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Abstract: This paper presents an investigation of the capacity of machine learning methods (ML) to
localize leakage in water distribution systems (WDS). This issue is critical because water leakage
causes economic losses, damages to the surrounding infrastructures, and soil contamination. Progress
in real-time monitoring of WDS and ML has created new opportunities to develop data-based
methods for water leak localization. However, the managers of WDS need recommendations for the
selection of the appropriate ML methods as well their practical use for leakage localization. This
paper contributes to this issue through an investigation of the capacity of ML methods to localize
leakage in WDS. The campus of Lille University was used as support for this research. The paper
is presented as follows: First, flow and pressure data were determined using EPANET software;
then, the generated data were used to investigate the capacity of six ML methods to localize water
leakage. Finally, the results of the investigations were used for leakage localization from offline
water flow data. The results showed excellent performance for leakage localization by the artificial
neural network, logistic regression, and random forest, but there were low performances for the
unsupervised methods because of overlapping clusters.

Keywords: EPANET; flow; localization; machine learning; pressure; leak

1. Introduction

Water leakage constitutes an important issue in managing water distribution systems
because it causes economic losses, damages to the surrounding soil and infrastructures, and
soil contamination. According to the World Bank [1], the non-revenue water (NRW) level
in developing countries ranges from 40% to 50% of the water pumped into the distribution
systems. The American Water Works Association Research Foundation (AWWARF) esti-
mated that water utilities in the United States suffered from 250,000 to 300,000 main breaks
per year, causing approximately USD 3 billion in annual damages [2]. In [3], it was reported
that the water losses from leakage in some countries in the Middle East represented 50% of
the water supply. Reference [4] identified leakage as one the most common operational
problems in the water distribution system of Athens.

Relevant research has been conducted for the development of methods for water
leakage detection. These methods can be classified into hardware- and software-based
methods. The first category uses various technologies such as acoustic monitoring [5],
gas injection [6], thermography [7], ground-penetrating radar [8], and free-swimming
systems [9]. Acoustic monitoring includes technologies for listening sticks, leak noise
correlation, and leak noise loggers. These methods have high performances but suffer from
the high cost. The gas injection method injects a non-toxic, water-insoluble, and lighter-
than-air gas into water pipes. The leak can be detected by scanning the ground surface
using gas detectors. This method is characterized by speed tracing, but its high cost reduces
its practical use. The ground-penetrating radar method is based on tracking the reflection
of electromagnetic waves generated at the ground surface. It provides information about
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the presence of anomalies in the subsoil. Water leaks can be detected by identifying soil
voids created by water leaks or by detecting sections of pipes that appear deeper than they
actually are due to the increase in the dielectric properties of the surrounding saturated
soils. This method can be used for metallic or plastic pipes, but it is expensive and time-
consuming. The free-swimming systems methods are based on introducing the water pipes
of capsules with an embedded power source, electronic components, and instrumentation
(acoustic sensor, accelerometer, magnetometer, GPS synchronized ultrasonic transmitter,
and temperature sensor). These capsules record the internal environment of the pipes and
send the recorded data to a server. The analysis of registered data permits detection and
localize anomalies related to water leakage. This method is well adapted for pipes with
large diameters.

The second category of water leakage detection methods is based on analyzing data
related to the water operation system. It includes statistical methods [10,11], the water
balance method [12], the minimum night flow method [6], the real-time transient model-
ing [13], and the negative pressure wave [14]. Leak detection using statistical methods is
based on the determination of the statistical characteristics of the water flow and pressure
in the water network and the determination of the outliers, which could be related to
water leakage. The efficiency of these methods is related to the quality of the recorded
data and the regularity of the consumption patterns. The water balance method relies
on the principle of mass conservation. A leak is identified if the difference between the
amount of water put into the water network and the sum of water consumption and usage
exceeds an established tolerance. The efficiency of this method depends on the quality
of the monitoring system and the knowledge of the water usage in the water network.
The MNF method is based on water flow analysis when the water demand is low and
the water pressure is high. A leak alarm is generated when the MNF exceeds a threshold,
depending on the water network’s characteristics and usage. This method is widely used;
its efficiency depends on the quality of the water network monitoring and the regularity
of the water usage. The real-time transient modeling method is based on comparing the
hydraulic recorded data with the results of hydraulic models. The efficiency of this method
depends on the quality of recorded data and the quality of the hydraulic models and their
calibration. The harmful pressure wave method is based on tracking acoustic waves created
by the water pressure drop resulting from the water leak. Pressure sensors are installed
at the beginning and the end stations of the pipeline. The record of the generated waves
allows for the detection and localization of water leakage. This method is efficient but
suffers from high operating costs.

The large variety of developed methods highlights the great difficulty of detecting and
localizing water leakage in urban water distribution systems because of the complexity.

The recent progress in the real-time monitoring of the water distribution systems
has been offering new opportunities to develop data-based methods for water leakage
detection and localization. Machine learning-based methods have been widely used to
detect and localize water leakage in water distribution systems.

Caputo and Pelagagge [15] used artificial neural networks (ANNs) to detect and
localize the water leak in water distribution systems. Data were generated using a hydraulic
model of the water network for various operating conditions and cases with different
locations and amounts of the water leak. The method detected leaks correctly in small
water distribution systems. Salam et al. [16] used the radial basis function neural network
method for leak detection. The hydraulic software, EPANET, was used for data generation.
The pressure variations in the water network were used as input data for the ANN model,
while the leak intensity and locations constituted the output parameters. The authors
showed that the method could detect the magnitude and the location of leakage with a
98% accuracy. Mounce et al. [17] used the ANN method to identify anomalies in the water
distribution time series data in a pattern matching-based approach. This method was based
on the similarity research between new events and profiles established from past events.
This research allowed the classification of the new events and consequently to identify
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abnormal events, which could be related to leak. Recently, Rojek and Studzinski [18] used
the ANN method to detect and localize water leakage in the water distribution systems.
Tests on real off-line data showed that the ANN method correctly identified the localization
of simulated leaks.

Zhang et al. [19] used the multiclass support vector machine method (SVM) for
leakage detection in a large-scale water distribution network. First, the method K-means
clustering was used to subdivide the water network into leakage zones. Then, data with
leakage events were generated using the Monte Carlo method together with the hydraulic
model. The authors showed that the multiclass SVM could identify the leakage zone
using flow and pressure data. However, Chan et al. [20] reported that this method faced a
significant challenge concerning determining the number of clusters and the high impact
of the random determination of the first cluster on the clustering process.

Soldevila et al. [21] used the K-nearest neighbors to classify data generated by the
hydraulic model EPANET from the simulation of leakage events at the totality of the nodes
of the water distribution network. Data were then used to train the K-Nearest Neighbors
model to localize the leakage area. The good performance of this method in the localization
of one water leak was assessed on three examples.

Ciupke [22] used the regression tree method to detect water leakage. Alerts were
established when the water flow exceeded the normal water flow range. The method was
tested on real examples and gave very good results, even for detecting small leaks.

Van der Walt et al. [23] analyzed the capacity of Bayesian probabilistic analysis,
the support vector machine, and an artificial neural network to detect and localize water
leakage from pressure and flow data. These methods were compared to data generated from
numerical modeling and laboratory tests. Since analysis showed that the performances of
these methods depend on the complexity of the water network and the amount of available
data, the authors did not propose general recommendations for the use of the machine
learning methods for leak detection.

This literature review shows that intensive research has been conducted to use ma-
chine learning methods for leakage localization. However, the literature is still missing
a comparison of the different categories of machine learning methods to localize water
leakage in the same water distribution system. This paper proposes to fill this gap by
comparing the capacities of various categories of machine learning methods to localize
leakage in a complex water distribution system based on the water network of the scientific
campus of Lille University in France.

2. Materials and Methods
2.1. Research Methodology

This research aimed at investigating the capacity of machine learning methods to
localize the position of leakages in water distribution systems using flow and water pressure
data. Following the methodology proposed by different scholars [15,16,19,23], the hydraulic
software EPANET was used to create data related to different scenarios of leakage in the
water distribution system of the scientific campus. For each leakage scenario, EPANT
provided the water flow from the supply sections and the pressure in five hydraulic areas
of the campus. The generated data were then used for training and testing six machine
learning methods. The tests were first conducted with water flow and pressure data.

The performances of the machine learning methods were investigated using the pa-
rameters accuracy, precision, recall, and F1-score, which are determined from the confusion
matrix (Table 1):

Precision =
Truepositive

Truepositive + Falsepositive
(1)

Recall =
Truepositive

Truepositive + Falsenegative
(2)

F1 − score = 2 × Precision × Recall
Precision + Recall

(3)
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Accuracy =
Truepositive + Truenegative

Truepositive + Falsepositive + Truenegative + Falsenegative
(4)

Table 1. Confusion matrix.

Actual

Prediction

Positive Negative

Positive True Positive False Negative

Negative False Positive True Negative

The following sections present the generated data and the machine learning methods
used in this research.

2.2. Data Generation

Data were generated using the software EPANET, developed by the Water Supply
and Water Resources Division (Formerly the Drinking Water Research Division) of the US
Environmental Protection Agency.

The water distribution network of the scientific campus of Lille University was used
as support for this research. This campus represents a small town with approximately
150 buildings and 25,000 users including students, faculty members, and technical, and
administrative staff [24]. Figure 1 illustrates the water distribution network of the cam-
pus [25,26]. The water network is composed of 15 km of strongly meshed pipes. The water
company supplies the campus with water in three sections, located in the North, West, and
South of the campus (Figure 1).

Figure 1. The water distribution system of the scientific campus [25] (the red circles indicate the
water supply of the campus).

Figure 2 shows the EPANET hydraulic model of the campus. It includes 45 pipes
and 33 junctions. The water network was divided into five hydraulic zones as indicated
in Figure 2. Data were generated by modeling the water leakage according to 215 leak
scenarios (leak configuration), summarized in Table 2 and Figure 2. Zone 1 was the largest
and most complex zone. It included 62 leakage scenarios. Zones 4, 5, 2, and 3 had 47, 41,
35, and 41 leakage scenarios.
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Figure 2. EPANET model of the water network ono the scientific campus (45 pipes, 33 junctions). Ln
designates the position of leak n, Pzm designates the position of the pressure sensor number m. The
black squares indicate the supply section.

Table 2. Leakage scenarios were used for the generation of data (leak nodes are given in Figure 2).

Zone Position of Water Leak

1
(62 leak scenarios)

L1, L2, L4, L7, L8, L10, L13, L18, L20
L10 + L11; L10 + L12; L10 + L13; L10 + L18; L10 + L2; L10 + L20; L10 + L3; L10 + L4; L10 + L7; L10
+ L8; L11 + L12; L11 + L13; L11 + L18; L11 + L2; L11 + L20; L11 + L3: L11 + L4; L11 + L7; L11 + L8;
L12 + L13; L12 + L18; L12 + L2; L12 + L20; L12 + L4; L12 + L7; L12 + L8; L13 + L18; L13 + L2; L13 +
L20; L13 + L3; L13 + L4; L13 + L7; L13 + L8; L18 + L2; L18 + L20; L18 + L3; L18 + L4; L18 + L7; L18
+ L8; L2 + L20; L2 + L4; L2 + L7; L2+ L8; L1 + L10; L1 + L11; L1 + L12; L1 + L13; L1 + L18; L1 + L2;

L1 + L20; L1 + L3; L1 + L4; L1 + L7; L1 + L8

2
(35 leak scenarios)

L5, L6, L9, L22, L23, L24, L25, L30
L23 + L22; L24 + L22; L24 + L23; L25 + L22; L25 + L23; L25 + L24; L30 + L22; L30 + L23; L30 + L24;

L30 + L25; L5 + L22; L5 + L23; L5 + L24; L5 + L25; L5 + L30; L6 + L22; L6 + L24; L6 + L25; L6 +
L30; L6 + L5; L9 + L22; L9 + L23; L9 + L24; L9 + L25; L9 + L30; L9 + L5; L9 + L6:

3
(30 leak scenarios)

L41, L42, L43, L44, L46, L47, L48, L49, L50
L41 + L44; L41 + L46; L41 + L47; L41 + L48; L41 + L50; L42 + L44; L42 + L46; L42 + L47; L42 + L48;
L42 + L50; L43 + L44; L43 + L46; L43 + L47; L43 + L48; L43 + L50; L44 + L46; L44 + L47; L44 + L48;

L44 + L50; L46 + L47; L47 + L48; L47 + L50; L48 + L49; L50 + L49

4
(47 leak scenarios)

L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L45
L31 + L36; L31 + L37; L31 + L38; L31 + L39; L31 + L45; L32 + L36; L32 + L37; L32 + L38; L32 + L39;
L32 + L45; L33 + L36; L33 + L37; L33 + L38; L33 + L39; L33 + L45; L34 + L36; L34 + L37; L34 + L38;
L34 + L39; L34 + L45; L35 + L36; L35 + L37; L35 + L38; L35 + L39; L35 + L45; L36 + L37; L36 + L38;
L36 + L39L36 + L45;L37 + L38; L37 + L39; L37 + L45; L38 + L39; L38 + L45; L39 + L45; L40 + L45

5
(41 leak scenarios)

L14, L16, L17, L19, L21, L26, L27, L28, L29
L14 + L21; L14 + L26; L14 + L27; L14 + L28; L14 + L29; L15 + L21; L15 + L26; L15 + L27; L15 + L28;
L15 + L29; L16 + L21; L16 + L26; L16 + L27; L16 + L28; L16 + L29; L17 + L21; L17 + L26; L17 + L27;
L17 + L28; L17 + L29; L19 + L21; L19 + L26; L19 + L27; L19 + L28; L19 + L29; L21 + L26; L21 + L27;

L21 + L28; L21 + L29;L26 + L27; L26 + L28; L26 + L29; L27 + L28; L27 + L29; L28 + L29
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For each leak scenario, EPANET was used to determine the water flow from the three
supply sections (FL1, FL2, and FL3) and the pressure values at the five observation nodes
(Table 3, Figure 2).

Table 3. Pressure observation nodes (positions are given in Figure 2).

Zone 1 2 3 4 5

Pressure node PZ1 PZ2 PZ3 PZ4 PZ5

Each leak scenario was modeled under two conditions. The first condition concerned
a constant pressure at the water supply sections, which were considered tanks with a
constant water height (H = 40 m). The second condition concerned the water leak, which
was considered by the following condition between the pressure (P) and water:

Q = C × Pa (5)

The parameters C and a characterize the water leakage, which designate the emitter
coefficient and emitter exponent, respectively. Simulations were conducted with a = 0.5
and C = 1.

Table 4 provides a statistical analysis of the generated leak data. It shows that tank 1
provided the highest water supply rate (supply flow rate = 0.41), followed by tank 2 (flow
rate = 0.35). This means that the water supply of the campus was mainly provided from
the north and west of the campus, where the construction density was higher than that
in the south of the campus. The highest average pressure is observed in zone 3, located
in the South of the campus (average pressure approximately 35 m), followed by zones 5
and 4 (average pressure approximately 30 m). The average pressure in zones 1 and 2 was
approximately 28 m.

Table 4. Statistical descriptive parameters of the pressure and flow rate data.

Minimum Maximum Average Standard Deviation

FL1 (%) 0.13 0.71 0.4 0.15

FL2 (%) 0.23 0.62 0.35 0.82

FL3 (%) 0.60 0.59 0.23 0.11

PZ1 (m) 2.0 39.7 28.4 9.4

PZ2 (m) 1.4 39.4 27.4 9.3

PZ3 (m) 11.0 39.8 35.6 4.5

PZ4 (m) 1.8 39.2 29.2 10.2

PZ5 (m) 4.9 39.4 30.0 7.4

Figure 3 illustrates the impact of the leakage position on the flow rate ratios FL1, FL2,
and FL3. It shows that leakage in zones 1 and 2 caused a high flow rate from tank 1 (FL1),
a medium flow rate from tank 2 (FL2), and a low flow rate from tank 3 (FL3). Leakage in
zone 3 caused a high flow rate from tank 3 (FL3), medium flow from tank 2 (FL2), and low
flow from tank 1 (FL1). Leakage in zone 4 caused a high flow rate from tank 2 (FL2) and
low to medium flow from tank 3 (FL3). Finally, leakage in zone 5 caused a high flow rate
from tank 1 and tank 2 (FL1 and FL2) and flow from tank 3 (FL3). Table 5 summarizes the
impact of the leakage position on the water flow rate from the three supply sections. It can
be observed that a high flow rate from tank 2 (FL2) could be attributed to leakage in zone
4, and a high flow rate from tank 3 (FL3) could be attributed to leakage in zone 3. A high
flow rate from tank 1 (FL1) could be attributed to leakage in zone 1. The medium flow rate
from tanks 1 and 2 could be related to leakage in zones 2 and 5.
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Figure 3. Impact of the leak localization on the water supply flow rate.

Table 5. Impact of the leak position on the water supply rate.

Leak Zone FL1 FL2 FL3

1 Strong Medium Low

2 Medium Medium Low to medium

3 Low Medium Strong

4 Low Strong Low to medium

5 Medium Medium Low to medium

Figure 4 illustrates the impact of the leakage position on the pressures from PZ1 to PZ5.
It shows that leakage in each zone caused a significant drop in the pressure in the leakage
zone. It also shows a significant impact of some leakages in a zone on the pressure in other
zones, such as the impact of (i) leakage in zone 1 on the pressure in zone 2 (ii) leakage
in zone 2 on the pressure in zone 1, (iii) leakage in zone 3 on the pressure in zone 4, and
(iv) leakage in zone 5 on the pressure in zone 2.

Figure 4. Impact of the leak localization on the pressure values at the observation points.
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2.3. Use of Machine Learning Methods

Analyses were conducted with three supervised machine learning methods (logistic
regression, decision tree, and random forest), two unsupervised methods (hierarchical
classification and a combination of the principal component analysis (PCA) and the K-
means methods, and an artificial neural network (ANN). In addition, simulations were
conducted using the Kaggle platform (https://www.kaggle.com, accessed on 20 September
2021). The following sections briefly present the methods used in this research.

The logistic regression is used for binary classification [27]. The method used in this
work waws based on the functions:

h_(θ) (x) = g(θˆ(T)x) (6)

g(z) = 1/(1 − eˆ(−z) ) (7)

where x is the input data, and θ is the parameter determined by the minimization of the
cost function.

The decision tree method is based on applying a series of questions to determine the
model response [28,29]. This method classifies a population into branch-like segments that
construct a tree with a root node, internal nodes, and leaf nodes. The model generates a
flowchart (tree), where each internal node (represented by a question) tests some features
and guides down through the branches (the result of the splitting) with a “gini” coefficient,
which is defined as follows:

G =
c

∑
i=1

p(i)x(1 − p(i)) (8)

The parameter c designates the number of total classes; p(i) is the probability of picking
a data point with class i.

Random forest methods are used for both classification and regression by combining
randomized decision trees [30,31]. Each decision tree gives a vote for a target variable.
The random forest algorithm chooses the combination that obtains the highest vote. This
method has high predictive accuracy; it is efficient on large data sets and works well with
missing data. However, it suffers from interpretation difficulties and overfitting in the case
of noisy data.

The hierarchical classification method is used to build a hierarchy of clusters. The
results of clustering are usually presented in a dendrogram. Hierarchical classification
could be conducted using (i) a “bottom-up” approach, where each observation starts in its
cluster, and pairs of clusters are merged as one move up the hierarchy or (ii) a “top-down”
approach, where all observations start in one cluster; splits are performed when moving
down the hierarchy. The Ward method is used in this analysis [32]. The PCA method is
used to reduce the input data dimension by focusing on the principal components [33].

K-means clustering is a type of unsupervised learning. It aims at partitioning n
observations into k clusters [34]. Initially, K initial means are randomly generated. Then,
K clusters are created by associating each observation with the nearest centroid. Next,
the objective function, the sum of the distance, is optimized until the best cluster centers
candidates are found. Finally, data points are clustered based on feature similarity.

The ANN is inspired from the human brain functioning [35]. It transforms the input
data (input layer) through a series of neural layers (hidden layers) to output data (output
layer). The transformation is based on weights, which are adjusted by optimizing the
prediction of a training data set. The Sigmoid function is used in data transformation.

2.4. Input and Output Parameters

Machine learning methods were used with the following input and output parameters:
Input parameters: water flow at the three supply sections (FL1, FL2, FL3) and water

pressure values at five observation points (Pz1, Pz2, Pz3, Pz4, Pz5)
Output parameter: number of the campus zone (Z1, Z2, Z3, Z4, Z5).

https://www.kaggle.com
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3. Results
3.1. Supervised Methods

The training phase of the supervised methods was conducted with 80% of the data,
while 20% was used for the testing phase.

Table 6 summarizes the results obtained with the water supply flow data. It shows
that both the logistic regression and random forest methods gave excellent results with an
accuracy = 1.0, precision = 1.0, recall = 1.0, and F1-score = 1. The decision tree method gave
very good results with an accuracy = 0.95, precision = 0.96; recall = 0.95, and F1-score = 0.95.

Table 6. Classification report for the supervised methods—flow data.

Method Accuracy Precision Recall F1-Score

Logistic Regression 1.0 1.0 1.0 1.0

Decision Tree 0.95 0.96 0.95 0.95

Random Forest 1.0 1.0 1.0 1.0

Figure 5 shows the confusion matrix of the decision tree method. It indicates excellent
performances for zones 1, 2, and 5. For zone 3, the precision was equal to 0.78, and for zone
4, the recall was equal to 0.75.

Figure 5. Confusion matrix for the decision tree method—flow data.

Table 7 summarizes the results obtained with the pressure data. It can be observed that
both the logistic regression and the random forest methods gave excellent results with an
accuracy = 1.0, precision = 1.0, and a recall = 1.0. The decision tree method gave good results
with an accuracy = 0.88, precision = 0.91, recall = 0.94, and F1-score = 0.91. Figure 6 shows
the confusion matrix for the decision tree method. It indicates excellent performances for
all the zones, except for zone 1 (recall = 0.70) and the zone 2 (precision = 0.54). The bad
results for zones 1 and 2 could be related to the spatial proximity of these zones and their
hydraulic interaction (Figures 2 and 4).

Table 7. Classification report for the supervised methods—pressure data.

Method Accuracy Precision Recall F1-Score

Logistic Regression 1.0 1.0 1.0 1.0
Decision Tree 0.88 0.91 0.94 0.91

Random Forest 1.0 1.0 1.0 1.0
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Figure 6. Confusion matrix for the decision tree method—pressure data.

Pressure and flow data were used with only the decision tree method. The logistic
regression and the random forest methods gave excellent results with either the flow or
pressure data. Table 8 summarizes the classifications report for the decision tree. It shows
that this method gives excellent results with an accuracy of 0.98, precision of 0.97, recall
of 0.97, and F1-score of 0.96. It can be observed that the performance obtained with the
flow and pressure data was better than that obtained with the flow data (Table 6) and
pressure data (Table 7). Figure 7 shows the confusion matrix for the decision tree method.
It indicates excellent performances for all the zones, except for zone 2 (recall = 0.83) and
the zone 5 (precision = 0.83).

Table 8. Classification report for the decision tree method—flow and pressure data.

Method Accuracy Precision Recall F1-Score

Decision Tree 0.98 0.97 0.97 0.96

Figure 7. Confusion matrix for the decision tree method—flow and pressure data.
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3.2. Unsupervised Methods

Figure 8 shows the results obtained with the hierarchical classification method with
the pressure data. It shows the existence of three groups: the first group, G1, was composed
of the pressures in zones 3 and 4; the second group, G2, concerned the pressure in zone 1;
the third group, G3, included the pressures in zones 2 and 5.
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Figure 9 illustrates the classification with water flow rate and pressure data. It shows
the presence of fiive groups: G1 with the pressure in zone 4; G2 with the flow rate FL1 and
the pressure in zone 3, G3 with the pressures in zones 2 and 5; G4 with the flow rate FL2,
G5 with the flow rate FL3 and the pressure in zone 1.

Figure 9. Hierarchical classification method—results with the flow rate and pressure data.



Smart Cities 2021, 4 1304

Figure 10 illustrates the results obtained by applying the PCA and K-means methods
on the flow rate data for k = 5 clusters. The component PC1 shows three clusters and
two partially overlapping clusters. The component PC2 indicates two clusters and three
partially overlapping clusters. Thus, in the (PC1, PC2) plan, the five clusters could be
well distinguished.

Figure 10. PCA and K-means clustering—flow rate data.

Figure 11 illustrates the results obtained with the pressure data for k = 5 clusters. Both
PC1 and PC2 showed significant overlapping clusters. In the (PC1, PC2) plan, the five
clusters were not well distinguished.

Figure 11. PCA and K-means clustering-Pressure data.

Figure 12 illustrates the results obtained with flow rate and pressure data for k = 5
clusters. Both PC1 and PC2 showed clusters overlapping. In the (PC1, PC2) plan; only
three clusters could be well distinguished.
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Figure 12. PCA and K-means clustering—flow rate and pressure data.

3.3. Artificial Neural Network

Analyses were conducted with a multilayer backpropagation neural network model.
Figure 13 shows the results of the application of the ANN method with the water supply
data. It indicates a rapid convergence of the ANN model. Indeed, a good convergence was
observed with approximately 20 epochs. The ANN model gave excellent results with an
accuracy = 1.0, precision = 1.0, recall = 1.0, and F1-Score = 1.0 (Table 9).

Figure 13. Application of the ANN method with the water supply data.

Table 9. Results obtained with the ANN.

Data Accuracy Precision Recall F1-Score

Flow data 1.0 1.0 1.0 1.0
Pressure data 1.0 1.0 1.0 1.0

Flow and pressure data 1.0 1.0 1.0 1.0

Figure 14 illustrates the results obtained with the pressure data. The convergence of
the training phase was obtained with approximately 150 epochs, while the convergence
of the validation phase was achieved with around 50 epochs. The model gave excellent
results with an accuracy = 1.0, precision = 1.0, recall = 1.0, and F1-Score = 1.0 (Table 9).
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Figure 14. Application of the ANN method with pressure data.

Figure 15 illustrates the results obtained with flow and pressure data. It indicates a
convergence of the training stage with approximately 100 epochs and convergence of the
validation stage with approximately 50 epochs. The model gave excellent results with an
accuracy = 1.0, precision = 1.0, recall = 1.0, and F1-Score = 1.0 (Table 9).

Figure 15. Application of the ANN method with flow and pressure data.

3.4. Analysis of the Water Leak in the Scientific Campus of Lille University

This section presents an analysis of the leak in the scientific campus of Lille University.
The analysis was based on daily flow data collected in 2015 at the three supply sections:
FL1 in the North, FL2 in the west, and FL3 in the South. The year 2015 was selected
because of the availability of data for this year and the observation of several abnormal
events in the water consumption, related to water leakage. The water usage in the campus
concerns mainly domestic activities in the students’ residences, academic activity, and
buildings’ cleaning. Water is not used for irrigation. Since the water usage is related to
regular activities, the water consumption at the daily scale is expected to be regular.

The following sections present a successively analysis of the daily water consumption
and leakage detection and localization.
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3.5. Analysis of the Daily Water Consumption (Qd)

Figure 16 illustrates the variation of the daily water consumption of the campus
(Qd). It indicates missing data in the period from May 3 to May 27. This period is not
considered in the analysis. This figure shows a significant variation in Qd. The minimum
daily consumption was equal to 414 m3, while the maximum was equal to 1680 m3 and
the average consumption was equal to 890 m3. Low daily consumption values could
be attributed to the vacation periods, while the high daily consumption values could be
associated with water leakage.

Figure 16. Variation of the daily water consumption (Qd) of the Scientific Campus in 2015.

Figures 17 and 18 illustrate the repartition of the daily water supply among the
three supply sections. They show that the daily water supply from the North (F1D) was
higher than those from the west and south campus. It also had the most significant
variation (Table 10): the minimum daily supply was equal to 100 m3, while the maxi-
mum was equal to 772 m3 and the average was equal to 442 m3; compared with F2D
(Resp F3D): minimum = 197 m3 (Resp. 51 m3), maximum = 772 m3 (Resp. 454 m3) and
average = 251 m3 (Resp. 197 m3). Thus, the water supply F1D accounted for about 50%
of the total water supply, while F2 accounted for 28% and F3 for 22% of the campus
water supply.

Figure 17. Variations in the repartition of the daily water supply on the scientific campus in 2015.
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Figure 18. Scatter grams and strip plots of the repartition of the daily water supply on the scientific campus in 2015.

Table 10. Statistical descriptive analysis of the daily water supply of the campus.

F1D
m3/Day

F2D
m3/Day

F3D
m3/Day

Total (Qd)
m3/Day

Minimum 100 197 51 414

Maximum 772 462 454 1680

Average 442 251 197 890

Standard deviation 143 33 59 219

3.6. Leakage Analysis

The identification of leakage events was based on the observation of abnormal water
consumption. Figures 19 and 20 show the events with water consumption exceeding
1200 m3/h (average water consumption + 1.5 standard deviation). We observed the pres-
ence of five groups of events, which are summarized in Table 11. The first group (G1)
corresponds to day 76 with consumption exceeding by approximately 464 m3 of the water
consumption average (Qav), followed by day 86 (G2) which exceeded Qav by 326 m3. The
third group corresponds to days 260 and 261, with water consumption exceeding Qav by
390 and 467 m3. The fourth group is related to days 264–275, with water consumption
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exceeding Qav by values included in the interval 311–790 m3. The last leak (G5) occurred
on day 327, with consumption exceeding Qav by 318 m3.

Figure 19. Variation of the daily water consumption of the campus–Events with consumption exceeding 1200 m3 (average
water consumption + 1.5 standard deviation) could be related to leakage, (line in the red color).

Figure 20. Scatter grams and strip plots of the distribution of the daily water consumption of the campus; events with
consumption exceeding 1200 m3 (average water consumption + 1.5 standard deviation) could be related to leakage (line in
the red color).

Figure 21 and Table 12 show the repartition of the water supply ratios related to
leakage events. It shows that the ratio associated with FL1 was higher than those associated
with FL2 and FL3. FL1 accounted for 56% of the total water supply for groups G1, G2, and
G5, while FL2 and FL3 accounted for approximately 22% each. For groups G3 and G4, FL1
accounted for approximately 46% of the water supply, while FL2 and FL3 accounted for
approximately 27% each.
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Table 11. Leak events in the water distribution of the scientific campus.

Day Group Qd (m3/Day) Qd-Average (m3/Day)

76 G1 (76) 1354 464

86 G2 (86) 1216 326

260 G3 (260. 261) 1280 390

261 G3 (260. 261) 1357 467

264 G4 (264–2675) 1383 493

265 G4 (264–2675) 1463 573

266 G4 (264–2675) 1477 587

267 G4 (264–2675) 1404 514

268 G4 (264–2675) 1396 506

269 G4 (264–2675) 1217 327

270 G4 (264–2675) 1201 311

271 G4 (264–2675) 1435 545

272 G4 (264–2675) 1459 569

273 G4 (264–2675) 1455 565

274 G4 (264–2675) 1624 734

275 G4 (264–2675) 1680 790

327 G5 (327) 1208 318
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Table 12. Repartition of the water supply ratios related to leak events.

Day Groupe FL3 (%) FL2 (%) FL1 (%)

76 G1 (76) 20 23 57

86 G2 (86) 21 22 57

260 G3 (260, 261) 26 26 48

261 G3 (260, 261) 26 26 48

264 G4 (264–2675) 28 26 46

265 G4 (264–2675) 27 26 47

266 G4 (264–2675) 28 27 45

267 G4 (264–2675) 29 27 44

268 G4 (264–2675) 28 27 44

269 G4 (264–2675) 28 29 42

270 G4 (264–2675) 29 30 41

271 G4 (264–2675) 28 27 46

272 G4 (264–2675) 28 26 46

273 G4 (264–2675) 28 26 46

274 G4 (264–2675) 27 26 47

275 G4 (264–2675) 27 27 45

327 G5 (327) 22 23 55

3.7. Leakage Localization

For the localization of leakage events G1 to G5, the water supply ratios corresponding
to the leakage events are reported in Figure 22. The ratios of water flow for the events G1,
G2 and G5 are indicated by the water flow ratios (FL1, FL2, and FL3) for zone 1, while
those related to the events G3 and G4 are reported by the water flow ratios for zone 2.
Therefore, it could be observed that leakages G1, G2, and G5 well matched with the water
flow repartition for leakages in zone 1, while leakages G3 and G4 well matched with the
water flow repartition for leakages in zone 2. This observation indicates that leakages G1,
G2, and G5 could be attributed to zone 1, while leakages G3 and G4 could be attributed to
zone 2.
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Figure 22. Localization of the leakage events (G1 to G5) on the campus.

4. Discussion

This research concerned the detection and localization of leaks in urban water dis-
tribution networks. This issue is of significant concern in the management of the water
distribution systems, because leaks in the water distribution system cause substantial
economic, social, and environmental impacts and severe damages to the surrounding soils
and infrastructures.

Despite the important research on the development and use of hardware- and software-
based methods for the detection, localization, and localization of water leaks, professionals
still need efficient and cost-effective methods to detect water leaks in complex water
distribution systems.

The recent progress in smart monitoring and artificial intelligence provides significant
opportunities to develop data-based methods for leak detection and localization. The
literature review showed an important concern in the use of these methods. However,
on the one hand, the majority of the applications using artificial intelligent methods
remain at the research stage. On the other hand, the literature review revealed a lack of
comprehensive use of these methods. This research aimed to fill the gap in this area by
thoroughly investigating the machine learning methods to detect and localize leaks in the
water distribution system.

The water network of the scientific campus of Lille University was used as support
for this research. This use was motivated by the campus’ representativity of a small town,
the complexity of the water network and the availability of data about the water network
asset and water consumption. The water network is monitored by approximately 93
automated meter readings (AMRs) that record the water supply and consumption in the
main buildings at an hourly time interval.

The physical water network was completed by constructing a Lab pilot of this network
to investigate, under well-controlled conditions, the impact of the position of a leak on the
water flow rates. Results of experiments showed an evident influence of the leak position
leak on the water supply flow rates when the leak was in the proximity of the water supply.
However, the impact is unclear for other locations, which means that the leak position
could not be systematically determined from only the supply flow rates. In the future, it
could be interested to monitor the pilot with pressure cells to investigate the possibility
of improving the leak localization using the water supply flow rates and the pressure
variation in the water network.

A large data set was built regarding the impact of leaks on the water network of the
scientific campus on the variations in the water supply flow rates and the pressure in five
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campus zones. This data set was constructed using the hydraulic software EPANET. The
data set included the responses of the water network to 215 individual and double leaks.

The data set was used for training and testing the following six machine
learning methods:

• Three supervised methods: logistic regression, decision tree, and random forest;
• Two unsupervised methods: The hierarchical classification method and a combination

of the PCA and K-means classification method;
• The ANN

The results of the tests conducted on these methods showed:

• Excellent performance of the supervised methods in the localization of leaks in the
water network. Both the logistic regression and the random forest predicted the
position of the leak with an accuracy = 1.0. In contrast, the decision tree predicted
leaks with an accuracy = 0.98 with pressure and flow data;

• Excellent performances by the ANN for the localization of water leaks in the water
network (accuracy = 1.0);

• Some difficulties in exploiting the clustering capacity of the unsupervised methods in
the leak localization because of overlapping clusters.

The results of this research were used to investigate the position of water leaks in
the campus using water flow data rates recorded in 2015. Unfortunately, difficulties were
encountered in the determination of the position of leaks because of a lack of pressure data.
Therefore, in the future, we recommend extending the monitoring of the campus water
network by adding cell pressure on the campus and flow rates in critical sections of the
water network.

5. Conclusions

This paper presented an investigation of the use of machine learning methods to local
leakage in the water distribution network. Leakage localization was based on the creation
of hydraulic zones in the water distribution network. For each zone, sensors are used to
measure the water supply variations and the water pressure. Collected data were then
used for the construction of the machine learning models.

This methodology was used to investigate the capacity of six machine learning meth-
ods to localize leaks in the water distribution network of the scientific campus of Lille
University. Data were generated using EPANET software. The investigation showed (i) ex-
cellent performance from the supervised methods, in particular, the logistic regression and
random forest; (ii) excellent performances by the artificial neural network; (iii) difficulties in
the exploitation of the clustering capacity of the unsupervised methods in leak localization
because of clusters’ overlapping. Offline water supply flow data were then used for the
localization of water leakage in the scientific campus. The results gave some indications
about the localization of the water leakage.

This paper shows that the ANN and the supervised logistic regression and random
forest methods performed well in the localization of the water leakage in the water distri-
bution systems, mainly when using both water flow and pressure data. These results are
based on data generated using the software EPANET. Therefore, they should be confirmed
on data collected from complex water networks, including water supply flow and pressure
data in the subzones of the water network, and the localization of leakage events.
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