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Abstract: The recognition of fire at its early stages and stopping it from causing socioeconomic and
environmental disasters remains a demanding task. Despite the availability of convincing networks,
there is a need to develop a lightweight network for resource-constraint devices rather than real-time
fire detection in smart city contexts. To overcome this shortcoming, we presented a novel efficient
lightweight network called FlameNet for fire detection in a smart city environment. Our proposed
network works via two main steps: first, it detects the fire using the FlameNet; then, an alert is initiated
and directed to the fire, medical, and rescue departments. Furthermore, we incorporate the MSA
module to efficiently prioritize and enhance relevant fire-related prominent features for effective fire
detection. The newly developed Ignited-Flames dataset is utilized to undertake a thorough analysis of
several convolutional neural network (CNN) models. Additionally, the proposed FlameNet achieves
99.40% accuracy for fire detection. The empirical findings and analysis of multiple factors such as
model accuracy, size, and processing time prove that the suggested model is suitable for fire detection.

Keywords: disaster management; fire monitoring; fire classification; deep learning; MobileNet;
lightweight model; internet of things; smart cities

1. Introduction

Smart cities experience the far-reaching impacts of unaddressed fires, extending
beyond immediate destruction to encompass socioeconomic and environmental conse-
quences [1,2]. Fires, whether they are wildfires, building fires, or car fires, pose substantial
threats to lives, property, and ecosystems in densely populated and technologically ad-
vanced urban areas. The aftermath of fires in smart cities presents intricate challenges,
affecting human safety, straining municipal resources, and causing economic losses, prop-
erty damage, and environmental degradation. According to the Global Fire Report of
2018, fires impacted a significant number of structures, ranging from 2.5 to 4.5 million,
and caused nearly 62,000 fatalities across 57 countries during the period from 1993 to
2016 [3]. The National Fire Data System (NFDS) stated that from September 2020 to 2021,
there were 24,539 buildings destroyed by fires in Republic of Korea. The fires resulted
in 250 fatalities, 1646 incidents of injury, and 705,960 USD in immediate destruction to
property [4]. Similarly, from September 2020 to 2021, there were 78,219 car fires in Republic
of Korea. These fires caused 461 deaths, 1875 injuries, and 357,609 USD in property destruc-
tion [5]. The damages caused by wildfires have increased in the United States and other
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nations during the last twenty years. From the 1990s onwards, an average of 72,200 forestry
burns resulted in the burning of approximately 7 million acres each year. This number has
continued to rise until the year 2000.

In contrast to structure and wildfires, vehicle fires are the most destructive natural
catastrophes in the natural life cycle. There are various reasons for wildfire, including an
increase in temperature, climate variability, lightning from clouds, sparking from falling
boulders, and summertime friction of dry branches [6]. In 2016, 1161 persons in Southern
Europe were affected by wildfire, resulting in a loss of 5.5 billion USD [7]. In 2016, burning
forests affected a total of 158,290 individuals, marking the third highest figure observed
since 2006; however, it is still below the one million individuals who experienced the
dangerous forest fires in 2007 in Macedonia. The Forestry and Fire Prevention Department
in California estimated that 2018 was among the most lethal years in the history of Cali-
fornia, including 7500 fire incidents that demolished over 1,670,000 acres and more than
100 lives suffered from this [8]. These alarming figures inspired the researchers to build
an efficient system for the early identification and control of fires. To ensure the resilience
and functionality of smart cities, effective fire detection systems are crucial. Integrating
advanced technologies such as visual sensors and Deep Learning (DL) models can prevent
or minimize the extensive consequences of fires, safeguarding lives, property, and the
delicate urban-environmental balance amid increasing urbanization and climate change
challenges. These systems play a pivotal role in ensuring the sustainable growth and
safety of smart cities, aligning with the imperative of environmental sustainability and
urban planning.

Numerous researchers have explored the use of soft computing techniques in com-
bination with conservative fire alert systems (CFAS) and optical sensors to mitigate the
propagation of flames [9]. In CFAS, researchers employed sensing devices such as flame
and smoke sensors that involve direct contact with the fire to anticipate fire occurrences.
However, scalar sensor-based systems fail when they need more information, such as how
much area is on fire, where it is, and the intensity of the fire. Moreover, these sensors
need human interaction, which means that if an alarm sounds off, a person needs to visit
the place for confirmation. To navigate these problems, researchers came up with various
methods by utilizing visual sensors [9,10]. Vision-based approaches are significant for
fire detection. Conservative fire detection (CFD) and DL-based techniques are used in
surveillance systems to automatically monitor fire incidents [11–14].

These automated systems are good because they respond quickly, require less human
intervention, are cheap, and cover a larger area. However, fire detection with TFD-based
techniques is hard and takes a lot of time because TFD-based strategies involve hand-
crafted feature extraction, which is a lengthy process and requires domain specialists [15].
Mainly with TFD-based techniques, it is difficult to detect fires early and set the alarms
because of changes in the lighting, reflections, and the low detection performance [11].
Considering the application of DL models in diverse fields [16,17], including fire detection
in surveillance technology, we incorporated them into our study. While DL offers an end-to-
end feature extraction technique, it is resource-intensive and needs a significant amount of
training data [18]. So, in this paper, we proposed an efficient lightweight FlameNet model
that achieves exceptional detection accuracy and has low false alarm rates, as well as the
ability to be implemented to resource-constrained tools (RCT):

• Considering the problems of IoT devices in the real world concerning limited com-
puting power, we present a lightweight deep model that works effectively when
compared to the well-known lightweight models such as NASNetMobile and Effi-
cientNet; the proposed FlameNet model achieves higher performance in terms of
accuracy, frames per second(FPS), and small footprint on the disk, while having fewer
trainable parameters.

• To assist the intermediate features, we progressively modified spatial attention (MSA),
which refined the backbone extracted features leading to superior performance. The em-
pirical findings show that our suggested system gave superior performance compared
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to the state-of-the-art (SOTA) models with respect to accuracy, has 24.34% fewer
parameters than NASNetMobile, and, in terms of time complexity, when tested on
Rasberry Pi (RPi) and a central processing unit (CPU), it obtained 8.96 and 10.64 FPS,
respectively, in a real-time environment.

• Different benchmark datasets for fire detection in specific environments can be found
in the literature, but they are not adaptable to a wide range of situations. To address
this issue, we developed a new composite dataset that includes challenging images
of various fire and non-fire categories. This dataset is collected from popular public
datasets to ultimately train our model on diverse data. Furthermore, as part of our
evaluation of our proposed dataset, we re-implemented SOTA studies to test its
performance and diversity. As a result, we were able to compare different approaches
and evaluate how well they performed in addressing the challenges we faced in
our dataset.

The rest of this paper is organized in the following manner: in Section 2, we have
discussed a brief description of the literary work as well as its benefits and drawbacks;
Section 3 explains the internal, in-depth information regarding the proposed dataset as
well as about the architecture of our proposed method; and experimental findings are
given in Section 4; lastly, Section 5 concludes the paper with findings and suggestions for
future directions.

2. Related Work

Fire is an atypical occurrence that has the potential to result in significant loss of life
and physical harm, as well as swift and extensive destruction of valuable assets. In order
to avoid the dangers of fire, numerous methods were used to monitor and control fires in
cities to save lives and property. CFAS and vision sensors-based systems are two things
that researchers have decided to make to the field of detection systems in recent times.
Different types of sensors, including smoke, temperature, and photosensitive sensors, are
employed by CFAS to detect Fires [19–22]. However, CFAS methodologies are required
to be close to the fire, like in an enclosed area, and they do not work if the fire is burning
from a long distance, like in an outdoor area. Moreover, the CFAS cannot provide any
further details about the status of the fire or how fast it is burning. The CFAS methods
need human intervention, such as visiting a fire site to validate the presence of fire in the
occurrence of an alert. Numerous visual sensor-based approaches for fire detection have
been introduced in the literature to address these limitations [23,24]. There are two main
types of vision-based systems for fire detection: those that rely on traditional fire detection
(TFD) and those that use DL-based algorithms. Digital image processing and pattern
recognition techniques are frequently employed in methods based on TFD. For example,
the authors used temporal, spatial, and spectral analysis as well as other methodologies
to find the fire areas in an image [25]. However, the approach they used is based on the
presumption that fires possess an atypical shape, which is not always accurate since objects
in motion can also undergo structural transformations. TFD techniques include wavelet
analysis and the quick Fourier transform [26].

Moreover, in another study, authors used mobility assessment, shape diversity, color
characteristics, and bag-of-word for classifying fires [27]. Antecedent methods also used a
gray-level co-occurrence matrix and an oriented gradient histogram in combination with
SVM [28]. In TFD-based approaches, manually crafted feature extraction is a complicated
and time-intensive task, and these approaches are unable to accomplish a high level of
precision. DL-based approaches that use Closed-Circuit Television (CCTV) surveillance
systems are very important for fire detection. The inclusion of automated end-to-end
acquisition of features enhances the intuitiveness and efficiency of such models. Particularly
in comparison to TFD, the DL methods performed better because they were more accurate
and had fewer erroneous alarms. For example, authors employed a custom-built CNN
framework that could be used to identify fire and smoke [29]. They used a small sample of
images to evaluate the performance, but they failed to compare those results to any SOTA
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approach. In another follow-up study, the authors employed two pre-trained SOTA CNN
models, namely, VGG16 and ResNet50, for the detection of the fire. A CNN-based approach
is employed to detect flames across surveillance networks for disaster risk monitoring and
prevention [13], in which the author uses a pre-trained AlexNet model.

In addition to this, they exhibit an intelligent means of selecting a camera according
to its priority. For this research study, the main concern with their work is that their
suggested approach takes a lot of time and is hard to set up on RCT. Scholarly researchers
expanded their work and utilized GoogLeNet-like neural architecture to find fires quickly
in surveillance videos. This assisted them in navigating the time complexity of the model
and improve its performance [30]. They did experiments on two different benchmark
datasets and obtained more accurate results than SOTA techniques. In the subsequent
procedure, researchers implied an efficient lightweight SqueezeNet framework for detecting
and locating fires quickly and efficiently in surveillance systems [31]. In this work, they also
figured out how intense the fire was and what components were being noticed. In another
study, authors managed to show a deep CNN-based technique that uses less energy and can
find early signs of smoke in both regular and foggy situations [11]. Furthermore, authors
also came up with lightweight deep models [32,33] based on MobileNetV2 for monitoring
fires in uncertain situations [34], where a light DCNN with a few intense convolution layers
is used, making it costly to run on computational devices. They shrink the dimension of the
created model to 3 MB without sacrificing its competence and achieving SOTA precision
on two baseline datasets [32]. Additionally, the authors presented advanced convolutional
generative adversarial neural networks for the detection of fire that were trained on actual
images, incorporating the random vectors. In this case, the discriminator was trained on its
own by utilizing smoky images without the generator [34].

The authors of [35] introduced a technique that uses a strong color model to identify
suitable burn areas. In their proposed study, they apply a motion-intensity-aware approach
for the analysis of motion to distinguish between fire and non-fire zones based on spa-
tiotemporal properties. Researchers in [36] proposed a deep silence network that can find
the areas of an image where there are forest fires. By using the concept based on CNN,
they combined the salient areas at the pixel and object levels to generate a hazy saliency
map. In another study, the authors introduced a vision transformer-based approach for fire
detection, in which a picture is segmented into patches of uniform size to establish a spatial
correlation. In another follow-up study, the authors employed channel attention with other
backbone feature extractors [37]. They used the same assessment procedures as [30,33] and
tested their approach on two baseline datasets. The authors presented a forest fire detection
algorithm built on top of a fuzzy-based optimized thresholding and spatial transformer
network (STN)-based CNN [38], in which the softmax layer is employed for categorizing
fire scenes using a spatial transformer network and then an adaptive threshold operation
relying on an entropy function. A summary of the included literature is presented in Table 1.
Based on previous research, numerous DL-based methods for the detection of fires have
been designed and proven to yield convincing results. However the reliability of detection
must be enhanced and the number of false alarms needs to go down in order to save lives
and property. Moreover, these models are hard to compute and need effective GPUs and
TPUs in order to do so. To address these issues, we proposed an efficient lightweight
CNN-based model, FlameNet, for the detection of fire that has lower false alarm rates, high
detection accuracy and is deployable via RCD.
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Table 1. Summary of the included literature. The X mark indicates that dataset is publicly available
while × represents datasets with restricted access.

Ref. Overview Dataset Used Dataset
Availability Method Condition

[27] Author propose a method that is able to detect fires by analyzing videos
acquired by surveillance cameras videos dataset × ML base method Indoor,

outdoor
[28] Author proposed system to detect fire under surveillance area image dataset × SVM Indoor
[29] Author proposed CNN for video fire and smoke detection videos dataset × CNN Outdoor

[31] Author proposed CNN architecture, inspired by the SqueezeNet architec-
ture for fire detection, localization, and semantic understanding

Foggia, Chino
dataset X Custom-CNN Indoor,

outdoor

[33] Author proposed an efficient CNN-based system for fire detection in
videos captured in uncertain surveillance scenarios image dataset X CNN Indoor

[34] Author propose a vision-based method to detect smoke using Deep Con-
volutional Generative Adversarial Neural Networks (DC-GANs)

video clips
dataset X DCGAN Outdoor

[35] Author proposed a robust ICA K-medoids-based color model is developed
to reliably detect all candidate fire regions in a scene VisiFire, AzarFire

dataset
X

ICA-K-medoids based

Indoor,
outdoor

[36] Author proposed video smoke detection method based on deep saliency
network Video dataset × deep saliency network Outdoor

[37] Author presents a custom framework for detecting fire using transfer
learning with SOTA CNNs trained over real-world fire breakout images combine dataset X Attention base CNN Indoor

[38] Author proposed an STN-based CNN and fuzzy entropy optimized
thresholding for forest fire detection images dataset × STN-based CNN Outdoor

[39] Authors employed neural networks to swiftly identify instances of fire and
smoke in both indoor and outdoor settings, utilizing video footage

fire, smoke
images X RCNN, LSTM Outdoor

[40] Authors combined manual features and DL features to develop a rapid
and precise forest smoke detection system smoke images × DL Outdoor

3. Proposed Methodology

This section represents the details about the dataset collection and the proposed model
to address the problem of accurate fire detection. The dataset presented in Figure 1 is
curated by combining various well-known, publicly available datasets to represent diverse,
complex, and confusing samples, ensuring the model’s robustness and generalizability.
The proposed FlameNet framework is presented in Figure 2. In the training phase, the
FlameNet is trained on the newly curated dataset, i.e., Ignited-Flames, and the most
prominent deep features are extracted, while in the testing phase, the model predicts the
label for the input image.
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Figure 1. Sample images from our Ignited-Flames dataset. In the first row, we included the sample of
different fire samples, and in the second row, we presented non-fire images.
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Figure 2. The proposed FlameNet framework for efficient fire detection.
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3.1. Dataset Collection

Acquiring appropriate data for the purpose of evaluation poses a significant challenge,
necessitating a substantial investment of time. The current datasets are kind of small and
only look at specific situations, such as indoor or outdoor situations. However, we want
our models to be good at understanding things and not getting things wrong too often.
That is why we created Ignited-Flames , a composited dataset, by combining different
challenging images from the benchmark dataset. We collected different categories of
fire and non-fire images from BoW [41], which has 121 fire and 107 non-fire images, SV-
Fire [1], which has 1000 fire and 500 non-fire images, Foggia [13], which has 7018 fire
images and 7018 non-fire images, Saied Fire [42], containing 755 fire and 244 non-fire
images, and Sharma datasets [13], with 110 fire and 541 non-fire images to make a new and
challenging composite dataset. The overall statistics of the Ignited-Flames dataset are listed
in Table 2.

Table 2. Overall statistics of the newly created composite data with a total of 9004 fire images and
8402 non-fire images.

Ignited-Flames Dataset Training Testing Validation Total

Fire 6456 1811 737 9004
Non-Fire 6076 1671 655 8402

This article demonstrates a few examples of images and gives some general statistics
about the new dataset. There are 17,406 images in the Ignited-Flames dataset in total,
of which 9004 are fire images and 8402 are non-fire. The proposed Ignited-Flames dataset
is split into three distinct categories: testing, validation, and training. The training set
encompasses 70% of the entire dataset, with the validation set comprising 20%, and the
remaining 10% designated for the testing set (Figure 1) shows a few examples from the
recently assembled dataset.

3.2. Deep Features Extraction

In the field of sophisticated video surveillance, CNNs are employed for a wide variety
of tasks, including plant disease detection [43–45], video summarizing [46], and crowd
counting [47], as well as object detection [48] and vehicle re-identification [49]. The CNN
structure consists of three major components: the convolution layer (CL), the pooling layer
(PL), and the fully linked Layer (FL). A deep CNN has only one input and many hidden,
fully connected, and Softmax layers [50]. The extracted feature maps are down-sampled
using mean, minimal, and maximal pooling for dimension reduction.

It can be hard to choose the right architecture for a particular scenario to achieve
satisfactory outcomes while maintaining computational complexity [51]. Following the
proposed architecture, every CNN comes with its own pros and cons. For example, VGG16
and AlexNet architectures are simple to design and build. The AlexNet architecture was
represented in the ImageNet competition, and since then it has become standard for
DL architecture. Adding more CLs to a network is supposed to improve its efficiency,
and the VGG model supports this claim. As a strong feature extractor capable of handling
huge datasets and challenging background identification tasks, the authors recommended
VGG16, a 16-layer design that uses the same filter size and has a significant classification im-
provement.

Despite their various benefits, VGG19 and VGG16 are not resource-efficient in terms of
parameters. CNN architectures such as EfficientNetB0, MobileNetV1, and NASNetMobile
exhibit enhanced robustness and cost-effectiveness. MobileNetV1 and NASNetMobile are
specifically engineered to ensure prompt and predictable response times, making them well-
suited for applications requiring rapid processing [52]. These architectures offer significant
advantages in terms of computational efficiency, making them favorable choices in various
scientific and professional contexts [53]. Taking into account real-world implementation,
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resource computing cost, and suppression of restrictions in existing lightweight models,
this paper offers FlameNet, an effective lightweight fire classification and detection model.
The proposed FlameNet is based on the MobileNetV1 and is built by using depthwise sepa-
rable convolutions, with the exception of the first layer, which employs a full convolution.
Every layer in the model is accompanied by batch normalization and the Rectified Linear
Unit (ReLU) nonlinearity, except for the final fully connected layer. This last layer lacks
nonlinearity and directly connects to a softmax layer for classification. Considering both
depthwise and pointwise convolutions as separate layers, the MobileNetV1 model consists
of 28 layers.

The MobileNet neural layers utilize 3 × 3 and 1 × 1 kernel sizes. The input size
provided to the model is 224 × 224 with 3 channels for RGB image format. Global average
pooling (GAP) is utilized to reduce the dimensionality and obtain the average values of
different features. Additionally, the model incorporates a GAP layer to obtain average
feature values and a concatenation layer for combining features. The convolutional strides
used have sizes of 1 and 2. ReLU serves as the activation function across the model’s
levels. The dropout rate is scaled to 0.2 to prevent over-fitting. The Softmax is added to
the final layer and corresponds to the two classes, namely, fire and non-fire. The dense
layers of MobileNetV1 are eliminated, resulting in the extraction of a feature map with
dimensions of 7 × 7 and 1024 channels. These extracted features are represented by Ω
which is mathematically shown in Equation (1):

Ω = (Φ, (α))(x), (1)

where Φ represents feature vectors (7× 7), α represents channels, and x is input. The feature
vector Ω obtained from Equation (1) involves a comprehensive range of data, including the
object’s configuration, border details, hues, shapes, and other relevant information. Never-
theless, these are less representative features, and utilizing them directly leads to inaccurate
results, especially in complex scenarios. The Ω feature map is further improved through
the utilization of MSA. This module effectively captures the most essential spatial patterns.

3.3. Modified Spatial Attention

We introduced MSA to further refine the intermediate features extracted from the
backbone network. A spatial attention map is generated by exploiting the inter-spatial
relationship of features. In contrast to channel attention, spatial attention directs its focus
toward the spatial regions containing informative components. In order to compute the
spatial attention, we first employ average and max pooling operations. The outputs of the
operations are then fused effectively to generate a refined feature descriptor. The utilization
of pooling operations has demonstrated effectiveness in highlighting informative regions.
The spatial module exploits the inter-spatial connections among features. In contrast to
the channel attention mechanism, the MSA is designed to prioritize the identification of
the most critical region, thereby enhancing the capabilities of the intermediate features.
The inclusion of pooling operations along the axis is an effective strategy for emphasizing
regions of high information content. The application of these two pooling operations results
in the generation of enhanced features. The MSA is depicted in Figure 3.

ΩMaΣ = Avg− P( f ) (2)

ΩMaλ = max− P( f ), (3)

where Σ represents Avg and another notation, λ, represents max. Afterward, the feature
maps that have been generated are merged through an addition operation and then sub-
jected to convolution by a convolutional layer, resulting in the creation of a two-dimensional
SA feature map. In the MSA module, we incorporated two convolutional layers, which
were subsequently followed by the ReLU activation function. The initial layer employs
a 1 × 1 convolution, while the second layer implements a 3 × 3 convolution. Instead of
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employing dilated convolution as suggested in the previous research [54], we chose to
utilize standard convolutions. The modification is validated empirically.

MaP( f ) = (⊗( f 1×1(⊗( f 3×3ΩMaΣ + ΩMaλ))) (4)

Here, the symbol f denotes the size of the filter employed in the convolutional layer
of the MSA module. The MSA map, denoted as MaP( f )GAP, can be derived by applying
the GAP operation on the feature maps of MaP( f ). Subsequently, the output of the GAP
operation is concatenated with the output of the function f. This process is illustrated below.

MaP( f )GAP = GAP( f ) (5)

fs pa = Θ[MaP( f )GAP, f ]. (6)

Following the concatenation operation, the resulting feature maps, denoted as fs pa,
undergo batch normalization. Afterward, we combine the feature maps normalization with
Ω to yield fs pa f :

fs pa f = ⊗[Batchnormal, Ω]. (7)

Subsequently, the fs pa f features were propagated to a dense layer containing 100 neu-
rons. Ultimately, a softmax is implemented to categorize the input images based on their
respective classes.

Figure 3. The architecture of the proposed modified spatial attention.

FlameNet incorporates two main primary parts. In the initial part, fire and non-fire
images from the input dataset are fed into the proposed network, which detects and
classifies fires accurately. During the subsequent stage, the model proceeds to execute
a course of action in accordance with the anticipated classification of the input image.
In the event that the anticipated classification denotes a fire occurring within a building
edifice or a fire transpiring within a vehicle, a notification is transmitted to the emergency
response agency in closest proximity, thereby facilitating expeditious intervention. Figure 2
presents the suggested framework of our proposed model. Before designing the new
FlameNet framework, we first look at how well well-known ImageNet and pre-trained
CNN architectures such as VGG16, ResNet50, MobileNetV1, and NASNetMobile work.

4. Results and Discussions

This section focuses on assessment measures and evaluation metrics in detail, as well
as discussing the newly created dataset along with the quantitative and qualitative results.
Initially, the experimental setup, as well as the performance measurements, are discussed;
then, a discussion on the Ignited-Flames dataset results is presented, and finally, the findings
are evaluated. All of the models, including our proposed network, were trained with a low
learning rate over a total of 10 epochs to make sure they recalled most of what they had
learned. In Section 4.3 of the article, SOTA models are used to provide a comparison with
the suggested network, and the key hyper-parameters utilized in these tests are outlined.
Based on the findings, every model was retrained with its own default input size and a
batch size of 32, and the adaptive moment estimation (Adam) optimizer was set to 1× 10−5.
The tests were performed on the Windows 10 operating system with an NVIDIA RTX 2070
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Super GPU with 8 GB of onboard memory, a Keras DL framework, and TensorFlow for the
backend using the 3.9.12 Python version. As shown in the following Equations (8)–(11),
different numbers of metrics, including accuracy, recall rates, and F1-measure values, are
used to assess how well the proposed model performs.

4.1. Evaluation Metrics

In the context of problems with classification, accuracy is commonly defined as the
proportion of correct predictions made by the model across all categories of predictions.

Accuracy =

(
TP + FN

TP + TN + FP + FN

)
, (8)

where the terms TP, TN, FP, and FN represent True Positive, True Negative, False Positive,
and False Negative, respectively. Precisionis a metric that shows the proportion of the
dataset that is marked as “Fire” is actually fire. The predicted positives and negatives (TP
and FP) are the images that are predicted to be fire, and the images that show fire are TP.

Precision =

(
TP

TP + FP

)
(9)

The recall is a metric that indicates the proportion of observations in a dataset that the
model anticipated to have a fire. The expected true positives and fire pictures are denoted
by TP.

Recall =
(

TP
TP + FP

)
(10)

The F1-score is the calculation of the precision and recall harmonically.

F1-score = 2×
(

Precision× Recall
Precission + Recall

)
(11)

4.2. Performance Analysis with State of the Art Networks

This section compared the proposed network to various CNN-based architectures that
had already been trained for the purpose of fire recognition and detection. These models
were analyzed in terms of the FPR (False Positive Rate), FNR (False Negative Rate) as
presented in Table 3. Addingmore, in terms of number of parameters, precision, recall,
F1-score, and accuracy, as presented in Table 4. Additionally, the proposed Ignited-Flames
dataset was evaluated by re-implementing SOTA studies as listed in Table 5. Xception
demonstrates FPR and FNR scores of 0.0994 and 0.0195, respectively, achieving an accuracy
of 93.69%. ResNet50 exhibits impressive metrics with FPR, FNR, and accuracy values
of 0.0733, 0.0464, and 93.98%, respectively. EfficientNetB0 achieves a notable FPR of
0.0199, FNR of 0.0188, and accuracy of 95.98%. Similarly, NASNetMobile attains FPR, FNR,
and accuracy rates of 0.0122, 0.01688, and 96.04%, respectively. With VGG16, an accuracy
of 98.63% is achieved, accompanied by FPR and FNR of 0.0017 and 0.0251, respectively.
Notably, our proposed model surpasses SOTA techniques, attaining the most favorable
outcomes with FPR, FNR, and accuracy rates of 0.0022, 0.0168, and 99.40%, respectively.
This shows our model’s superior performance in terms of minimized false alarm rates
and highest accuracy. Xception and ResNet50 have low accuracy, which is 93.69% and
93.98%, EfficientNetB0 and NASNetMobile obtained an accuracy of 95.98% and 96.04%, but
NASNetMobile is lighter than EfficientNetB0 in terms of parameters. Similarly, VGG16 and
our proposed network have the highest accuracy, which is 98.63% and 99.40%, as compared
to the previously discussed models, but our proposed method is the most accurate and
lightweight. A comparison between the proposed approach and VGG16 indicates that
VGG16 findings are comparable to those of the proposed network. However, the key
difference is the highest number of parameters; VGG16 contains 14.72 million parameters,
while our proposed network has 3.23 million. Table 4 represents the finding acquired
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by using pre-trained models. These pre-trained models show better efficiency with a
comparatively low false alarm rate. However, there is still a high prevalence of incorrect
predictions that require improvement.

Table 3. FPR and FNR of FlameNet against SOTA. The downward arrow (↓) shows lower value is
better while the upward arrow (↑) indicates that higher is better.

Model FPR ↓ FNR ↓ Accuracy (%)↑

Xception 0.0994 0.0195 93.69
ResNet50 0.0733 0.0464 93.98

EfficientNetB0 0.0199 0.0188 95.98
NASNetMobile 0.0122 0.0168 96.04

VGG16 0.0017 0.0251 98.63
FlameNet 0.0022 0.0168 99.40

Table 4. Evaluation of our proposed model by using the same batch size of 32 and input size of
224 × 224 against the SOTA models using the Ignited-Flames dataset.The downward arrow (↓)
shows lower value is better while the upward arrow (↑) indicates that higher is better.

Model Classs
Classification Report Parameters

(M) ↓Precision Recall F1-Score Accuracy (%)↑

Xception [55] Fire 0.99 0.89 0.93 93.69 20.87 MNonFire 0.86 0.98 0.92

ResNet50 [56] Fire 0.96 0.92 0.94 93.98 23.59 MNonFire 0.92 0.96 0.93

EfficientNetB0
[57]

Fire 0.94 0.98 0.96 95.98 40.52 MNonFire 0.98 0.94 0.96

NASNetMobile
[58]

Fire 0.99 0.93 0.96 96.04 4.27 MNonFire 0.92 0.99 0.95

VGG16 [59] Fire 0.98 1.00 0.99 98.63 14.27 MNonFire 1.00 0.97 0.99

FlameNet Fire 0.98 1.00 0.99 99.40 3.23 MNonFire 1.00 0.98 0.99

Table 5. Results of different SOTA studies on the proposed Ignited-Flames dataset. The downward
arrow (↓) shows lower value is better while the upward arrow (↑) indicates that higher is better.

Method Classs
Classification Report Parameters

(M) ↓Precision Recall F1-Score Accuracy (%) ↑

Dilshad
et al. [1]

Fire 0.95 0.77 0.85 87.38 9.99 MNonFire 0.83 0.96 0.89

Yar et al. [60] Fire 0.94 0.93 0.93 93.11 11.17 MNonFire 0.93 0.93 0.93

Sharma
et al. [13]

Fire 0.93 1.00 0.96 96.18 23.59 MNonFire 1.00 0.93 96

Khan
et al. [61]

Fire 0.98 0.98 0.98 98.28 20.02 MNonFire 0.98 0.98 0.98

As a result, this study investigated the accuracy and erroneous prediction of a fine-
tuned and pre-trained CNN architecture (MobileNetV1). Figure 4a shows the training
accuracy and validation accuracy while Figure 4b shows the training loss and validation
loss of our proposed network. Accuracy and loss are represented on the vertical axis, while
the horizontal axis indicates the number of epochs completed. The results represented
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in Figure 4 showcase the effectiveness of our proposed network in the domain of fire
detection and classification. The training and validation accuracy line graph of the model
changes as the number of training and validation iterations varies, as represented in
Figure 4a,b. Similarly, the values of training and the validation loss decrease from 0.9 to
0.04, as presented in Figure 4b. Additionally, Figure 5, we can see the confusion matrices
for all of the SOTA models that were trained using the Ignited-Flames dataset. The red
diagonal relates to TP, while the saturation indicates the correct identification. The proposed
network has a higher overall classification accuracy than the SOTA models, despite the
incorrect prediction of certain images in both fire and non-fire categories.

Additionally, we conducted an empirical evaluation of several DL models for the
classification of fire and non-fire images on the Ignited-Flames dataset, as given in Table 5.
The models examined are ResNetFire by Sharma et al. [13], LW-CNN by Yar et al. [60],
DeepFire by Khan et al. [61], and E-FireNet by Dilshad et al. [1]. The results revealed
that E-FireNet achieved an accuracy of 87.38% with a precision of 0.95, a recall of 0.77,
and an F1-score of 0.85 for the “Fire” class. For the “NonFire” class, E-FireNet achieved
a 0.83 precision, 0.96 recall, and 0.89 F1 score. On the other hand, RestNetFire achieved
impressive precision and recall scores of 0.93 and 1.00, respectively, with an F1-Score of
0.96 for the “Fire” class. Similarly, for the “NonFire” class, RestNetFire demonstrated a
precision of 1.00, a recall of 0.93, and an F1-Score of 0.96. LW-CNN and DeepFire depict
high precision, recall, and F1-Score values for both fire and non-fire classification.

(a) Accuracy (b) Loss

Figure 4. Line graphs illustrating accuracy and loss during training and validation of the proposed
FlameNet method.

4.3. Time Complexity Analysis

To evaluate the efficacy of a deep model, its performance and deployment capability
must be examined in real time across several systems, such as Raspberry Pi (RPi) and CPU.
The parameters of the RPi and CPU used to analyze the FPS of our proposed network
are specified in Section 4. The FPS value of our presented model, by using RPi, is 8.96;
while in the case of the CPU, this value increased to 10.64. In Figure 6, we evaluated
our presented model by comparing its performance in terms of FPS with several baseline
models. By using the RPi and the CPU, the experimental results show that the FPS for
the Xception model is 1.83 and 6.72, respectively. However, for the ResNet50 model, these
values are 1.04 and 7.16, respectively. Similarly, the values for the EfficientNetB0 model
are 2.73 and 8.42. On the other hand, the NASNetMobile model achieved 3.37 in the
case of the RPi and 8.83 for the CPU, and for the VGG16 model, these values are 0.67
and 5.93, respectively. Lastly, for our proposed network, these values are 8.96 and 10.64.
Our presented network outperforms other baseline methods in terms of time complexity,
demonstrating its superior effectiveness. Therefore, in terms of time, our approach proves
to be highly efficient in real-world operations and processes.
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(a) Xception (b) ResNet50

(c) EfficientNetB0 (d) NASNetMobile

(e) VGG16 (f) FlameNet

Figure 5. Confusion Matrices of the different CNN models against our proposed method.
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5. Conclusions

Fire scenario classification using CNN-based smart monitoring systems has been cru-
cial in preventing sociological, ecological, and economic harm. However, existing studies
have primarily focused on accuracy improvement, while giving less attention to model
computation and generalization. This research introduces FlameNet, an efficient network
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for accurately classifying fire and non-fire imagery without neglecting computational effi-
ciency and generalization capabilities. While conducting the comparison with the SOTA
method, our proposed network achieved the highest testing accuracy of 99.40% with fewer
parameters. Moreover, FlameNet achieved a precision of 0.99 with respect to fire and
1.00 with respect to the non-fire class, with a recall of 1.00 in fire and 0.98 in the non-fire
class, and an F1-score of 0.99 in both classes. Additionally, the new Ignited-Flames dataset
was created by combining the challenging fire and non-fire images. Nine CNN models
and the suggested network were used in a series of experiments, and their results were
evaluated with regard to the accuracy, parameters, and FPS on two local systems (RPi
and CPU) using the testing data. FlameNet does face certain limitations and challenges
in real-world implementation. One notable example is its current focus on binary fire
detection (fire vs. non-fire), rather than precisely localizing the type of fire source, such as
fires on cars, buildings, ships, or trains, among others. In the future, we aim to enhance
FlameNet and address its limitations, enhancing the training data by encompassing a
wider range of fire types and scenarios such as car fire, bike fire, train fire, etc. Another
approach involves annotating the dataset and employing more efficient algorithms such as
Faster CNN or Detectron2 to bolster FlameNet’s fire detection accuracy.
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