
smart cities

Communication

Evaluating the Dynamic Impact of Theater Performances and
Sports Events on Parking Demand in Downtown Pittsburgh

Katsunobu Sasanuma

����������
�������

Citation: Sasanuma, K. Evaluating

the Dynamic Impact of Theater

Performances and Sports Events on

Parking Demand in Downtown

Pittsburgh. Smart Cities 2021, 4,

1391–1402. https://doi.org/10.3390/

smartcities4040073

Academic Editors: Anna Visvizi,

Wadee Alhalabi, Shahira Assem

Abdel Razek, Paolo Gerli and

Orlando Troisi

Received: 26 August 2021

Accepted: 29 October 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Business, Stony Brook University, Stony Brook, NY 11794, USA; katsunobu.sasanuma@stonybrook.edu

Abstract: The number of drivers using parking facilities (parking demand) in downtown Pittsburgh is
highly variable throughout business operating hours, which makes an efficient operation of parking
facilities challenging and results in congestion around the facilities. In this study, we applied an
event-based ordinary least squares (OLS) regression model to the parking data set provided from
one of the parking facilities, the Theater Square Garage in downtown Pittsburgh. We demonstrated
that our model achieved a high R-squared value during time periods when parking demand is
highly variable. Using the model, we revealed the dynamic (time-dependent) impact of theater
performances and sports events on parking demand. This dynamic information can help facility
managers appropriately adjust their operating settings (e.g., the number of staff and fee structure)
during surge or vacant time periods accordingly. This model is applicable to various businesses in
downtown areas that have increased customer flow from theater performances and sports events,
not only parking garages.

Keywords: event-based regression model; ordinary least squares; parking demand

1. Introduction

Downtown Pittsburgh is culturally vibrant and offers a multitude of entertainment
at facilities and complexes such as theaters, a concert hall, a baseball field, an arena, and
a football stadium. As a result, many people visit downtown Pittsburgh by car and the
demand for parking is high on event days. This parking demand, the number of drivers
using parking facilities, heavily fluctuates every day, making an efficient operation of
facilities difficult. Knowing the factors that impact their facilities can help managers adjust
the number of facility operators and parking fee structures, so that they can utilize their
facilities efficiently while reducing the adverse effects of parking-induced traffic congestion
in the downtown area. However, it is not easy to estimate the impact of each single event,
because the impact of an event is dynamically changing throughout business operating
hours and the combination of events is different every day. Consequently, facility managers
often rely on intuitions to cope with heavily fluctuating parking demand.

We took a data analytics’ approach to evaluate parking demand. Specifically, we
utilized an event-based ordinary least squares (OLS) regression model to analyze the
parking data set provided from one of the parking facilities, the Theater Square Garage in
downtown Pittsburgh. The scope of this study was to obtain the dynamic (time-dependent)
impact of each event on the number of vacancies (available parking spaces), which reflect
parking demand, and to explain the procedure that is easy to implement by practitioners.
During times of the day when parking demand highly fluctuates, our event-based model
explained the number of available spaces with a high coefficient of determination, greater
than 80%.

Related Literature

Many people visit downtown areas using vehicles as a means of transportation. These
visitors (drivers) are affected by how efficient parking facilities (both on-street parking
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and parking garages) are operated. An effective management of parking facilities can
boost the economy of businesses in downtown areas, while poor management will not
only impose a high travel cost for drivers, but also negatively impact businesses located in
downtown areas. In fact, many vehicles cruise for parking spaces, creating congestion as
well as hurting the sales of businesses. In [1], it was estimated that between 8 and 74% of
the traffic were cruising for parking spaces in congested downtown areas. In [2], it was
observed in downtown Boston that about 10–20% of vehicles were cruising for parking
spaces; [3] accurately explained this parking behavior using a parking queue model.

To manage the flow of drivers effectively and utilize the limited parking capacity in
downtown San Francisco as much as possible, a smart parking initiative called SFpark
started in 2011. Using sensors embedded in roads, the city monitored the number of
available parking spaces and controlled parking price dynamically following the idea
of dynamic pricing [4]. Under this initiative, they successfully reduced the congestion
in downtown San Francisco. According to [5], SFpark generated an economic benefit of
about $36 million over the duration of the program from 2011 to 2013. Other advanced
parking management systems also utilize information technologies; for a review of these
systems, please see [6–8]. One example of the application of such technologies is [9],
where a wireless sensor network was established to implement a smart parking (SPARK)
system. Another example of technology-enabled smart parking systems is [10], where
available parking spaces were detected by magnetic sensors; the data from these sensors
were communicated to the server and then toward social networks such as Twitter and
Facebook. As an example of scalable and low-cost car parking frameworks, [11] proposed
an integration of networked sensors and radio frequency identification (RFID) technologies
to monitor the number of available spaces, which was then informed to drivers via the
internet. One final example is a smart parking system in Pittsburgh, ParkPGH, which
provides real-time garage parking occupancy information via mobile apps, text messages,
and the internet [12]. The parking garage occupancy data at the Theater Square Garage in
the Cultural District [13] were utilized for the ParkPGH initiative [14]; we used their data
set in this study.

These advanced parking management systems enable an efficient operation of parking
facilities using a variety of technology. However, investments in infrastructure of infor-
mation systems are often difficult to fund for smaller businesses. Furthermore, although
facility managers can improve the operation of systems by adopting advanced information
technologies, these approaches may not resolve the fundamental issue they face: variability
in demand. It is important for managers to understand the source of the variability, as
knowing the source can then help them make a change in facility planning, e.g., a change
of fee structures for different categories of drivers using their facilities. In this paper, we
focus on this fundamental problem—high variability of parking demand—and explain the
variability of parking demand by events held in downtown Pittsburgh. Our analysis did
not require any sensors or hardware devices. To perform the analysis, we only required
the following information: the past demand data (i.e., the number of drivers using the
Theater Square Garage in the past), historical events’ data, and weather information. This
analysis is easy to conduct for practitioners who want to take advantage of various types
of information available on the internet. Following our analysis, practitioners can obtain a
time-dependent impact of various events, which can be used to create an efficient capacity
plan for their facilities.

2. Data and Method
2.1. Data Description

The parking data set was provided from ALCO Parking Theater Square Garage in
downtown Pittsburgh [13]. The same data set was used to develop a smart-parking
application called ParkPGH [12,14]. In this study, we evaluated the time-dependent impact
of various events on the Theater Square Garage. This parking facility has a capacity of
785 spots for vehicles with pricing set as $6, $12, and $240 for an hourly fee (of up to 2 h),
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an entire-day parking fee, and monthly lease, respectively, as of the period of the parking
data set [15]. The facility is open to public 24 h a day and 7 days a week. It is located in the
Cultural District of downtown Pittsburgh and is surrounded by a number of other parking
garages and theaters. Figure 1 shows the location of the Theater Square Garage (pinned in
the map). Figure 1 also shows the surrounding parking garages (indicated as P in the map)
as well as various major event venues such as a concert hall, theaters, a baseball field, a
football field, and an arena (starred in the map). Table 1 presents the detailed information
of these major event venues.
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Figure 1. Locations of parking garages and major event venues in downtown Pittsburgh. Notes: Theater Square Garage
is pinned in the middle of the map. Other garages are indicated as P. Major event venues are indicated as stars.
1 mile = 5280 feet = 1609 m. Map data ©2021 Google.

Table 1. Capacity and distance information of major event venues.

Event Venue Capacity 1 Distance to Theater Square
Garage (Walking Time 2)

Benedum Center 2800 seats Less than 0.1 mile (1 min)
Byham Theater 1300 seats 0.1 mile (2 min)

O’Reilly Theater 650 seats Less than 0.1 mile (1 min)
Heinz Hall 2670 seats Less than 0.1 mile (1 min)
PNC Park 38,000 seats 0.6 mile (12 min)

Heinz Field 68,400 seats 1.1 miles (22 min)
Mellon Arena (Civic Arena) 3 16,940 seats 0.7 mile (17 min)

1 Capacity data are approximate; standing room is not included. 2 Walking time data, which we obtained from
Google Map, are estimates. 3 Mellon Arena (also known as Civic Arena) was demolished in 2011–2012.

The data set contains the information of the number of available parking spaces
collected with a 10-min interval for 24 h (the total number of data per day was 144) from
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9 November 2008 to 10 July 2010 excluding 24 September 2009 and 25 September 2009 due
to the G-20 summit in Pittsburgh (the total number of days is 607). Figure 2a shows the
average number of available parking spaces (i.e., the number of vacancies out of the total
capacity of 785 parking spots) for weekdays and weekends/holidays. Figure 2b shows
their corresponding variances (note: Figure 2 was originally presented in [14]). Note that
the total number of vacancies did not reach 785 because a portion of vehicles on a monthly
lease may park overnight.
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According to Figure 2a, the average number of vacancies (available parking spaces) is
very low (around 90 vacancies; about 11% of the total capacity 785) between 10 a.m. and
3 p.m. on weekdays. This is due to the large number of monthly lease holders using the
parking facility on weekdays. However, the small number of available spaces before 3 p.m.
on weekdays does not create an issue for the parking facility since the demand for parking
is relatively stable. Specifically, Figure 2b indicates that the variability of (the number of)
vacancies is low until around 6 p.m. on weekdays: The variance of vacancies is less than
around 6,000 or, equivalently, the standard deviation of vacancies is less than around 80
(about 10% of the total capacity). Managers can operate the facility effectively until around
6 p.m. on weekdays because of the low variability of vacancies.

In comparison, the number of vacancies is relatively abundant (around 300 vacancies;
about 40% of the total capacity) at around 3 p.m. on weekends/holidays and at around
9 p.m. on weekdays and weekends/holidays. However, during these times, the variability
of vacancies is high as well: The variance is around 35,000–45,000 or, equivalently, the
standard deviation is around 190–210 (about 24–27% of the total capacity). Due to the high
variability of vacancies, managers experience difficulties operating their facility efficiently;
the facility often becomes fully occupied and the roads around the facility get extremely
congested due to the large number of overflowing vehicles cruising for parking spaces. This
situation is undesirable not only for the facility, but also for the surrounding businesses.

The event data set is available online from Pittsburgh Cultural Trust [16]. We cleaned
the data set by selecting major events operated in Benedum Center, Byham Theater, O’Reilly
Theater, and Heinz Hall. We added the information of sports games such as Pirates baseball
games (at PNC Park), Steelers football games (at Heinz Field), University of Pittsburgh
football games (at Heinz Field), and Penguins ice hockey games (at Mellon/Civic Arena)
(see Figure 1 and Table 1 for their locations and detailed information). The event data set
excluded the events held at Convention Center since it has its own on-site parking garage
and there are many parking spots nearby.
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We split all events into three categories: (1) morning event (–12:00 p.m.), (2) day event
(12:10 p.m.–4 p.m.), and (3) night event (4:10 p.m.–). This is because the major events we
used in this study had at most one event in each time category (i.e., morning, day, or night)
and their event starting times were fixed. Some of the events did not have morning events
(e.g., Pirates, Steelers, and Penguins did not have games before noon.) The weather data
set included the information about rain precipitation and amount of snowfall, which are
measured in inch. The historical weather information and its data set are freely available
online [17].

2.2. Event-Based Regression Model

The parking data showed that the number of vacancies was highly variable at night
on weekdays and in the afternoon on weekends/holidays. One of the reasons for this high
variation of the number of vacancies was various events held in downtown Pittsburgh.
Thus, we analyzed the parking data set using an event-based regression model following a
standard multiple ordinary least squares (OLS) regression analysis (see [18]). Our goal was
to explain the number of vacancies by events.

Let Y(t) represent the number of vacancies at time t. (Note that we had 144 time data
per day and 607 day data in the data set; thus, Y(t) is a column vector in a 607-dimensional
space for a given t.) Consider an OLS regression model:

Y(t) = Xβ(t) + e(t), (1)

where X is a set of dummy variables (theater performances, sports events, and the Pitts-
burgh weather data), β(t) is the coefficients of predictors (an average impact on the number
of vacancies by the corresponding event) at time t, and e(t) is the error term.

Dummy variables in X include four major theater events (Benedum event, Byham
event, O’Reilly event, Heinz Hall event), four major sports events (Pirates’ game, Steelers’
game, University of Pittsburgh’s game, Penguins’ game), interaction terms among major
events, weather conditions (rainfall and snowfall measured in inches), and day of the
week/holiday. For this study, we collected data from [16,17] corresponding to the period
from 9 November 2008 to 10 July 2010 and constructed the matrix X representing dummy
variables. We regarded events in different time (morning, day, and night) categories as
separate events, and represented them using different dummy variables. (For example,
we represented the Heinz Hall daytime event and the Heinz Hall nighttime event using
different dummies.) We confirmed that the starting times of each event in the same time
category were identical or very close to each other (if not identical). We also confirmed that
dummies representing performance and sports events were categorical: Each event did not
occur more than once in each time category. (For example, no two Heinz Hall events were
held during the daytime on the same day.) Thus, we used a single dummy to represent
each event (for example, Heinz Hall event) in the same time category.

In this analysis, we first obtained the historical average impact β(t) of each event in
X on Y(t) following a standard OLS regression. To conduct a regression analysis on the
parking data set, we defined SSE(β(t)), the sum of the squares of the differences between
the observed and estimated values of Y(t) as a function of β(t). The indicator SSE(β(t))
represents the level of estimation errors. Let (·)′ represent a transpose of the vector or
matrix. Then

SSE(β(t)) = (Y(t)− Xβ(t))′(Y(t)− Xβ(t)). (2)

The indicator SSE(β(t)) is minimized when β(t) = β̂(t) = (X′X)−1X′Y(t). Here, β̂(t)
is the OLS estimator of β(t). Using this β̂(t), we obtain an estimate of Y(t) and the minimum
SSE(t) as Ŷ(t) = X β̂(t) and SSE(t) =

(
Y(t)− Ŷ(t)

)′(Y(t)− Ŷ(t)
)
, respectively.
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The goodness of fit of our event-based regression model is evaluated by the coefficient
of determination R2(t) at time t, which is defined as

R2(t) =
SYY(t)− SSE(t)

SYY(t)
, (3)

where SYY(t) is the total variation among Y(t) at time t.

3. Results

3.1. Oridinary Least Squares’ Coefficients β̂(t)
Each element of coefficients β̂(t) corresponding to each predictor (dummy variable)

in X can be interpreted as an impact of each event on the total number of available parking
spaces. For example, if an element of β̂ is −100 at 8 p.m., it means that the corresponding
event reduced the total number of vacancies (available parking spaces) on average by
100. Each 100 corresponds to approximately 13% of the total capacity. We obtained the
OLS coefficients β̂(t) for t over 24 h on weekdays and on weekends/holidays, which are
presented in Figures 3–5.
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Figure 3a, Figure 4a, and Figure 5a show that the impacts of daytime events were
more or less negligible on weekdays, while the impacts of daytime events were larger in
magnitude at around 3 p.m. on weekends/holidays. Figure 3b, Figure 4b, and Figure 5b
show the impacts of nighttime events, which were larger in magnitude at around 9 p.m. on
both weekdays and weekends/holidays. It is interesting to observe that the magnitude
of the peak impact was more or less consistent: For example, Figure 5a shows that the
peak impact of Benedum daytime event on weekends was around −250 at 3 p.m., which is
similar to the peak impact of Benedum night events on weekends/weekdays at around
9 p.m. This peak impact of Benedum event—a reduction of 250 available spaces (about 32%
of the total capacity 785)—is relatively large since the average number of remaining spaces
was around 300 (about 38% of the total capacity) during these peak times (see Figure 2a).

We observed that the impacts of events were not only determined by the capacities of
event venues, but also strongly affected by their distances to the Theater Square Garage.
For example, the capacity of Heinz Field is approximately 24 times bigger than the capacity
of Benedum Center (see Table 1). However, the impact of Heinz Field is less than twice
of the impact of Benedum Center because Benedum Center is much closer to the Theater
Square Garage than is Heinz Field. Another reason is the limited capacity of the facility.
It is thus noted that the impacts of events we observed in this study were facility-specific
and were likely to be different for other parking facilities in the downtown area due to
the strong dependence on distances as well as the capacity of the facility. However, the
fact that the result was facility-specific does not mean that the method is specific to the
facility; we can apply the same method to any businesses that attract customers visiting any
downtown area for theater performances and sports events. For example, if a restaurant is
located near the Theater Square Garage, it can utilize the same event dummies X we used
in this study. By replacing our parking data Y(t) (the number of vacancies on each day and
time) with their demand data (the number of customers in their restaurant on each day
and time), they can evaluate their restaurant-specific, time-dependent impact of each event
on their business using the same OLS regression model and conduct the same analysis
specified in Equations (1)–(3).

OLS coefficients β̂(t) also tell us how people change their behavior when it rains or
snows. Figure 6 shows the impacts of rain and snow on the number of available parking
spaces. We can clearly see that rain suppressed parking demand (because the number
of vacancies increased) on weekends, while rain had a very small impact on parking
demand on weekdays. We also observed that snow did not affect parking demand on both
weekdays and weekends.
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3.2. Interaction Terms

Two or more major events sometimes occur at the same time. Without considering
interaction terms that account for joint occurrences, an estimated impact of each major
event (coefficients of predictors) could be underestimated. This is because the parking
facility has a finite capacity and their operators turn down drivers when the facility is full.
Thus, we included in our event-based regression model dummy variables representing
interaction terms between major events in the same time slot. Note that these interaction
terms had negligible impacts for minor events. However, major events such as Steelers’
football games made a significant impact on the parking availability. Thus, the inclusion of
the interaction terms among similar major events was indispensable.

Figure 7 shows the impacts of interaction terms that involve Steelers’ night games.
These impacts changed their magnitude throughout the entire day. However, at around
9 p.m., all three interaction terms became consistently high: All of them positively affected
the parking capacity by around 200. This number (around 200) corresponded to the number
of drivers who were not able to use the facility when a major event was held at the same
time as the Steelers’ game. The interaction terms revealed the missed opportunity (lost
sales) to earn parking fees from customers due to the limitation of the parking capacity.
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We next observed the effects of interaction terms on the impacts of Steelers event.
Figure 8 compares the impacts of Steelers’ game events without/with interaction terms.
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Figure 8. (a) Impact of Steelers’ nighttime game with no interaction terms; (b) impact of Steelers’ nighttime game with
interaction terms.

Figure 8a shows the impact of Steelers’ football games on the availability of parking
spaces with no interaction terms, while Figure 8b shows the one with interaction terms
among major events. Without interaction terms (Figure 8a), the impact of Steelers’ nighttime
games on weekends was smaller (in magnitude) than the impact on weekdays. The impact
on weekends was underestimated heavily because Figure 8a was obtained without dummy
variables representing joint events on weekends. With interaction terms (Figure 8b), the
impacts of Steelers’ games on weekdays and weekends became similar to each other.

3.3. Coefficient of Determination R2

The analysis so far suggests that our event-based regression model (which included
interaction terms) explained well on weekday nights and weekend days and nights. The
coefficient of determination (R2) graph shown in Figure 9 backs up this conclusion.
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Figure 9 shows high R2(> 0.8) at around 3 p.m. on weekends/holidays and at around
9 p.m. on both weekdays and weekends/holidays. According to [19], R2 values of 0.67,
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0.33, and 0.19 are considered as substantial, moderate, and weak, respectively. Following
this criterion, we concluded that our model maintained at least a moderate level (i.e.,
R2 & 0.33) throughout the entire day and achieved R2 beyond the substantial level during
the two peak hours at around 3 p.m. and 9 p.m. These two peaks with high R2 values
matched with the two peaks of high variances of the number of vacancies in Figure 2b.
This observation implied that our event-based regression model effectively explained the
number of available parking spaces when parking spots were in high demand.

It is worth noting that high R2 values observed in Figure 9 can be attributed to the
selection of our dummy variables X, which represented major events such as performances
at theaters and professional sports games at ballpark/field/arena. These major events
were mostly (if not all) held at nighttime on weekdays and at day/nighttime on week-
ends. We chose dummies representing major events because our main objective was to
explain the high variability of vacancies observed in Figure 2b, as the high variability of
vacancies created issues for the facility. However, during other time slots (that showed
lower variability of vacancies), our dummies were not suitable and led to lower values
of R2(≈ 0.35). Using our OLS model may not be justified in such a case. For example,
it would be perfectly reasonable to use the historical average for predicting the number
of vacancies prior to 7 a.m. on any day. From a practical standpoint, facility managers
may care less about the time periods when R2 is low because they correspond to the time
periods of low demand variability. Nevertheless, the applicability of our OLS model may
need to be checked carefully if facility managers decide to utilize our OLS model in practice
for the time period when R2 is low.

4. Conclusions and Future Research

This study examined the applicability of an event-based OLS regression model to the
parking data set at the Theater Square Garage in downtown Pittsburgh. Using weather
data and various event information, such as theater performances and sports games in
downtown Pittsburgh, our model explained the number of parking vacancies with high
R2(> 0.8) when the variability of parking vacancies was high. The model can be applied
to various businesses such as restaurants in downtown areas, whose visitors are mostly
event-related and are likely to be affected by weather. Our model provides practitioners
an easy-to-implement tool to gain a deeper understanding of the dynamic movement of
people in the downtown area.

Our study will have implications for practice. Since the event schedule may be
announced a few weeks in advance, facility managers can evaluate the level of customer
demand for each day of the following week based on our OLS model and prepare for the
heavy/light customer demand beforehand. Knowing the parking demand in advance,
they can set a higher parking fee (which is often called “special event parking rate”) for the
days and time periods when a higher demand is expected. This pricing strategy not only
increases the revenue of the facility, but also reduces the traffic congestion of surrounding
roads by discouraging customers who cruise for parking spaces when all are occupied.
Facility managers can post an announcement on a high occupancy period on their website
each day. Then, customers could directly visit another parking garage or use a different
transportation means (e.g., bus and train), knowing that the facility would be full by the
time of their arrival. As another example, restaurant and convenience store managers
can evaluate the demand for their peak hours ahead of time and plan to allocate the right
number of staff members on each day and time. Furthermore, knowing the demand in
advance, they can hold just the right amount of meat and fresh produce, so that they can
reduce food wastage.

One of the main advantages of our OLS approach is the applicability of our method.
For any businesses whose customers are visitors to the Cultural District of downtown
Pittsburgh for viewing theater performances and sports events, the facility managers can
utilize the same dummies X that we created. They only need to set up a new matrix Y(t)
representing their customer demand during the time periods used for X. Following the
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OLS analysis described in Section 2.2, it is straightforward to obtain the impact of each
event (OLS coefficients β̂(t)), which they can utilize to make their operation more effective
than relying on their intuitions. We believe that we can contribute to building smart cities
by making a set of major event dummies (for each area and for a given period) publicly
available, so that any businesses in the area can make use of such event information,
evaluate the possible customer demand for the next day and time, and effectively cope
with heavily fluctuating customer demand, which is significantly affected by major events
whose combination changes every day and night.

Finally, despite the above-mentioned benefits of our OLS approach, the present study
also revealed the limitation of our OLS model. Specifically, we observed lower values
of R2(≈ 0.35) before 6 p.m. on weekdays. To improve R2 during the time slots when it
is low, we need to include many dummy variables related to minor events held during
daytime on weekdays and expand the size of the matrix X correspondingly. This is possible
since we can obtain various major and minor events’ information from publicly available
resources [16]. However, an introduction of many dummies could raise the risk of data
overfitting and must be done carefully. Alternatively, we can consider utilizing a historical
time-dependent average to represent the number of vacancies when R2 is low (before 6 p.m.
on weekdays). The challenge in this approach would be to establish a scheme to choose
an appropriate method, either our OLS model or a simple time-dependent average, when
R2 is varying from small to high throughout the day. Further studies will be necessary to
address these challenges.
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