
Citation: Goli, P.; Jasthi, K.; Gampa,

S.R.; Das, D.; Shireen, W.; Siano, P.;

Guerrero, J.M. Electric Vehicle

Charging Load Allocation at

Residential Locations Utilizing the

Energy Savings Gained by Optimal

Network Reconductoring. Smart

Cities 2022, 5, 177–205.

https://doi.org/10.3390/

smartcities5010012

Academic Editor: Andrea Bonfiglio

Received: 26 January 2022

Accepted: 11 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Electric Vehicle Charging Load Allocation at Residential
Locations Utilizing the Energy Savings Gained by Optimal
Network Reconductoring
Preetham Goli 1* , Kiran Jasthi 2 , Srinivasa Rao Gampa 2 , Debapriya Das 3 , Wajiha Shireen 4 ,
Pierluigi Siano 5,6 and Josep M. Guerrero 7

1 Department of Computer Science and Electrical Engineering, University of Missouri Kansas City,
Kansas City, MO 64110, USA

2 Department of Electrical & Electronics Engineering, Gudlavalleru Engineering College, Gudlavalleru,
Krishna District, Vijayawada 521356, India; jasthikiran88@gmail.com (K.J.);
gsr_gsrinu@yahoo.co.in (S.R.G.)

3 Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721302, India;
ddas@ee.iitkgp.ac.in

4 Department of Engineering Technology, University of Houston, Houston, TX 77004, USA; wshireen@uh.edu
5 Department of Management & Innovation Systems, University of Salerno, Via Giovanni Paolo II, 132,

84084 Fisciano, SA, Italy; psiano@unisa.it
6 Department of Electrical and Electronic Engineering Science, University of Johannesburg,

Johannesburg 2006, South Africa
7 Center for Research on Microgrids (CROM), Department of Energy Technology, Aalborg University,

9220 Aalborg, Denmark; joz@energy.aau.dk
* Correspondence: golip@umkc.edu

Abstract: In this study, a two-stage methodology based on the energy savings gained by optimal
network reconductoring was developed for the sizing and allocation of electric vehicle (EV) charging
load at the residential locations in urban distribution systems. During the first stage, the Flower Polli-
nation Algorithm (FPA) was applied to minimize the annual energy losses of the radial distribution
system through optimum network reconductoring. A multi-objective function was formulated to
minimize investment, peak loss, and annual energy loss costs at different load factors. The results
obtained with the flower pollination algorithm were compared with the particle swarm optimization
algorithm. In the second stage, a simple heuristic procedure was developed for the sizing and
allocation of EV charging load at every node of the distribution system utilizing part of the annual
energy savings obtained by optimal network reconductoring. The number of electric cars, electric
bikes, and electric scooters that can be charged at every node was computed while maintaining the
voltage and branch current constraints. The simulation results were demonstrated on 123 bus and
51 bus radial distribution networks to validate the effectiveness of the proposed methodology.

Keywords: flower pollination algorithm; radial distribution system; particle swarm optimization;
reconductoring; electric vehicles

1. Introduction

Electric vehicles (EVs) are becoming an integral part of the urban distribution systems
to compensate for the global energy crisis due to the depletion of fossil fuels and to minimize
the pollution levels. Uncoordinated EV charging at the parking lots in residential areas
overloads the feeders and distribution transformers, thereby degrading the voltage profile
of the distribution system. To overcome these ramifications, various strategies have been
developed for optimum EV load demand management at residential locations.

Reconductoring involves the selection of optimal conductor sizes in the branches
of the radial distribution network to minimize the cost and energy losses. The efficiency
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gained by network reconductoring allows the utility grid to supply EV load while main-
taining satisfactory performance. Several methods are discussed in the literature on the
reconductoring of radial distribution networks. Wang et al. [1] proposed a heuristic-based
index considering non-uniform load distribution for network reconductoring. Mandal and
Pahwa [2] proposed a method of selecting a conductor set based on load ranges by consid-
ering several engineering and financial factors. Ranjan et al. [3] described an evolutionary
programming method to obtain the optimal conductors by considering the annualized cost
of losses and the capital cost. Satyanarayana et al. [4] proposed a simple heuristic method
for improving the maximum current carrying capacity of the distribution systems. Kaur
and Sharma [5] proposed an algorithm for optimal conductor selection by considering
the cost of energy and power, increase in load demand, and load factor. Rao et al. [6]
proposed a harmony search algorithm-based method for optimum conductor selection.
Franco et al. [7] presented a model for reconductoring of radial distribution systems us-
ing a mixed-integer linear programming approach. Abdul [8] proposed a step-by-step
approach for optimal conductor selection for distribution systems. Samal et al. [9] proposed
a differential evolution-based planning methodology for optimal capacitor allocation and
conductor size selection for unbalanced radial distribution systems. Abdelaziz et al. [10]
proposed a crow search algorithm, and Sherif et al. [11] presented Salp Swarm Optimization
(SSO) algorithm for optimal conductor selection. Gampa et al. [12] proposed a FPA Pareto
optimality-based approach for network reconductoring of distribution systems integrated
with solar photovoltaic units. Burgio et al. [13] proposed a heuristic approach for deter-
mining the capacity of residential photovoltaic battery systems in distribution networks to
provide flexible services to the grid. In this work, Flower Pollination Algorithm (FPA) was
applied for network reconductoring since it has better convergence properties and guaran-
tees a globally optimum solution compared to popular swarm-based and population-based
optimization algorithms such as PSO and genetic algorithm (GA).

Accurate modeling of EV load is necessary to study the impact of EV charging on
the distribution network. Determining the impact of EV proliferation on the distribution
network is a thoroughly studied problem by the research community. Garcia and Vla-
chogiannis [14] developed PQ models for EV charging load demand for load flow studies
as a function of charging time-based on queuing theory. Shireen et al. [15] studied the
impact of EV chargers on the distribution network and proposed various solutions to
mitigate the impact. Van den Berg et al. [16] proposed a methodology to determine the
charging demand of future EV fleets in an office area and determine its flexibility potential.
Brinkel et al. [17] proposed an approach for mitigating the grid congestion in LV grids by
using shared EVs. Iria et al. [18] and Nick et al. [19,20] proposed the application of energy
storage devices, network reconfiguration, and voltage regulators to reduce the congestion
in a distribution system with EVs. Marra et al. [21] studied the characteristics of the de-
mand profile considering different EV battery charging options. Guo et al. [22] analyzed
the impact of large-scale penetration of EVs on the grids. Zhang et al. [23] proposed EV
charging load models based on customers’ demographics, traveling probabilities, charging
preference, and energy consumption rates. Hecht et al. [24] presented the analysis on
the requirement of different types of chargers based on the time of parking of the electric
vehicles at the charging stations.

The influx of a large number of EVs from various manufacturers requires the utilities
to determine the optimal locations to install charging station infrastructure. A comprehen-
sive body of literature is available on the placement of EV charging stations. Sachan and
Kishor [25] have derived voltage sensitivity indices from the inverse Jacobian matrix from
the Newton–Raphson load flow-based approach to identify optimum EV charging loca-
tions. Gampa et al. [26] proposed grasshopper optimization algorithm based on a two-stage
fuzzy multi-objective approach for optimum allocation of EVs, Distributed Generators
(DGs), and Shunt Capacitors (SCs). Luo et al. [27] developed a comprehensive model for
optimal allocation of DGs and EV charging stations with the target of achieving optimum
annualized costs. Li et al. [28] applied a chance-constrained programming method for
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charging and discharging power scheduling of an EV charging station. Bayram et al. [29]
proposed a probabilistic planning methodology for peak load management in a distribu-
tion network with PEV charging lots through the allocation of energy storage systems.
Fan et al. [30] proposed a multi-objective mixed-integer nonlinear program-based frame-
work for distribution system planning considering stochastic models of renewable energy
sources and electric vehicles. Mehrjerdi and Hemmati [31] proposed a stochastic model
for electric vehicle charging stations integrated with energy storage systems and wind
energy. Rahmani et al. [32] studied planning and operational problems of EV parking
lots considering a traffic and drivers behavioral model. Parastvand et al. [33] proposed
a graph-based method for the placement and sizing of EV charging stations considering
traffic for limiting the vehicles’ waiting time at the charging station. Surest et al. [34]
developed a hybrid optimizer based on ant colony optimization to allocate EV charging
stations in a microgrid. Richardson et al. [35] analyzed the impact of local versus central-
ized controlled charging strategies of EV batteries on low-voltage distribution networks.
Fachrizal and Munkhammar [36] proposed distributed and centralized smart charging
schemes for EVs at residential buildings for minimizing the net load variability utilizing
photovoltaic power generation.

Mitigation of the adverse impacts of EVs on the distribution network requires effective
load management practices. EV load management techniques and scheduling methods
have been well addressed in the literature. Coffman et al. [37] studied the role of residential
solar PV supply systems to meet electric vehicle charging demand and reduce greenhouse
gas emissions. Khalkhali [38] proposed a stochastic mixed-integer linear programming
approach to effectively utilize EVs in a parking lot at residential locations for regulation
service. Ayyadi et al. [39] proposed a linear programming-based approach for minimizing
EV charging cost considering the uncertainties in EVs’ arrival and departure. Gong and
Ionel [40] proposed utilizing energy storage systems charged with PVs at smart homes to
compensate EV load demand at evening peak hours. Ahmadi et al. [41] proposed JAYA
algorithm-based charging and discharging scheduling of EVs for minimizing the daily
load variance. Limmer and Rodemann [42] proposed a framework for scheduling the EV
charging process based on dynamic price offers for reducing peak load and maximizing
charging station operating profit. Haes et al. [43] proposed a novel mix complementary pro-
gramming method for generation mix determination considering demand response, energy
storage systems, and electric vehicles. Advancements in Lithium-ion battery technology
have been reported in [44–46]. Hou et al. [47] developed a battery efficiency-based scrap-
ping criterion for improving the battery lifetime for effectively managing peak shaving and
demand response. Dixon and Bell [48] presented the impact of EVs on distribution systems
considering battery chargers’ capacity and demographic data of the drivers. Das et al. [49]
presented a comprehensive review of the current status of EVs and concluded that fur-
ther technologically advanced charging infrastructure is required to ensure the maximum
benefits from EVs with DGs.

Based on the literature review discussed so far, it can be mentioned that most of the
research pertaining to EV grid integration focused on the optimal siting and sizing of EV
charging stations and effective EV load management techniques. The proliferation of EVs
requires significant upgrades to the distribution system infrastructure, such as overhead
conductors and distribution transformers. Since the majority of customers charge their
EVs at home during the nighttime, it is essential to determine the maximum EV charging
load that can be accommodated at the residential locations. However, not much work in
the literature focuses on the distribution system upgrades at optimal cost to accommodate
the future influx of EVs. This work aimed to fill the gap in the literature through optimal
network reconductoring and allocation of the EV charging load at residential locations by
utilizing the energy savings obtained from network upgradation.

Several researchers proposed optimal charging rates for EV batteries based on their
state of charge, availability at the residential parking locations, and network conditions
using local and centralized charging control techniques. The main disadvantage of these
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techniques is that they require effective communication infrastructure and different charg-
ing rates shortening the battery life span [35]. Recently, many authors have proposed
techniques based on rooftop photovoltaic (PV) power for EV load management. However,
the power from the solar PV units is not available during the early morning and night time
and is uncertain during the rainy and winter seasons. The mismatch between PV power
generation and EVs charging schedules during various seasons requires expensive battery
energy storage systems. Moreover, the uncertainties in renewable energy sources may not
support the charging requirements at home during all the seasons. Since customers are not
at home during midday when maximum PV generation occurs, they can only charge the
EVs during the weekends [27,37]. For the residential customers who return home in the
evening, it is advantageous to charge their EVs from the power outlets, and maintaining an
additional backup of EV batteries is not economical. Furthermore, wind energy is directly
connected to the transmission grid, and the chances of connecting to the urban distribution
systems are meager [50,51]. Smart grid technologies such as demand response techniques
are primarily favorable to the customers who can operate their load according to the prices
offered by the utilities [52]. Though voltage regulators can be utilized to improve the
voltage profile, they cannot be employed as permanent solutions. Since EV charging is ad-
vantageous during off-peak hours and battery energy storage systems (BESS) are expensive
for residential customers, the utilities are required to supply the required EV charging load.
In the case where the renewable energy sources along with the smart grid technologies are
not sufficient to compensate the significant penetration of EV load, distribution networks
must be reinforced using techniques such as network reconductoring to supply power
from the substations satisfying network constraints. Optimal network reconductoring not
only improves the current-carrying capacity but also minimizes the real power losses and
improves the energy savings, especially during peak hours. The energy savings obtained
during peak hours can be effectively utilized to accommodate EV charging load during
off-peak hours.

In view of the drawbacks associated with EV load management using PVs and en-
ergy storage, this article proposes a two-stage design methodology for optimum EV load
allocation at each node of the residential distribution systems. In the first stage, optimal
reconductoring of the radial distribution network was carried out by using the Flower
Pollination Algorithm (FPA). In the second stage, a simple heuristic design methodology
was developed to calculate the maximum possible EV load at each node of the distribution
system utilizing the energy savings gained by optimal network reconductoring. In this
work, it was considered that the additional EV load is supplied from the utility grid to the
reconductored distribution system, and the EV charging was considered during evening
peak hours and off-peak hours. In addition, the utilization of PV systems for performance
improvement of distribution systems during peak hours was analyzed. The contributions
of the study can be summarized as:

• Flower Pollination Algorithm (FPA) was applied to reconductor the distribution
network while satisfying the voltage and current constraints.

• A heuristic methodology was developed to allocate the EV charging load at every
node in a residential distribution network without any violation of the system opera-
tional constraints.

• The effectiveness of the proposed algorithms was demonstrated through various case
studies performed on 51 bus and 123 bus test systems.

• The methodology proposed in this work will be a valuable tool for power engineers
working with distribution utility management to allocate EV charging load efficiently.

2. Problem Formulation

Recently, the Flower Pollination Algorithm (FPA) has been successfully applied to
solve many power engineering problems since it has a better convergence rate compared to
other metaheuristic techniques like GA and PSO, especially when the number of parameters
to be optimized are considerably large [53]. The number of branches required for optimum
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reconductoring will increase as the size of the distribution system increases and needs to
be analyzed with more conductor types. Moreover, several authors successfully applied
FPA to solve power and energy problems [12,54]. Hence, in this work initially, a FPA-based
methodology was developed for optimum network reconductoring of radial distribution
systems. In the second stage, a simple heuristic design methodology was developed for
EV load allocation at residential locations utilizing the energy savings gained by network
reconductoring. The network reconductoring was aimed at minimizing annual energy
losses at different load factors, conductor cost, and cost of peak load losses.

2.1. Objective Function

The objective function for the reconductoring problem in radial distribution systems
was formulated by considering the capital cost of the reconductoring, the annual cost of
energy losses at different load factors, and the cost of peak load losses. The cost objective
function (JF) can be expressed mathematically by the following equation.

JF = γ
NB

∑
i=1

CiLi + Ke

3

∑
LF=1

NB

∑
j=1

I2
j,LFRjTLF + KPRPLpeak (1)

where γ is the annual interest and depreciation factor, Ci is the cost of the conductor in the
ith branch, Li is the length of branch i in km, Ke is the cost of energy loss in Rs./kWh, Ij,LF
is the current in branch j for the load factor LF, Rj is the resistance of the jth branch, TLF is
the annual distribution load h at the load factor LF, KP is the cost for peak loses in Rs./kW,
and RPLpeak is the base case peak load.

2.2. Voltage and Current Constraints

The following equations describe the constraints considered for the bus voltage and
branch current carrying capacity in the proposed approach.

The bus voltage constraint can expressed as follows

Vmin ≤ |Vb| ≤ Vmax (2)

where Vmin and Vmax are the minimum and maximum bus voltage limits and |Vb| is the
voltage magnitude at node ′b′, respectively. In the proposed approach, Vmin = 0.95 pu and
Vmax = 1.05 pu were chosen for analysis.

The current through any branch should be less than the maximum current carrying
capacity of the conductor chosen for that particular branch. This constraint is expressed
as follows

Ij,k ≤ Imax,k (3)

where Ij,k is the current in branch j with conductor type k. Imax,k is the maximum current
carrying capacity of conductor type k.

The rest of the article is organized as follows: Basics of the FPA algorithm and the
application of FPA to network reconductoring are discussed in Section 3. Section 4 discusses
the energy and economic savings calculations. In Section 5, the EV battery charging load
model for load flow analysis is developed, and in Section 6, the mathematical equations
required for utilizing energy savings are developed. Section 7 presents the heuristic design
procedure for EV load allocation. Finally, the analysis of the results and conclusions are
discussed in Sections 8 and 9.

3. FPA for Network Reconductoring

The flower pollination algorithm [53] is one of the nature-inspired algorithms. The pri-
mary purpose of a flower is to reproduce flower species via pollination processes. So,
the flower pollination process involves transferring pollen from one place to another place
with the help of pollinators.
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Biotic (cross-pollination) and abiotic (self-pollination) are two primary forms of pol-
lination. In biotic pollination, the pollination process occurs with the help of pollinators
such as birds, insects, and animals. These pollinators move over long distances and their
behavior can be mimicked with a Levy flight distribution. On the other hand, the abi-
otic pollination process does not require any pollinators. The abiotic pollination can be
expressed with the help of the Levy distribution function as follows

xt+1
i = xt

i + γLL(λ)
(

gbest− xt
i
)

(4)

where xt
i is the solution vector of conductor types of branches at generation t, γL is a factor

to control the step size, gbest is the present best solution of current iteration/generation,
and L(λ) is the strength of pollination, which is randomly drawn from a Levy distribution.

L(λ) ∼
λΓ(λ) sin

(
πλ
2

)
πsλ+1 (5)

where λ is assigned a value of 1.5 for better convergence of the solution; Γ(λ) is a standard
gamma function, and s is greater than zero for large step size. The most advanced technique
for getting small step sizes for equivalent Levy distribution numbers generations is the
Mantegna algorithm (M), which can be expressed by the following equation.

M(ω) =
X

|Y|1/ω
, X ∼

(
0, σ2

)
, Y ∼ (0, 1) (6)

where X ∼
(
0, σ2) indicates the random samples drawn from Gaussian normal distribution

with zero mean, and σ2 is the variance. Mathematically, variance σ2 is calculated as

σ2 =

Γ(1 + ω) sin
(

πω
2
)

Γ
(

1+ω
2

)
ω 2

(ω−1)
2


1/ω

(7)

The reproduction concept of biotic and abiotic flower pollination can be utilized for
network reconductoring of distribution systems. The biotic pollination can be written
mathematically using the Mantegna algorithm by the following equation

xt+1
i = xt

i + γM M(ω)
(

gbest− xt
i
)

(8)

The abiotic or self-pollination can be expressed as

xt+1
i = xt

i + ε
(

xt
j − xt

k

)
(9)

where xt
j and xt

k are two randomly chosen solutions in generation/iteration t, and ε repre-
sents the random number uniformly drawn in the limits [0, 1]. ω is a real number, and its
value is considered as 1.5.

The choice of biotic or abiotic pollination in a particular iteration will be guided by the
probability switch “p,” which was randomly selected. The flowchart for the reconductoring
of the radial distribution network using FPA is shown in Figure 1, and the Algorithm 1 is
shown below.
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Figure 1. Flowchart for reconductoring using Flower Pollination Algorithm (FPA).
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Algorithm 1: Step-by-Step Algorithm for Reconductoring using FPA

1: Read the distribution system line and load data and initialize the parameters of the
flower pollination algorithm.

2: Read the resistance/km and reactance/km data for different types of conductors chosen
for optimum network reconductoring.

3: Generate the initial population randomly for the distribution system network configu-
ration using different types of branch conductors chosen.

4: Run the load flow and determine the cost objective function for each member of the
population using Equation (1).

5: Find the best fitness value of the initial population.
6: Set the iteration count, iter = 0.
7: Increment the iteration count by one, i.e, iter = iter +1.
8: Find the probability switching value “p” randomly between 0 and 1.
9: If the probability switching value p < 0.8 Go To Step 10, otherwise Go To Step 11.

10: Update the population using biotic pollination method by Equation (8) and Go To
Step 12.

11: Update the population using abiotic pollination method by Equation (9).
12: Find the best fitness value from the updated population.
13: If the iter < iterMax Go To Step 7, otherwise Go To Step 14.
14: Store the best solution from the last iteration.

4. Energy and Economical Savings Due to Network Reconductoring

The economic savings due to optimal network reconductoring can be obtained by
comparing the annual installment paid on the purchase of conductor material cost and
annual energy economic savings.

The annual installment payment cost (AIP) on the amount borrowed for the purchase
of reconductoring material of the distribution system can be calculated by the follow-
ing equation.

AIP =

(
Irate(Irate + 1)N

(Irate + 1)N − 1

)
NB

∑
i=1

CiLi (10)

where Irate is the interest rate, and N is the number of years of installment payment.
The annual economic savings can be calculated using the following equations.

AESC = Ke

3

∑
LF=1

(
RPLBase

LF − RPLRC
LF

)
TLF (11)

APLC = Kp

(
RPLBase

peak − RPLRC
peak

)
(12)

where AESC is the annual energy savings cost, and APLC is the annual peak loss savings
cost. Ke is the energy loss cost in Rs./kWh. RPLBase

LF is the base case total power loss at
load factor LF before network reconductoring, and RPLRC

LF is the total power loss after
reconductoring at load factor LF. RPLBase

peak is the peak power loss due to the base case,

and RPLRC
peak is the peak power loss of the distribution system after reconductoring.

The total Annual Economical Savings cost (AECONS) can be obtained by the follow-
ing equation.

AECONS = AESC + APLC− AIP (13)

5. Modeling of EV Charging Load Demand

Significant penetration of EV charging load causes excessive losses and voltage profile
degradation in distribution systems. Hence, the EV charging load models required for load
flow analysis can be developed from the power charging characteristics of EV batteries.
The charging characteristics of the EV batteries depend on the chemical reactions inside
the cells and hence exponential modeling was considered. Lithium-ion batteries are more
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popular and efficient for EV applications, and the following equations can model the
exponential characteristic based on constant power and constant voltage charging.

The power charging equation can be expressed as follows when the batteries are
charging from an initial state of charge.

PEV(t) = PEVmax
(

1− e(−τt/T)
)
+ PEV0e(−τt/T) for 0 < t < T (14)

where PEV0 is the initial charging capacity, and PEVmax is the maximum charging load of
the EV battery. The methodology presented in this article considers the battery charging
load in the constant power and constant voltage modes. The standard charging charac-
teristics for the lithium-ion battery are shown in Figure 2. The EV charging demands
during constant power and constant voltage charging modes can be expressed by the
following equations.

PEVCP(t) = PEVmax for T1 ≤ t ≤ T2 (15)

PEVCV(t) = PEVmax
(

Tmax − t
Tmax − T2

)
for T2 < t ≤ Tmax (16)

where PEVCP(t) and PEVCV(t) represent the EV charging demands during the constant
power mode and the constant voltage mode. In Figure 2, the state of charging (SOC) is
shown from the start to the fully charged state. The battery rating is expressed generally as
battery energy storage capacity (BES(t)) in kWh, and the battery capacity during charging
can be represented by the following equations.

BES(t + 1) = BES(t) + PEV(t)∆(t) (17)

The state of the charging of the battery can be expressed by the following equation

SOC(t) =
BES(t)
BESmax

× 100 (18)
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Figure 2. EV battery charging characteristics.
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The EV battery is mainly charged from 20% to 90% SOC during the peak charging
time [26]. Currently, most of the battery chargers operate at a 0.95 power factor lagging.
The batteries are terminated from charging after reaching 100% SOC to protect the battery
from excessive heating, which reduces the number of life cycles of the battery.

6. Energy Savings Division for EV Load Allocation among Charging Slots

The EV charging load can be incorporated into the distribution system by utilizing a
part of energy savings obtained by network reconductoring while maintaining voltage and
current constraints. The present section discusses the energy savings allotment for different
charging slots. Initially, the charging slots available are identified, and, later, the energy
savings division for EV load among the charging slots is presented.

6.1. EV Load Charging Slots Division

The present work considered the distribution system load at three most commonly
possible load factors, i.e., at 0.4, 0.7, and 1.0. Each load factor was considered for 8 h
duration per day. The distribution load between 12:00 a.m. and 8:00 a.m. was generally
low, and hence a 0.4 load factor was considered during that period. The distribution load
generally reached the peak level during the afternoon period, and hence the load factor
was considered as 1.0 during the period from 8:00 a.m. to 4:00 p.m. The load was at an
average level during the evening hours, and the average load factor of 0.7 was considered
during the period between 4:00 p.m. to 12:00 a.m. At each load factor annually 2920 h
were considered.

In most electric vehicles, lithium-ion batteries are used for charging. The time required
to charge a medium-range EV battery from 20% SOC to 90% SOC is approximately four
hours. In general, most of the electric vehicles will be at residential locations for charging
between 4:00 p.m. and 12:00 a.m. Since electric vehicles require at least four hours for
charging a total of four charging slots can be considered. The distribution load factor
and the charging slots division are shown in Figure 3. The charging slots one and two are
considered during 12:00 a.m. and 8:00 a.m. at a 0.4 load factor. The charging slots three and
four were considered during 4:00 p.m. and 12:00 a.m. at a 0.7 load factor.
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Figure 3. EV battery charging slots.
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6.2. Energy Savings Division among the Charging Slots

The maximum EV load that can be accommodated at each charging slot depends
on the energy savings available that can be spent during that particular period. In this
section initially, the total energy savings that can be spent per day were calculated from the
energy savings per day obtained due to optimal network reconductoring, and later they
were distributed among the four charging slots. The part of the energy savings (ESEV)
that can be utilized per day for EV load management can be calculated from the following
mathematical expression.

ESEV =
α
(

∑3
LF=1

(
RPLBase

LF − RPLRC
LF
)
TLF

)
365

(19)

where α is the fraction of the energy savings gained from FPA-based network reconductor-
ing, and the value can be taken from 0 to 1. ESEV is the energy savings for EV charging per
day; RPLBase

LF is the base case real power loss at the load factor LF; and TLF is the annual
distribution load hours at the load factor LF.

The energy savings division among the four charging slots considered can be repre-
sented by the following flow diagram shown in Figure 4.

Figure 4. Energy savings division among charging slots.

From Figure 4, it can be observed that the energy savings available are divided between
the two load factors, 0.4 and 0.7. In the figure, α0.4 and α0.7 are the fractions of total energy
savings available for EV load, and their sum is equal to unity. It can also be observed from
Figure 4 that the available energy savings are equally divided between the two charging
slots available at that particular load factor.

The maximum additional permitted power loss of the distribution system with
the EV load installation at a particular load factor RPLEVmax

LF is determined by the foll-
owing equation.

RPLEVmax
LF =

αLFESEV
NEV TEV

(20)

where NEV is the number of charging slots, and TEV is the time of EV charging. αLF is the
fraction of energy savings available at a particular load factor.

7. Energy Savings Based Heuristic Approach for EV Load Sizing and Allocation

The EV charging load on the distribution system can be allocated based on real power
loss that can be additionally allowed utilizing the energy savings spent during the EV
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charging period. The maximum real power loss during the charging period considering
both the distribution system load and the EV charging load can be expressed by the
following equation.

RPLEVRC
LF = RPLRC

LF + RPLEVmax
LF (21)

where RPLEVRC
LF is the total real power loss with the presence of distribution system load

and the permissible EV load at a load factor LF considering the reconductored network.
In the proposed methodology, the EV charging load is considered at all the distribu-

tion system nodes. Then, the EV load is added systematically, allowing the real power
losses to increase to the permissible limit calculated based on the available energy savings.
In this work, a simple heuristic procedure was proposed for determining the maximum
EV load at every node of the distribution system. Most modern EV chargers operate at a
0.95 power factor, and real power loss depends on both active and reactive powers. Hence,
at every node of the distribution system, a minimum EV load at the 0.95 power factor
was considered.

During the first stage of the proposed heuristic method, the minimum active power
PEVEV

min and the minimum reactive power QEVEV
min drawn by the EV load were added

simultaneously at every node until the real power loss exceeded the permissible value.
In the second stage, the node voltages were arranged in ascending order, and rankings
were given starting from the minimum node voltage. Then, the minimum EV load was
decreased systematically at the nodes one by one according to their rankings until the
real power loss of the distribution system reached the permissible limit. The flow chart
representing the proposed heuristic approach is shown in Figure 5, and the Algorithm 2 is
shown below.

Figure 5. Heuristic approach for EV load allocation.
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Algorithm 2: Step-by-Step Algorithm for the Proposed Heuristic Approach for EV Charg-
ing Load Allocation

1: Read the distribution system line data and load data and initialize real and reactive
powers at every node with their base values at the load factor considered.

2: The lowest possible EV charging load real power PEVEV
min and reactive power QEVEV

min
are selected.

3: Add the minimum real and reactive powers of EV charging load to real and reactive
power loads of the distribution system at every node at the charging slot considered.

4: Run the load flow and obtain the real power loss and node voltages.
5: If the constraints on node voltage limits, branch current limits and maximum permitted

loss with EV charging load allocation RPLEVRC
LF are satisfied Go To Step 3 otherwise Go

To Step 6.
6: Run the load flow and assign the rankings to the nodes starting from minimum

node voltage.
7: Set the Rank R =0.
8: Increment the Rank count by one, i.e., R=R+1.
9: Deduct the minimum real and reactive powers of EV charging load from the real and

reactive powers of Rth rank node at the charging slot considered.
10: Run the load flow and obtain the real power loss and node voltages.
11: If the constraints on node voltage limits, branch current limits and maximum permitted

real power loss with EV charging load allocation RPLEVRC
LF are not satisfied Go To Step

8 otherwise Go To Step 12.
12: Calculate the EV charging load allocated at every node of the distribution system

deducting the base loads from the total load.
13: Store the results.

The real and reactive power drawn by the EVs can be obtained at every node by
subtracting the base case load from the total load as shown in the following equations.

PLEV
i = PLTotal

i − PLBase
i (22)

QLEV
i = QLTotal

i −QLBase
i (23)

where PLEV
i and QLEV

i are the active and reactive power of the EV loads that can be
accommodated at each node of the distribution system. PLBase

i and QLBase
i are the base case

active and reactive power loads of the distribution system, respectively. PLTotal
i and QLTotal

i
are the active and reactive power loads obtained after the EV load allocation at each node
with the proposed methodology.

In residential distribution systems, electric cars, electric bikes, and electric scooters
are the most commonly used electric vehicles for transportation. Hence, at every node,
the number of EVs that can be accommodated is calculated based on their battery charg-
ing capacities.

The priority of the EVs is given based on their battery capacities, which provide the
maximum fuel savings. The first priority is the allocation of electric cars; the next priority
is electric bikes; and the last choice is electric scooters. The total EV load at a distribution
system node must be less than or equal to the EV load limits obtained by the heuristic
approach. This can be expressed mathematically by the following equation.

NCar
i PEVmax

Car + NBike
i PEVmax

Bike + NScooter
i PEVmax

Scooter ≤ PLEV
i (24)

where PEVmax
Car , PEVmax

Bike , and PEVmax
Scooter represent the maximum power drawn by the bat-

teries of electric cars, bikes, and scooters during the constant power mode battery charging.
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The maximum number of electric cars that can be accommodated at the ith node is
calculated using the following expression

NCar
i ≈

PLEV
i

PEVmax
Car

(25)

where NCar
i is the integer part of the real number obtained by the power ratio shown

in the above equation. After allocating the maximum number of electric cars possible,
the next choice is electric bikes used for transportation with slightly lower capacity batteries
than cars.

The maximum number of electric bikes that can be accommodated is calculated by
subtracting the EV car load from the total available EV load.

NBike
i ≈

PLEV
i − NCar

i PEVmax
Car

PEVmax
Bike

(26)

where NBike
i is the integer part of the real number obtained by the power ratio shown

in the above equation. Similarly, the number of Scooters NScooter
i is determined from the

remaining available EV load after the allocation of electric cars and electric bikes.

NScooter
i ≈

PLEV
i − NCar

i PEVmax
Car − NBike

i PEVmax
Bike

PEVmax
Scooter

(27)

8. Results and Discussions

In this article, a two-stage methodology is proposed for optimal allocation of maximum
possible EV load at residential locations of urban distribution systems utilizing the energy
savings gained by optimal network reconductoring.

Optimal Network Reconductoring Using Flower Pollination Algorithm

In the first stage, the optimal network reconductoring of the radial distribution system
was achieved using the flower pollination algorithm. The aggregate of the investment cost
of the selected optimal conductors; the cost of annual energy loss of the distribution system
at load factors 0.4, 0.7, and 1.0; and the cost of peak load losses was considered as the fitness
function for the algorithm. For the three load factors, equal load duration (T), i.e., 2920 h,
was considered during a year. The conductor types and their data [55] are shown in Table 1.

Table 1. Conductor Data.

Conductor
Type

Number

Conductor
Type

Area
(mm2)

Resistance
(Ω/km)

Reactance
(Ω/km)

Maximum Current
Capacity (A)

Weight
(Kg/km)

1 Squirrel 20.71 1.374 0.355 115 85
2 Gopher 25.91 1.09 0.349 133 106
3 Weasel 31.21 0.9116 0.345 150 128
4 Ferret 41.84 0.672 0.339 181 171
5 Rabbit 52.21 0.5449 0.335 208 214
6 Mink 62.32 0.4565 0.333 234 255
7 Beaver 74.07 0.3906 0.33 261 303
8 Raccoon 77.83 0.3656 0.329 270 318
9 Cat 94.21 0.315 0.327 305 385
10 Dog 103.6 0.2745 0.315 324 394
11 Tiger 128.1 0.2221 0.282 382 604
12 Bear 258.1 0.1102 0.25 595 1229

The proposed FPA-based algorithm was simulated on 11 kV, 123 bus [5] and 11 kV,
51 bus [12] test systems. The results were compared with the PSO algorithm. For both
the test systems, the base voltage was considered as 11 kV. The values of Kp, Ke, and γ
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were considered as 2500 Rs./kW, 3.0 Rs./kWh, and 0.1 for the calculation of the cost func-
tion. The approximate conductor cost per kilogram was considered as 120 Rs./Kg [55].
The network diagrams for 123 bus and 51 radial distribution systems are shown in
Figures 6 and 7.

The 123 bus and 51 bus test systems were simulated using MATLAB R2017a software.
The optimal conductor selection results obtained with the proposed Flower Pollination
Algorithm (FPA)-based methodology are shown in Table 2 for the 123 bus system and in
Table 3 for the 51 bus system, respectively.

Figure 6. 123 bus radial distribution system.

Figure 7. 51 bus radial distribution system.
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Table 2. Optimum conductor selection for 123 bus system.

Branch
Number

Conductor Type Branch
Number

Conductor Type

Base Case PSO FPA Base Case PSO FPA

1 Bear Bear Bear 62 Tiger Bear Bear
2 Bear Bear Bear 63 Squirrel Bear Squirrel
3 Squirrel Bear Squirrel 64 Squirrel Squirrel Bear
4 Squirrel Squirrel Squirrel 65 Dog Bear Bear
5 Squirrel Bear Beaver 66 Cat Bear Bear
6 Squirrel Squirrel Raccoon 67 Squirrel Bear Weasel
7 Squirrel Squirrel Squirrel 68 Squirrel Bear Bear
8 Bear Bear Bear 69 Squirrel Squirrel Bear
9 Bear Bear Bear 70 Squirrel Squirrel Rabbit

10 Squirrel Bear Cat 71 Squirrel Bear Squirrel
11 Squirrel Bear Weasel 72 Cat Bear Bear
12 Squirrel Squirrel Squirrel 73 Squirrel Bear Bear
13 Squirrel Bear Gopher 74 Squirrel Squirrel Tiger
14 Squirrel Squirrel Beaver 75 Squirrel Squirrel Bear
15 Bear Bear Bear 76 Squirrel Squirrel Ferret
16 Squirrel Squirrel Weasel 77 Weasel Bear Bear
17 Squirrel Squirrel Mink 78 Squirrel Bear Bear
18 Squirrel Squirrel Bear 79 Squirrel Squirrel Squirrel
19 Squirrel Squirrel Weasel 80 Squirrel Squirrel Gopher
20 Ferret Bear Bear 81 Squirrel Bear Bear
21 Squirrel Bear Raccoon 82 Squirrel Squirrel Mink
22 Squirrel Ferret Gopher 83 Squirrel Squirrel Bear
23 Squirrel Squirrel Dog 84 Squirrel Squirrel Rabbit
24 Squirrel Squirrel Squirrel 85 Squirrel Squirrel Squirrel
25 Squirrel Bear Mink 86 Squirrel Bear Rabbit
26 Squirrel Squirrel Beaver 87 Squirrel Squirrel Squirrel
27 Squirrel Squirrel Squirrel 88 Squirrel Squirrel Rabbit
28 Squirrel Squirrel Weasel 89 Squirrel Squirrel Squirrel
29 Squirrel Squirrel Mink 90 Squirrel Squirrel Raccoon
30 Squirrel Squirrel Squirrel 91 Squirrel Squirrel Bear
31 Squirrel Squirrel Weasel 92 Squirrel Squirrel Dog
32 Squirrel Squirrel Squirrel 93 Squirrel Bear Dog
33 Squirrel Squirrel Squirrel 94 Squirrel Squirrel Beaver
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Table 2. Cont.

Branch
Number

Conductor Type Branch
Number

Conductor Type

Base Case PSO FPA Base Case PSO FPA

34 Squirrel Bear Rabbit 95 Squirrel Squirrel Raccoon
35 Squirrel Bear Gopher 96 Squirrel Squirrel Bear
36 Squirrel Squirrel Cat 97 Squirrel Bear Squirrel
37 Squirrel Squirrel Bear 98 Squirrel Squirrel Squirrel
38 Squirrel Bear Bear 99 Squirrel Squirrel Squirrel
39 Squirrel Squirrel Mink 100 Squirrel Squirrel Beaver
40 Squirrel Squirrel Squirrel 101 Squirrel Squirrel Bear
41 Squirrel Gopher Bear 102 Gopher Bear Bear
42 Squirrel Squirrel Bear 103 Squirrel Squirrel Tiger
43 Squirrel Bear Bear 104 Squirrel Squirrel Squirrel
44 Squirrel Bear Bear 105 Squirrel Bear Squirrel
45 Squirrel Squirrel Bear 106 Squirrel Bear Weasel
46 Squirrel Bear Beaver 107 Squirrel Bear Tiger
47 Squirrel Bear Bear 108 Squirrel Bear Bear
48 Squirrel Bear Mink 109 Squirrel Squirrel Rabbit
49 Squirrel Bear Squirrel 110 Squirrel Squirrel Bear
50 Squirrel Squirrel Ferret 111 Squirrel Bear Weasel
51 Squirrel Squirrel Ferret 112 Squirrel Bear Bear
52 Squirrel Squirrel Bear 113 Squirrel Ferret Squirrel
53 Squirrel Bear Squirrel 114 Squirrel Squirrel Squirrel
54 Squirrel Squirrel Squirrel 115 Squirrel Bear Tiger
55 Squirrel Bear Squirrel 116 Squirrel Bear Raccoon
56 Tiger Bear Bear 117 Squirrel Squirrel Squirrel
57 Tiger Bear Bear 118 Squirrel Squirrel Squirrel
58 Tiger Bear Bear 119 Squirrel Bear Cat
59 Tiger Bear Bear 120 Squirrel Bear Bear
60 Squirrel Squirrel Bear 121 Squirrel Squirrel Squirrel
61 Squirrel Bear Squirrel 122 Squirrel Squirrel Squirrel

Table 3. Optimum conductor selection for 51 bus system.

Branch
Number

Conductor Type Branch
Number

Conductor Type

Base Case PSO FPA Base Case PSO FPA

1 Dog Bear Bear 26 Squirrel Ferret Beaver
2 Dog Bear Bear 27 Squirrel Squirrel Squirrel
3 Dog Bear Bear 28 Squirrel Bear Ferret
4 Dog Bear Bear 29 Rabbit Squirrel Tiger
5 Mink Bear Bear 30 Rabbit Dog Dog
6 Mink Bear Bear 31 Rabbit Dog Cat
7 Mink Bear Bear 32 Rabbit Racoon Beaver
8 Mink Bear Bear 33 Rabbit Dog Racoon
9 Squirrel Dog Dog 34 Rabbit Mink Squirrel
10 Squirrel Bear Dog 35 Rabbit Bear Beaver
11 Squirrel Dog Racoon 36 Rabbit Squirrel Squirrel
12 Squirrel Dog Rabbit 37 Rabbit Weasel Gopher
13 Squirrel Squirrel Dog 38 Rabbit Squirrel Gopher
14 Squirrel Mink Racoon 39 Squirrel Bear Dog
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Table 3. Cont.

Branch
Number

Conductor Type Branch
Number

Conductor Type

Base Case PSO FPA Base Case PSO FPA

15 Squirrel Squirrel Squirrel 40 Squirrel Dog Dog
16 Squirrel Dog Dog 41 Squirrel Dog Rabbit
17 Squirrel Bear Rabbit 42 Squirrel Mink Mink
18 Squirrel Dog Cat 43 Squirrel Ferret Rabbit
19 Squirrel Mink Ferret 44 Squirrel Squirrel Ferret
20 Squirrel Ferret Squirrel 45 Squirrel Dog Dog
21 Squirrel Squirrel Rabbit 46 Squirrel Squirrel Ferret
22 Squirrel Dog Tiger 47 Squirrel Mink Rabbit
23 Squirrel Dog Beaver 48 Squirrel Rabbit Squirrel
24 Squirrel Mink Squirrel 49 Squirrel Bear Ferret
25 Squirrel Squirrel Mink 50 Squirrel Squirrel Squirrel

The performance comparisons with FPA for both the distribution systems are shown in
Tables 4 and 5. Tables 4 and 5 show that the real power loss reduction and minimum voltage
improvement was much better in the case of the FPA algorithm than the PSO algorithm.
Furthermore, from Table 6, it can be observed that with the proposed FPA algorithm,
the reconductoring cost is much less, and the annual energy savings and economic savings
are better for both the distribution systems considered.

Table 4. Comparison of voltage min (p.u).

123 Bus 51 Bus

Load Factor 0.4 0.7 1.0 0.4 0.7 1.0

Base Case 0.9930 0.9877 0.9824 0.9659 0.9390 0.9107

PSO 0.9949 0.9911 0.9872 0.9851 0.9737 0.9621

FPA 0.9956 0.9923 0.9890 0.9852 0.9739 0.9623

Table 5. Comparison of real power losses (kW).

123 Bus 51 Bus

Load Factor 0.4 0.7 1.0 0.4 0.7 1.0

Base Case 7.83 24.17 49.73 19.20 61.07 129.81

PSO 4.28 13.19 27.08 6.38 19.88 41.31

FPA 3.91 12.04 24.71 6.26 19.51 40.52

Table 6. Annual savings comparison.

123 Bus System 51 Bus System

PSO FPA PSO FPA

Conductor Cost (Rs) 1,482,368 1,339,892 4,344,009 3,664,850

Annual Energy Savings (kWh) 108,566 119,924 416,129 419,867

Energy savings/day (kWh) 297.44 328.56 1140.08 1150.32

Annual Economical Savings (Rs) 208,204 264,940 959,392 1,052,353

The allocation of energy savings per day and per slot for EV load for 123 bus and
51 bus test systems are shown in Tables 7 and 8. As shown in the tables, two case studies
were developed for distributing the EV charging load. Case-1 consists of distributing the EV
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charging load such that 25% of the available energy savings are allocated at 0.4 load factor,
and the remaining energy savings are allocated at 0.7 load factor. In Case-2, the available
energy savings are equally distributed between 0.4 and 0.7 load factors. Since most of the
EV batteries require 8 h for charging from 20% to 90% state of charge; each charging slot
duration (TEV) was considered as 4 h duration. The additional real power loss

(
RPLEVmax

LF
)

with EV load load and the total real power loss
(

RPLEVRC
LF

)
permitted with EV load was

calculated as described in Section 6.2.

Table 7. Energy savings allocation with EV load for 123 bus.

123 Bus Case-1 Case-2
(25–75%) (50–50%)

Load Factor 0.4 0.7 0.4 0.7

Energy Savings Available/day (kWh) 41.07 123.21 82.14 82.14

Energy Savings Available/slot (kWh) 20.535 61.605 41.07 41.07

Additional Real power loss with EV load (kW) 5.13 15.4 10.26 10.26

Real power loss without EV load (kW) 3.91 12.04 3.91 12.04

Total loss permitted with EV load (kW) 9.04 27.44 14.17 22.3

Actual loss with EV load (kW) 9.04 27.44 14.17 22.3

Voltage min (p.u) 0.9938 0.9891 0.9924 0.9901

Table 8. Energy savings allocation with EV load for 51 bus.

51 Bus Case-1 Case-2
(25–75%) (50–50%)

Load Factor 0.4 0.7 0.4 0.7

Energy Savings Available/day (kWh) 143.79 431.37 287.58 287.58

Energy Savings Available/slot (kWh) 71.895 215.685 143.79 143.79

Additional Real power loss with EV load (kW) 17.97 53.92 35.94 35.94

Real power loss without EV load (kW) 6.26 19.51 6.26 19.51

Total loss permitted with EV load (kW) 24.23 73.43 42.2 54.45

Actual loss with EV load (kW) 24.23 73.43 42.2 54.45

Voltage min (p.u) 0.9736 0.9536 0.966 0.9594

In this work, the minimum EV battery capacity was considered as 1 kWh, and to
charge the battery completely in 4 h, 0.25 kW active power was drawn from the charger.
Since most EV chargers operate at a 0.95 power factor, the charger derives a reactive power
of 0.082 kVAr during battery charging. Figures 8–11 show the allocation of EV charging
load for both cases. The permissible EV charging load at each node is obtained based on
the allowable power loss shown in Tables 7 and 8 and the heuristic algorithm presented in
Section 7.
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Figure 8. EV load allocation for 123 bus system for Case-1.

For instance, in case-1 at a 0.4 load factor for 123 bus system, the EV charging load
at each node is the real power increased in steps of 0.25 kW, and the reactive power at
0.95 power factor until the total real power loss just exceeded 9.04 kW as mentioned in
Table 7. The EV charging load at each node was then decreased by 0.25 kW until the total
power loss equals 9.04 kW. This is evident in Figure 8 at a 0.4 load factor, wherein the
maximum EV charging load at each node was either 11.25 kW or 11 kW. Similarly, it can be
observed from Figures 9–11 that the maximum EV charging load per node fluctuates by
0.25 kW.

Figure 9. EV load allocation for 51 bus system for Case-1.
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Figure 10. EV load allocation for 123 bus system for Case-2.

Figure 11. EV load allocation for 51 bus system for Case-2.

In this work, the requirements of EV charging load at residential locations are analyzed
considering three different types of electric vehicles commonly used for transportation.
They are Mahindra e2oPlus Electric Car with a battery capacity of 10.08 kWh, Revolt
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RV400 Electric Bike with a battery capacity of 3.24 kWh, and Okinawa R30 Electric Scooter
with 1.25 kWh. All three types of EVs can be charged from 20% to 90% in 4 h. From
Tables 9 and 10 , it can be observed that the number of EVs at each node varies based on
the maximum permissible EV charging load per node depicted in Figures 8–11.

Table 9. Number of EVs charged per slot for 123 bus.

123 Bus Load
Factor

Number of
Nodes

EV Load/
Node

NCars/slot/
Node

NBikes/slot/
Node

NScooters/slot/
Node

Case-1

0.4
84 11.25 4 1 2

38 11 4 1 1

0.7
27 19.25 7 2 1

95 19 7 2 0

Case -2

0.4
92 19.25 7 2 1

30 19 7 2 0

0.7
45 13.75 5 1 2

77 13.5 5 1 1

Table 10. Number of EVs charged per slot for 51 bus.

51 Bus Load
Factor

Number of
Nodes

EV Load/
Node

NCars/slot/
Node

NBikes/slot/
Node

NScooters/slot/
Node

Case-1

0.4
20 21.5 8 2 0

30 21.25 8 1 2

0.7
3 36 14 1 1

47 35.75 14 1 0

Case-2

0.4
19 35 14 0 0

31 34.75 13 3 0

0.7 44 25.75 10 1 0

6 25.5 10 0 2

Tables 11 and 12 present the total number of electric vehicles that can be charged per
day for both the test systems. One crucial aspect that has to be observed is that in Case-1,
more electric vehicles can be charged during the duration when the load factor is 0.7. This
is because 75% of the considered energy savings are allocated to 0.7 load factor, which
facilitates a significant increase in power losses, thereby allowing a significant increase in
EV charging load at each node. On the other hand, in Case-2, more electric vehicles can
be charged during the duration when the load factor is 0.4 since the considered energy
savings are equally distributed between both the load factors.
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Table 11. Number of EVs charged per day for 123 bus.

123 Bus
Load Factor

Total NO of Vehicles
0.4 0.7

Case -1
NCars/day 976 1708 2684

NBikes/day 244 488 732

NScooters/day 412 54 466

Case -2
NCars/day 1708 1220 2928

NBikes/day 488 244 732

NScooters/day 184 334 518

Table 12. Number of EVs charged per day for 51 bus.

51 Bus
Load Factor

Total NO of EVs
0.4 0.7

Case -1
Ncars/day 800 1400 2200

NBikes/day 140 100 240

NScooters/day 120 6 126

Case -2
Ncars/day 1338 1000 2338

NBikes/day 186 88 274

NScooters/day 0 24 24

The total EV charging load injection per slot for Case-1 and Case-2 is presented in
Tables 13 and 14 for the 123 bus system and 51 bus system, respectively. From the tables, it is
clear that in Case-1, the percentage of EV load injection is more significant at 0.7 load factor
duration when compared to 0.4 load factor duration. In Case-2, the percentage of EV load
injection is greater at 0.4 load factor duration when compared to 0.7 load factor duration.
Therefore, by allocating 50% of the energy savings obtained through reconductoring and
allowing the losses to increase, a significant amount of EV charging load can be injected
into the distribution system without violating the minimum voltage limits for both the
test systems.

Table 13. EV load charging capacity per day for 123 bus.

123 Bus
Case-1 Case-2

0.4 Load
Factor

0.7 Load
Factor

0.4 Load
Factor

0.7 Load
Factor

EV load injection/slot
(kW)

1363 2324.75 2341 1658.25

EV load injection/slot (%) 27.28 46.43 46.86 33.19

EV load charging capacity/day
(kWh)

29,502 31,994

EV load charging
capacity/day (%)

35.15 38.12
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Table 14. EV load charging capacity per day for 51 bus.

51 Bus
Case-1 Case-2

0.4 Load
Factor

0.7 Load
Factor

0.4 Load
Factor

0.7 Load
Factor

EV load injection/slot
(kW)

1067.50 1788.25 1742.25 1286.00

EV load injection/slot (%) 43.34 72.61 70.74 52.21

EV load charging capacity/day
(kWh)

22,846 24,226

EV load charging
capacity/day (%)

55.21 58.55

From Tables 13 and 14, it can be seen that the maximum possible EV charging load per
day was 31,994 kWh and 24,226 kWh for 123 bus and 51 bus systems, respectively. The Bat-
tery Energy Storage Systems (BESS) cost was approximately Rs 22,000/kWh ($300/kWh)
[56] and requires huge capital investment for managing EV load per day, which is prac-
tically impossible. Moreover, the required energy is difficult to manage from solar PV
systems at residential locations. Therefore, it is more economical to reinforce the distribu-
tion network with network reconductoring and supply the required power for managing
EV load from the substation.

Figure 12 shows the EV charging load at each node for both the test systems, con-
sidering the allocation of 100% of the available energy savings to either of the load factor
durations. It can be observed from the figures that at a 0.4 load factor, more EV load can be
allocated compared to that 0.7 load factor.

(a) (b)

Figure 12. EV load with 100 % energy savings. (a) 123 bus system. (b) 51 bus system.

The maximum solar PV generation is primarily available during the afternoon hours
and can be used to support peak load during the daytime. From Figure 13, it can be
observed that with solar PV injection minimum voltage profile can be improved and power
loss can be reduced.
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Figure 13. Performance with PV injection. (a) Minimum voltage. (b) Real power loss.

It has to be noted that due to the significant increase in EV load, utilities are required to
improve the capacity of the distribution transformers. On the other hand, if it is expensive
to upgrade the distribution transformers, the distribution transformer overload problems
can be mitigated by limiting the total load on the substation during off-peak hours to the
base case peak value. The total load on the substation includes the distribution system load
and the EV charging load. In the proposed work, the authors assumed that the distribution
transformers were upgraded to meet the EV charging load requirement. Network reconfig-
uration techniques can be applied along with reconductoring to further minimize the real
power losses to avoid transformer overloads. In addition, the burden on the distribution
transformers can be minimized by the optimal placement of shunt capacitor banks and
distributed generators along with network reconductoring and reconfiguration techniques.

9. Conclusions

This article proposed a two-stage methodology for optimum allocation of EV charg-
ers at residential locations utilizing the energy savings gained by the optimal network
reconductoring of distribution systems. In the first stage, the Flower Pollination Algorithm
(FPA)-based technique was used for the optimum network reconductoring of radial distri-
bution systems for minimizing the annual energy losses at the optimum conductor cost.
The distribution system voltage profile was improved, and the real power losses were
reduced to much better values with the proposed FPA-based methodology compared to the
base case and PSO-based algorithms. Compared to the PSO-based approach, the annual
energy and economic savings were improved to a considerably high value at the optimum
conductor cost with the proposed optimum network reconductoring approach.

In the next stage, the EV load allocation at each node of the distribution system was
carried out using a simple heuristic methodology utilizing the part of the total annual
energy savings gained the network reconductoring. The total annual energy savings
were calculated considering the distribution load at three different load factors during a
day. The simulation results show that the maximum EV load can be allocated when the
energy savings are shared equally between off-peak hours at lower load factors during
morning and evening peak hours rather than considering more energy savings during
evening peak hours. The maximum EV load that can be accommodated at each node of
the distribution system satisfying voltage and current constraints was calculated and was
considerably high at a lower load factor considered for the same energy savings. The EV
charging load was distributed among the three most commonly used electric vehicles by
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the consumers at residential locations, i.e., cars, bikes, and scooters. It was observed that
a reinforced distribution network with optimum network reconductoring can satisfy the
charging requirements of a large number of electric vehicles.

The solar PV energy available at residential locations is insufficient for large-scale EV
load penetration. Moreover, the capital investment required for installing a battery energy
storage system is very high to manage the huge EV charging load for residential consumers.
Hence, it is more economical to enhance the distribution system performance using network
reconductoring and supplying the required EV load from the substation. Furthermore,
urban distribution systems are required to accommodate significant EV charging load at
residential locations in the future. Therefore, the distribution systems must be reinforced
through network reconductoring and upgradation of distribution transformers to support
large EV charging load. Smart grid technologies can be effectively used for commercial EV
charging stations that cater to commercial and public transportation such as buses, trucks,
taxies, and heavy vehicles. Additional case studies incorporating smart grid technologies
can be considered as future work for optimal sizing and allocation of commercial charging
stations with the support of energy storage systems, renewable energy sources, and demand
response techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

AIP Annual installment payment
PLi Active power with EV load at ith node
AESC Annual energy savings cost
QLi Reactive power with EV load at ith node
APLC Annual peak loss savings cost
PEV(t) EV battery Charging power
AECONS Annual economics savings
PEVCP Constant power mode EV load power
NB Number of branches in the distribution network
PEVCV Constant voltage mode EV load power
N Number of years of installment
ESEV Energy savings for EV charging per day
M Mantegna algorithm
TLF Annual distribution load h at LF
LF Distribution load factor
PEVEV

min Minimum EV real power load
Ci Cost of the conductor in ith branch in Rs./km
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QEVEV
min Minimum EV reactive power load

BES(t) Instantaneous battery storage capacity
PEVmax

car Maximum power drawn by electric car
Irate Rate of interest
PEVmax

bike Maximum power drawn by electric bike
Ij,LF Current in branch j for the load factor LF
PEVmax

scooter Maximum power drawn by electric scooter
Imax,k Max current capacity of conductor type k
RPLBase

LF Base case real power loss at LF
Ke Cost of energy loss in Rs./kWh
RPLRC

LF Power loss with reconductoring at LF
Kp Cost for peak losses in Rs./kW
RPLBase

Peak Base case peak power loss
Li Length of branch i in km
RPLRC

Peak Peak power loss with reconductoring
L(λ) Levy distribution function
Ri Resistance of the ith branch
M(ω) Mantegna algorithm function
NCar

i Number of cars at ith node
PLEV

i EV load active power at ith node
NScooter

i Number of scooters at ith node
PLBase

i Base case Active power load at ith node
NN Number of Nodes
QLBase

i Base case reactive power load at ith node
Vmax Maximum voltage limit
PLTotal

i Total active power load including EV load
Vmin Minimum voltage limit
QLTotal

i Total reactive power load including EV load
γM Step size controlling factorr
RPLPeak Real Power Loss at Peak Load
γ Annual interest and depreciation factor
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