
focused on improving the routing strategy given various routing, time, and capacity
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constraints [14,15] in order to optimize operational objectives and quality-related objec-
tives [16]. Operational objectives aim to optimize system-wide operating costs, including
minimizing vehicle kilometer travel and travel time, minimizing the fleet of the vehicle
while maximizing the number of services, and others. Quality-related objectives are about
enhancing the quality of provided services that include minimizing waiting time [16].

It is quite clear that the existing studies on ridesharing focused on the routing strategy,
with little attention paid to optimize the PUDO points that are responsive to the spatial
and temporal demand distribution [12]. The PUDO optimization is required to avoid
unnecessary detours, particularly when the trip is shared with other riders. While in the
traditional door-to-door scheme, the vehicle is often required to pick up the passengers at
certain locations for which the vehicle needs to pass through congested and narrow streets
that deviate it from the shortest and fastest paths [17]. It is quite often that the detours
to pick up other riders increase the travel time and cost. As such, there is a critical need
to optimize the PUDO location for which all possible pick-up or drop-off points within
a walkable walking distance were aggregated into one location. Hence, the riders are
required to walk a very short distance to reach the optimized PUDO location.

This optimization method considers both the rider and vehicle assignments that lead
to a complex mathematical task involving the NP-hard problem [18]. As such, although
numerous implementation strategies in determining pick-up and drop-off (PUDO) zones to
improve taxi, ridesharing and ride hailing operation management, PUDO station location
placement is not explored extensively [19]. Many studies tend to propose a pre-determined
set of “meeting points” to which all passengers have to walk [15,17,20–22]. This is because
optimizing placement constraints (i.e., minimum capacity, walking radius, the distance
towards adjacent facilities, etc.) stretches the complexity of the PUDO location optimiza-
tion [15,21]. Czioska, P. et al. [19] introduced a GIS-based method to identify potential
meeting points and proposed assessment criteria to rate the suggested meeting points. The
assessment was carried out by combining the rider’s stated preferences on meeting point
characteristics collected using an online questionnaire and evaluating available facilities
around the suggested meeting points, including parking places, seating, shelter, and light.
Zheng, Y. et al. [23] proposed a meeting point strategy that required riders to suggest their
pick up and dropped off (PUDO) points to improve flex-route transit service. These points
can be at their reserved PUDO stops or the meeting points. The benefit of introducing this
strategy was evaluated using a memetic algorithm. The results showed that the willing-
ness to walk to meeting points reduced the rejection rate and benefitted both riders and
operators. To protect the rider’s location privacy, Aïvodji, U.M. et al. [24] integrated the
privacy-preserving algorithm with a multimodal shortest path algorithm. The proposed
algorithm was able to produce solutions that mutually benefitted the drivers and riders and
able to protect the riders’ location information. Qian, X. et al. [12] designed an incentive
strategy for taxi group rides using a heuristic algorithm that solved a dynamic ride-matching
problem that significantly increases the total saved travel mileage considering the penalty
values for walking extra miles to the meeting points and waiting additional minutes.

Several studies introduced methods on identifying hotspots using a modified clus-
tering algorithm. Lee et al. [7] used k-mean clustering to identify pick-up hotspots in the
Jeju city area based on the spatiotemporal distribution of taxi mobility history. The author
clustered the taxi pick-up pattern based on spatial distribution, then a time-dependent
pick-up pattern was conducted to incorporate temporal distribution. The study then was
able to suggest a recommended pick-up area for different time periods. Zhang et al. [11]
used pre-processing hierarchical k-means clustering based on historical spatiotemporal
pick-up demand and categorized them into different time periods and areas. The results
were then ranked based on the pick-up demand within each cluster and recommended to
the taxi driver. The study provided high precision in taxi pick-up suggestions with low
computational time and recommended pick-up points within a couple of seconds due
to the advantage of data pre-processing. In the study, the authors only considered the
spatial and temporal distribution of PUDO hotspots and were not able to pinpoint the



Smart Cities 2021, 4 749

exact location for PUDO stations to be developed. One could argue that PUDO stations
could be developed inside the resulting hotspots. However, placement constraints needed
to be considered when constructing a new structure, such as a number of demand data
actually served within the radius of PUDO stations. Another study uses DBSCAN to
eliminate noises and categorize clusters of arbitrary shapes and analyze both pick-up and
drop-off demands [9]. The authors only consider the distance between demand points to
create the hotspots. It is found that the distribution between pick-up and drop-off demand
provides similar cluster center results, which proves the relationship between people’s
travel behavior and land use characteristics. The authors however, only considered the
distribution of PUDO within the study area over time period. They did not provide any
other constraints in the placement of PUDO spots.

2.2. Location Optimization Using Genetic Algorithm

Estimating the appropriate location through a series of constraints is inherently a facil-
ity location problem. The simple definition of a facility location problem is to find locations
for a new facility such that the transportation cost is minimized between the facility and cus-
tomers [25]. Other than transportation cost, the problem can grow in complexity considering
other factors such as distance between facilities, demands, capacitated or incapacitated, etc.
Due to the complexities of the problem, the heuristics method often used to provide a good
enough solution while considering various variables and constraints. One of the examples
of location optimization is the electric charging station placement. Mehar and Senouci [26]
pre-processed the traffic in the study area and computed hierarchical clustering to group
the electric car usage and subsequently calculate the energy demand. They considered area
traffic density, construction, transportation costs, and charging capacity in their algorithm.

In addition to that, location optimization is inherently an NP-hard problem, and as
such, a heuristics approach is preferable [27]. Heuristics or metaheuristic method provides
a reasonable solution within the search space through limited runtimes, such as simu-
lated annealing (SA), swarm optimization (SO), genetic algorithm, and others. A genetic
algorithm is a stochastic search process through combinatorial evolutionary-inspired tech-
niques that enables one to model appropriate constraints. Some studies have used the
genetic algorithm in defining location placement, and currently, with the rise of the electric
vehicles, the optimum placement of charging stations is being studied [26,28]. Mehar
and Senouci [26] proposed an optimized genetic algorithm by introducing a permutation
operator to prevent premature convergence. As a result, the algorithm was able to suggest
location placement efficiently in terms of time and optimality. Chen et al. [28] incorporated
density function to improve the genetic algorithm by considering cost, capacity and cover-
age. The resulting algorithm was able to provide an optimal number of stations needed
and their locations considering user’s demands and convenience. Both of these studies are
specifically designed for the location optimization of the electric vehicle charging station.
This study differs from those mentioned due to the presence of the pre-processing of data
through spatial–temporal filtering and clustering as well as the introduction of parameters
specific in determining the construction of PUDO stations; in this case, walking distance
and minimum demand data served within service radius. Furthermore, the potential
interaction gravity model is introduced as a novel approach in quantifying the relationship
between the PUDO station and demand points.

2.3. First-Mile and Last-Mile

Current public transportation issues such as first-mile/last-mile also provide mo-
tivation for the need in location placement of PUDO stations [29]. Multiple concepts
have been researched in addressing FMLM issues, including the use of personal rapid
transit (PRT) [30] and car-sharing programs [31]. Although there seem to be merits in
implementing those methods, due to the high investment cost for PRT [32] and other
limitations, there is still a need for a better alternative in solving this issue. Another study
proposed the use of bicycling to tackle FMLM issues and provides a method to assist
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the bike/pedestrian network planning for better transit point-to-point mobility [33]. This
method only works when the city infrastructure allows for flexibility in additional network
planning for bikes/pedestrians. Due to limitations found, studies on FMLM of public
transport are still occurring, and this study provides the potential application of PUDO
stations where they can provide seamless passenger transfers to public transport, hence
improving FMLM connectivity.

3. Research Methodology

This research aims to determine the optimal PUDO station’s location, considering distance
and capacity constraints, based on traffic demand’s spatial–temporal pattern. The optimization
of PUDO stations allows the minimization of customer’s walking distance and possibly
reducing the number of PUDO occurrences that may lead to longer travel time. By minimizing
walking distance, user convenience is achieved, and the optimum placement of a PUDO station
could reduce the number of random PUDOs that will lead to longer travel time.

A genetic algorithm was used to incorporate constraints to the placement problem,
allowing greater flexibility in modifying the model constraints and producing optimum
solutions by carrying out a global stochastic search process. This study incorporated a mod-
ified potential interaction gravity model to quantify the interaction between PUDO stations
and demand. Firstly, travel data were extracted and analyzed based on spatial and tem-
poral filtration using the combinatorial software application of RStudio and QGIS [34,35].
The data used in this study were provided by Grab and the travel data location provided
was in Jakarta, Indonesia. The resulting data created the PUDO trip data within the study
area as well as clustering centers for each different trip data. The clustering results were
imported to the genetic algorithm as initial input, and optimization was carried out by
incorporating walking distance requirements and minimum capacities through a potential
interaction gravity model between PUDO stations and assigned demands.

In this study, capacity refers to the demand data served by PUDO stations within
its restricted walking distance radius. Unlike traditional traffic demand data collection
that were collected by conducting an origin–destination traffic survey, travel demand data
analysis is conducted based on quantitative spatio-temporal ride hailing data provided
by Grab. This allows for greater precision of the origin–destination location and higher
accuracy of traffic demand analysis. Data extraction and analysis were conducted with
the use of statistical computing and graphics application, R software and QGIS, an open-
source geographic information system for analysis and viewing. Then, the PUDO locations’
algorithm was developed using a genetic algorithm coded in Python coding language.

3.1. Data Extraction

The ride hailing-based trips data generated from Grab were used in this study [13]. The
data consist of 2 weeks (08/04/2019–22/04/2019) of ride hailing-based trips data within
Greater Jakarta and the surrounding area. This corresponds to more than 50,000 trips
within a 650 km2 area. Private and personal information is omitted from the data to protect
ride hailing user consumer rights. Only necessary trip information was recorded into the
file such as trip ID, vehicle mode, trip device used, timestamp, latitude, longitude, speed,
bearing and accuracy. This information was recorded in the Parquet file and imported to
RStudio for analysis. The data consist of the point of trajectory of recorded trips. These
trips were separated based on ID, and PUDO details were obtained based on minimum
and maximum trajectory time recorded for each trip ID. Then, the data were further filtered
based on the determined trip period (weekdays or weekends and morning peak, off-peak
or evening peak). Finally, spatial filtration was performed in QGIS based on the study area.

Figure 1 shows the temporal trip distribution throughout the day. To protect the data
confidentiality, only the relative frequency of trip demand is presented in this paper. As
shown in Figure 1, the temporal trip demand is fairly distributed within the conventional
working time period. It is at its minimum between 12 A.M. and 6 P.M.; however, the trend
continues upward from then on until the peak at between 3 P.M. to 6 P.M.
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3.2. Chosen Study Area and Data

To account for the worst case scenario when trip demand is high, two highest trips
in weekdays and weekends were further used to evaluate the effect of temporal trip
distribution on optimum PUDO locations. In this case, the chosen data for weekdays
are 16/04/2019 and 18/04/2019. For simplification, these two chosen weekday data sets
are named data set 1 and data set 2, respectively, while the weekends are 13/04/2019
and 20/04/2019, which are named data set 3 and data set 4, respectively. The temporal
distribution can be seen in Figure 2.
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Figure 2. Relative frequency of pick-up trip distribution of data set 1, data set 2; pick-up data set 3
and data set 4.

The temporal distribution of the chosen dates are distinctively different from each
other. For the weekdays, it can be seen the pick-up distribution on data set 1 is similar
towards total hourly distribution shown in Figure 1, unlike the distribution shown on
data set 2. The cause for this distinction on data set 2 may be due to the presence of a
public holiday on 19-04-2019 (Good Friday). Since 19-04-2019 is a public holiday, some
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people might decide to take a leave day on Thursday 18-04-2019 so they may enjoy a
long weekend, causing low trip data recorded on the morning peak of 18-04-2019. High
trip data recorded on the evening peak of data set 2 may be due to a similar reason of a
public holiday resulting in people starting to go out for recreational activities. The pick-up
distribution on weekends (data set 3 and data set 4) differs very much from each other
as, similar to the explanation for the distinct temporal pick-up distribution on data set 2,
20-04-2019 is still part of the long weekend caused by the public holiday on 19-04-2019,
susceptibly making people travel more in the afternoon for leisure activities.

Due to the high irregularity of the temporal pick-up distribution, the study area chosen
for this study was located in the combined area of Central and South Jakarta with the
time period selected based on previously selected weekday and weekend dates. A further
breakdown of trip distribution was carried out based on the morning peak, off-peak and
evening peak. The morning peak hours were selected to be from 6 A.M. to 9 A.M. The
evening peak period was selected to be from 4 P.M. to 8 P.M., while the off-peak period
was from 11 A.M. to 2 P.M. (based on the lunch period).

3.3. Genetic Algorithm

The genetic algorithm is a metaheuristic search algorithm inspired by biological evo-
lution [36,37]. The algorithm candidates go through a series of evolutionary processes
(selection, crossover, mutation) to converge the algorithm in finding a near-optimum so-
lution. Another important aspect of the algorithm is the fitness value. Each candidate
solution has a specific determinant value that represents their overall strength in the evolu-
tionary algorithm. The identification of their overall strength in the population is based
on a specific set of requirements determined previously during problem identification.
Based on these parametric requirements, a suitable fitness function can be developed
that appropriately assesses the candidate’s capability to solve the problem into a single
quantitative value, named fitness value. Choosing and developing appropriate fitness
functions is critical, as a well-constructed fitness function may substantially increase the
chance of finding a solution and reaching higher coverage.

3.3.1. Chromosome Representation

In this work, stations were encoded as coordinates (latitude, longitude) and taken
as a gene within a chromosome. The length of a chromosome represented the maximum
number of PUDO stations to be generated for the given study area.

3.3.2. Initial Chromosome and Population

The initial chromosome was set to be the result of different clustering methods applied
to the study area. By applying this result, the algorithm was expected to converge faster to the
optimum solution while also comparing each initial configuration. The initial representation
of the trip demand can be visualized using the clustering technique; hence, spatial clustering
techniques via k-means and k-medoid were used to represent the initial chromosome. The
resulting clustering are shown in Figure 3 for the data set 3, while others are presented in
Appendix A. A random initial chromosome was also created for comparison purposes.
3.3.3. Fitness Function

The fitness function consists of the combination of applied constraints of distance
and coverage as well as a modified potential interaction gravity model. The potential
interaction gravity model is one of three basic spatial interaction models that measure
interaction between locations. In this particular model, the interaction of the proposed
station needed to be measured against overall demand points within the coverage of that
station. The accumulation of demand points assigned to the proposed station was the
final fitness value of that station. The algorithm’s objective was to locate the appropriate
installation of PUDO stations that maximized the demand points in the study area while
considering the walking distance limit and minimum demand point serve per station.
Based on those considerations, assumptions were created and listed as follows:
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1. A maximum walking distance of 500 m is established. The 500 m walking distance
was suggested a comfortable walking distance in ridesharing studies. If the distance
between the demand point and the nearest PUDO station is above the established
limit, the demand point will not be serviced.

2. Minimum demand points serviced by a PUDO station is 5 points in order for the
station to be constructed. The minimum of 5 demand point has been selected to
ensure that the proposed method can pool and serve the given number of passengers
while maintaining the minimum fleet size [38].

3. The distribution of a certain time period only allows a small number of stations to be devel-
oped. Taking into consideration the size of the study area as well as PUDO distributions,
the assumption of maximum 25 stations constructed is implemented in this study.

4. Not all demand points need to be serviced. The goal is to maximize the demand
points, while considering the above constraints.
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Figure 3. Clustering result for data set 3. (a) K-means cluster result during morning peak; (b) K-means cluster result during
off-peak; (c) K-means cluster result during evening peak; (d) K-medoid cluster result during morning peak; (e) K-medoid
cluster result during off-peak; (f) K-medoid cluster result during evening peak.

Therefore, the fitness function of a single station/gene can be determined using
Equation (1) subjected to predetermined constraints mentioned previously. Table 1 shows
the notations used in the mathematical formulation.

max f j =
i=m

∑
i=1

Wij

dβ
ij

, xj = 1 (1)
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Subject to

zij =

{
1 i f dij ≤ 500m
0 otherwise

, ∀i ∈ I, j ∈ J (2)

xj =

 1 i f
i=m
∑

i=1
zij ≥ 5

0 otherwise
(3)

Once the evaluation of each station was computed, the fitness function of one chromo-
some was simply then the summation of the fitness function of the individual station/gene.

Table 1. Description of notations.

Notation Description

I a set of PUDO demand points, {1, . . . , m}.

J a set of PUDO stations, {1, . . . , n}.

f j fitness function of station j.

Wij weight of demand point assigned demand point i to station j.

β
parameter of transport friction related to efficiency of transport between two locations.
Assumption is 0.2 to decrease the influence of walking distance towards fitness value.

dij distance of demand point i to the nearest station j, determined using haversine formula

xj binary variable for building station j.

zij binary variable of assigning demand point i. to station j.

3.3.4. Selection Procedure

After evaluating the fitness value, the chromosomes inside the population were sorted
in descending order according to the fitness value. The particular reason for this stage is to
partition them into subpopulations: elite chromosomes and non-elite. The elite chromo-
somes were retained for the next generation, and the remaining chromosomes needed for
the next generation were determined either through crossover or mutation procedure.

3.3.5. Crossover Procedure

A crossover operator was initiated between arbitrarily chosen elite and non-elite
chromosomes, as determined previously, to produce the subsequent generation offspring.
Figure 4 shows the elitist chromosome selection and the crossover procedure. Uniform
crossover was chosen for this study as it generally produces better recombination compared
to traditional one-point and two-point crossover [39]. When the crossover procedure
occurred, each gene was evaluated and had a 50% chance of having crossover until the
procedure reached the last gene and produced two offspring for the next generation.

3.3.6. Mutation Procedure

The mutation operator was initiated based on the probability of mutation rate. A high
mutation rate of 0.3 was chosen to encourage stochastic search in the study space while
preserving the algorithm’s ability to converge to the optimum result. The selection of a
chromosome was determined using tournament selection, where only the best chromosome
prevailed and was selected for mutation. The tournament participant pool size was selected
randomly based on the predetermined tournament size, which was 40% out of the current
generation population. Once the selection chromosome was determined, and mutation
occurred, each gene had a 50% chance of being mutated until the procedure reached the
last gene and produced one offspring for the next generation.

3.3.7. Termination Condition

The algorithm was run for a series number of generations to ensure convergence of
an optimum solution. The number of generations used in this study started from 0 (initial
population) to 100 with the increment of 5 generations.
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3.4. Scenario Development

The data collected from local TNCs were filtered based on the determined tempo-
ral distribution (weekdays/weekends and morning peak/off-peak/evening peak) using
RStudio. The resulting data were transferred to QGIS for spatial filtering based on Central
and South Jakarta’s spatial area. Then, the data were further analyzed by means of the
clustering method. K-means and k-medoid clustering was used for all scenarios, resulting
in 25 clusters for each scenario. These cluster centers were then fed to the genetic algo-
rithm as initial chromosome representation (initial PUDO stations) for further optimization
based on the potential interaction gravity model between stations and demand as well as
incorporating the distance requirement and minimum capacities.

4. Results

Figure 5 shows the stations generated for different dates and different time periods in
comparison with the total demand analyzed during those periods. A clear distinction can be
seen in all the graphs, in that when the demand is low, the algorithm generates fewer stations
to meet the demands effectively. Other factors may play into mainly how distributed the raw
PUDO demand is in the study space. For all different initializations (k-means, k-medoid, and
random), there seems to be not much difference in the number of generated stations as well.
More distinction between all initialization is shown in their resulted fitness value.

Smart Cities 2021, 4, FOR PEER REVIEW  12 
 

3.3.7. Termination Condition 
The algorithm was run for a series number of generations to ensure convergence of 

an optimum solution. The number of generations used in this study started from 0 (initial 
population) to 100 with the increment of 5 generations. 

3.4. Scenario Development 
The data collected from local TNCs were filtered based on the determined temporal 

distribution (weekdays/weekends and morning peak/off-peak/evening peak) using RStu-
dio. The resulting data were transferred to QGIS for spatial filtering based on Central and 
South Jakarta’s spatial area. Then, the data were further analyzed by means of the cluster-
ing method. K-means and k-medoid clustering was used for all scenarios, resulting in 25 
clusters for each scenario. These cluster centers were then fed to the genetic algorithm as 
initial chromosome representation (initial PUDO stations) for further optimization based 
on the potential interaction gravity model between stations and demand as well as incor-
porating the distance requirement and minimum capacities. 

4. Results 
Figure 7 shows the stations generated for different dates and different time periods 

in comparison with the total demand analyzed during those periods. A clear distinction 
can be seen in all the graphs, in that when the demand is low, the algorithm generates 
fewer stations to meet the demands effectively. Other factors may play into mainly how 
distributed the raw PUDO demand is in the study space. For all different initializations 
(k-means, k-medoid, and random), there seems to be not much difference in the number 
of generated stations as well. More distinction between all initialization is shown in their 
resulted fitness value. 

  
(a) (b) 

Figure 5. Cont.



Smart Cities 2021, 4 756Smart Cities 2021, 4, FOR PEER REVIEW  13 
 

  
(c) (d) 

Figure 7. Comparison between stations generated with demand number. (a) Data set 1; (b) data set 2; (c) data set 3; (d) 
data set 4. 

The number of PUDO stations generated for different initial chromosomes resulted 
into similar numbers. A randomized initial chromosome seems to be able to provide sim-
ilar results compared to a k-means or k-medoids initial chromosome. The algorithm was 
able to adapt well in determining the number of stations based on the prerequisite re-
quirement even though the initial chromosome was randomized thoroughly. 

Figures 8–11 show the result of the different initial population’s fitness value for dif-
ferent demand periods. All three initial populations converge rapidly as generation in-
creases, with k-medoid providing the best fitness for most of the period. This result is 
contributed from the nature of k-medoid, where it partitioned the data using the actual 
demand data and allows greater interpretability of the clusters’ centers compared to k-
means. Although it is worth noting that the difference in final fitness value for all cases, 
when compared only the initialization, does not differ too much. 

  
(a) (b) 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Fi
tn

es
s 

va
lu

e

Generations

kmeans_morning
kmedoid_morning
random_morning

0

10

20

30

40

50

60

0 20 40 60 80 100

Fi
tn

es
s 

va
lu

e

Generations

kmeans_offpeak
kmedoid_offpeak
random_offpeak

Figure 5. Comparison between stations generated with demand number. (a) Data set 1; (b) data set 2; (c) data set 3; (d) data
set 4.

The number of PUDO stations generated for different initial chromosomes resulted
into similar numbers. A randomized initial chromosome seems to be able to provide similar
results compared to a k-means or k-medoids initial chromosome. The algorithm was able
to adapt well in determining the number of stations based on the prerequisite requirement
even though the initial chromosome was randomized thoroughly.

Figures 6–9 show the result of the different initial population’s fitness value for
different demand periods. All three initial populations converge rapidly as generation
increases, with k-medoid providing the best fitness for most of the period. This result is
contributed from the nature of k-medoid, where it partitioned the data using the actual
demand data and allows greater interpretability of the clusters’ centers compared to k-
means. Although it is worth noting that the difference in final fitness value for all cases,
when compared only the initialization, does not differ too much.
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Figure 6. Fitness value—data set 1. (a) Morning peak period; (b) off-peak period; (c) evening period.
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Figure 7. Fitness value—data set 2. (a) Morning peak period; (b) off-peak period; (c) evening period
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Figure 10. Fitness value—data set 3. (a) Morning peak period; (b) off-peak period; (c) evening period. 
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Figure 8. Fitness value—data set 3. (a) Morning peak period; (b) off-peak period; (c) evening period.
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Figure 11. Fitness value—data set 4. (a) Morning peak period; (b) off-peak period; (c) evening period. 
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Figure 9. Fitness value—data set 4. (a) Morning peak period; (b) off-peak period; (c) evening period.

Randomized initial population performances are inconsistent throughout all case
studies. In some cases, it performs better than other initial populations (Figures 7a and 9a,b)
while in some cases, it provides the worst fitness value (Figures 7b and 8c). The stochastic
nature of the station search process may contribute to such results, along with its inability
to search all the required spaces in time. The mutation process can only occur within the
probability limit set at the beginning of the algorithm, and the limitation of the number of
generations also prevented the algorithm from converging to better solutions.

It is also worth noting that some cases provide relatively lower fitness values compared
to others; for example, Figures 8a and 9a. The particular reason for that occurrence is
connected to the total demand analyzed within that period. Lower demands were recorded
during that time period; hence, the algorithm was not able to search more PUDO stations
that could cater to the demand, which is reflected in Figure 5c,d during the morning peak
where a only few PUDO stations are generated.

A visualization of PUDO stations in the study area can be seen in Figure 10. Only
k-medoids are shown here since it generally provides consistent good results. Close
observation from all the figures shows that the distribution of those PUDO stations often
overlapped regardless of the time period. For example, the highlighted areas 1, 2 and 3 of
data set 1 and data set 3 suggest similar trends of PUDO points. Figure 10 also shows that
the PUDO points were consistently scarce at the bottom part of the area and clustered at
the upper part of the study area. This variation in the spatial distribution of PUDO points
is because the upper part of the study area is the central business district, while the bottom
part of the study is mainly residential areas. As such, as shown in data set 3 and data set 4,
more PUDOs were observed in the bottom part of the study area, which indicates that more
trips were made in the residential areas during the weekends, while during the weekdays,
PUDO points tend to be located at the upper part of the study area. This finding suggests
the similar demand hotspot on some areas throughout the time period. This similarity in
demand pattern can also be seen across the observed days.



Smart Cities 2021, 4 760Smart Cities 2021, 4, FOR PEER REVIEW  17 
 

  
(a) (b) 

  
(c) (d) 

Figure 12. PUDO stations distribution for different dates and time periods. (a) Data set 1; (b) data set 2. (c) Data set 3; (d) 
data set 4. 

5. Conclusions and Future Directions 
This paper addressed the use of spatial–temporal ride hailing trip data as a potential 

determination of PUDO stations within a study area. The distribution of traffic demand 
within the targeted study area can be carried out based on ride hailing data available from 
local TNCs. The advancement of mobility-on-demand has proven to be invaluable for 
traffic engineers in developing overall traffic distribution in the area. For further clarifica-
tion, the provided data were used in developing appropriate PUDO stations within cer-
tain constraints. A genetic algorithm was used in identifying the optimum locations and 
incorporating distance and minimum capacity constraints. Unlike the traditional fitness 

Figure 10. PUDO stations distribution for different dates and time periods. (a) Data set 1; (b) data set 2. (c) Data set 3;
(d) data set 4.

5. Conclusions and Future Directions

This paper addressed the use of spatial–temporal ride hailing trip data as a potential
determination of PUDO stations within a study area. The distribution of traffic demand
within the targeted study area can be carried out based on ride hailing data available
from local TNCs. The advancement of mobility-on-demand has proven to be invaluable
for traffic engineers in developing overall traffic distribution in the area. For further
clarification, the provided data were used in developing appropriate PUDO stations within
certain constraints. A genetic algorithm was used in identifying the optimum locations
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and incorporating distance and minimum capacity constraints. Unlike the traditional
fitness function that used basic functions such as the sum of a set of calculated parameters
related to the problem domain, in this study, a refined fitness function was developed. It
consists of the combination of the applied constraints of distance and demand coverage
by modifying potential interaction gravity model. This refined fitness function takes into
consideration the walkable walking distance and the minimum demand that can be served
by the suggested PUDO points. These constraints benefit both riders and ride-hailing
operators, particularly in maximizing the total saved travel time and travel cost.

The findings suggest that the algorithm was able to successfully adapt in finding the
appropriate number of stations according to the observed demand. The initial population
of the genetic algorithm in this location optimization only provides miniscule contribution
to the final fitness value. Subsequently, the location placement of those PUDO stations
often overlapped with each other throughout time period, suggesting that the demand
hotspots within the study area do not change significantly throughout the day. In addition
to that, the proposed algorithm was able to adapt to find appropriate placement based on
observed demand that assisted in determining optimum pick-up and drop-off (PUDO)
zones to improve taxi and ride hailing operation management.

Further implementation of such a system can be used for the deployment of au-
tonomous vehicle (AV) and shared autonomous vehicle (SAV) systems and their fleet
management [16]. Forthcoming mobility-on-demand may incorporate AVs as primary
vehicles and utilizing appropriately placed PUDO stations could improve their travel
performance while possibly relieving overall traffic issues. Additionally, examination on
the effect of such stations towards a possible SAV-PuT system, where a shared autonomous
vehicle (SAV) provides FMLM transport connectivity to public transport line (i.e., train,
mass rapid transit, and light train), can be carried out as well [40]. Additional recom-
mendations can be considered to further improve this study, that include considering a
wider range of constraints to add to the complexity and adaptability of the algorithm. In
this study, generated stations are restricted to 25 stations; however, it is possible for the
algorithm to create more stations to better serve the total demand. However, it is clear
that the selection of the number of stations used in the algorithm plays a critical role in
the location optimization algorithm; hence, the future studies can further investigate the
effect of increasing or decreasing the number of stations on clustering results and optimum
PUDO locations. Due to certain limitations, the current study uses a simplistic haversine
formula to determine the distance between demand data and nearest station. The next con-
sideration will be to take real walking distance into consideration with actual infrastructure
within the study area. This allows for better accuracy in calculation as well as improvement
in the algorithm process. Another limitation shows some of the resulted PUDO stations
located too close to each other and subsequently, their area of service overlapped too much
towards each other. We need to spread them out more while taking into consideration the
catering of more demand.

Author Contributions: Conceptualization, S.S.; methodology, S.S. and R.K.G.; software, R.K.G.;
validation, S.S., and R.K.G.; formal analysis, R.K.G.; investigation, S.S.; resources, S.S., and R.K.G.;
data curation, R.K.G.; writing—original draft preparation, R.K.G.; writing—review and editing, S.S.,
and R.K.G.; visualization, S.S., and R.K.G.; supervision, S.S.; project administration, S.S.; funding
acquisition, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FRGS/1/2019/TK01/MUSM/03/1, Ministry of Higher
Education Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Thank you to Grab, the ride-hailing company who was responsible for providing
detailed trip data for the research.

Conflicts of Interest: The authors declare no conflict of interest.



Smart Cities 2021, 4 762

Appendix A

Initial PUDO hotspots were analyzed using the clustering method in R Studio. The
clustering result of data set 3 is presented in the main report, while the clustering results of
other data sets for each three distinct time periods, evening peak, morning peak and the
off-peak period, are attached in the appendix. K-means and k-medoids clustering were
used in the clustering method.
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of other data sets for each three distinct time periods, evening peak, morning peak and 
the off-peak period, are attached in the appendix. K-means and k-medoids clustering were 
used in the clustering method. 
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