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Abstract: In urban settings, the prevalence of traffic lights often leads to fluctuations in traffic patterns
and increased energy utilization among vehicles. Recognizing this challenge, this research addresses
the adverse effects of traffic lights on the energy efficiency of electric vehicles (EVs) through the
introduction of a Multi-Intersections-Based Eco-Approach and Departure strategy (M-EAD). This
innovative strategy is designed to enhance various aspects of urban mobility, including vehicle energy
efficiency, traffic flow optimization, and battery longevity, all while ensuring a satisfactory driving
experience. The M-EAD strategy unfolds in two distinct stages: First, it optimizes eco-friendly green
signal windows at traffic lights, with a primary focus on minimizing travel delays by solving the
shortest path problem. Subsequently, it employs a receding horizon framework and leverages an
iterative dynamic programming algorithm to refine speed trajectories. The overarching objective is
to curtail energy consumption and reduce battery wear by identifying the optimal speed trajectory
for EVs in urban environments. Furthermore, the research substantiates the real-world efficacy of
this approach through on-road vehicle tests, attesting to its viability and practicality in actual road
scenarios. In the proposed case, the simulation results showcase notable achievements, with energy
consumption reduced by 0.92% and battery wear minimized to a mere 0.0017%. This research, driven
by the pressing issue of urban traffic energy efficiency, not only presents a solution in the form of the
M-EAD strategy but also contributes to the fields of sustainable urban mobility and EV performance
optimization. By tackling the challenges posed by traffic lights, this work offers valuable insights and
practical implications for improving the sustainability and efficiency of urban transportation systems.
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1. Introduction

The increasing global concern for energy efficiency and the reduction of greenhouse
gas emissions has catapulted the exploration of methods to optimize the energy consump-
tion of connected vehicles to the forefront of transportation research. As the deployment of
connected vehicles becomes more widespread, their remarkable capacity to communicate
with fellow vehicles, infrastructure, and centralized servers presents a myriad of opportu-
nities to enhance traffic flow dynamics and substantially curtail energy consumption [1].
The optimization of traffic flow has remained an object of intense research interest for
several decades [2,3]. This pursuit has yielded a substantial payoff, promising significant
advancements in road safety and energy efficiency, while simultaneously alleviating the
growing congestion predicament on roads. The advent of connected and autonomous
vehicles, coupled with the rapid expansion of wireless communication technologies, has
paved the way for pioneering prospects in traffic flow optimization.

Beyond the realm of energy consumption optimization, connected vehicles hold im-
mense potential to usher in novel business models and revenue streams for the automotive
industry and the broader transportation sector [4,5]. Armed with the ability to gather and
scrutinize data on driving patterns, vehicle performance, and user preferences, connected
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vehicles lay the foundation for a range of personalized services [6]. These services span
from on-demand car sharing and predictive maintenance to remote diagnostics. As they
give rise to new revenue channels for automotive manufacturers, dealers, and service
providers, the allure of these services lies not only in financial gains but also in the promise
of improved user experiences and elevated customer loyalty.

Delving further into this transformative paradigm, connected vehicles are poised to
serve as catalysts for innovative mobility services, exemplified by the concept of mobility-
as-a-service (MaaS) [7,8]. MaaS ingeniously combines disparate modes of transporta-
tion—ranging from public transit to ride-hailing and bike-sharing—into an intricately
choreographed and personalized user journey. Leveraging their inherent communication
capabilities, connected vehicles empower MaaS providers to harmonize their operations,
slash operational costs, and furnish urban residents with more sustainable, seamless, and
efficient mobility options [9].

The ubiquity of traffic lights in urban landscapes frequently triggers fluctuations in
traffic dynamics and energy utilization for vehicles. These speed variations can have signif-
icant repercussions on the energy efficiency of electric vehicles (EVs) [10,11]. To counteract
the detrimental impact of traffic lights on EV energy efficiency, a Multi-Intersections-Based
Eco-Approach and Departure strategy (M-EAD) is introduced in this paper. The M-EAD
strategy is designed as a cutting-edge solution to address these challenges head-on. It not
only acknowledges the growing prevalence of EVs in urban environments but also recog-
nizes the need for sustainable and eco-conscious transportation systems. By seamlessly
integrating the principles of eco-friendliness, energy efficiency, and traffic optimization,
M-EAD presents a holistic approach to redefining the way EVs navigate through intersec-
tions and urban traffic.The fundamental objective of the M-EAD strategy is to holistically
enhance not only the energy efficiency of EVs but also the overall traffic flow and battery
longevity, all while ensuring a comfortable driving experience.

The M-EAD strategy is comprised of two interlinked stages, each addressing specific
aspects of the energy efficiency challenge. In the initial stage, meticulous planning of eco-
friendly green signal windows takes precedence. This planning is grounded in optimizing
traffic light signal timing to minimize vehicle travel delays. Through the application of
optimization techniques, such as solving the shortest path problem, the M-EAD strategy
aims to orchestrate traffic light cycles that are conducive to smoother traffic flow and
reduced congestion-related energy losses [12,13]. In the subsequent stage, the focus shifts
to refining speed trajectories through a receding horizon framework. This framework
incorporates an iterative dynamic programming algorithm that aims to minimize energy
consumption and diminish battery wear by generating optimal speed profiles for EVs.
By considering both short-term energy efficiency and long-term battery health, the M-
EAD strategy ensures that driving patterns align with sustainable energy consumption
and prolonged battery life. Furthermore, the viability and effectiveness of the M-EAD
strategy are not limited to theoretical scenarios. Real-world validation is achieved through
rigorous on-road vehicle testing under actual road conditions. The results of these tests
provide empirical evidence of the strategy’s ability to enhance energy efficiency, improve
traffic flow dynamics, and extend battery life. This comprehensive approach underscores
the strategy’s potential to revolutionize urban driving paradigms, mitigating the adverse
effects of traffic lights on EVs and contributing to more sustainable and efficient urban
transportation systems.

In this context, the present study introduces an M-EAD (Multi-Objective Energy-Aware
Driving) strategy meticulously designed to elevate the performance of electric vehicles
(EVs) through a meticulously crafted two-stage control framework. This framework deftly
tackles a multifaceted spectrum of objectives encompassing energy efficiency, travel time
optimization, battery life preservation, and driving comfort enhancement. The study
provides several contributions:

• Firstly, a robust formulation for the optimal control problem (OCP) is proposed, taking
into consideration the intricate crossroads traversal of an EV as an all-encompassing
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cost function. This function meticulously balances the goals of energy efficiency, travel
time minimization, battery life preservation, and enhanced driving comfort.

• Secondly, a two-stage M-EAD strategy takes center stage, presenting a highly efficient
mechanism to resolve the multi-objective OCP. The strategy unfurls in two essential
phases—a tactically devised green signal window planning phase and a meticulously
choreographed speed trajectory optimization phase.

• In recognition of the intricate challenges posed by optimizing velocity profiles and
managing energy, we introduce a hierarchical control structure within the Model
Predictive Control (MPC) framework. This architecture serves to mitigate the inherent
complexities associated with these tasks.

• We present an innovative strategy for optimizing velocity that promotes both safety
and energy efficiency. This strategy centers on proactive driving by accurately antic-
ipating forthcoming information, resulting in more effective and energy-conscious
driving behaviors.

• The paper introduces computationally efficient algorithms to address real-time chal-
lenges in achieving energy-efficient outcomes. Specifically, these algorithms tackle
the optimization of velocity and the management of energy independently, providing
real-time solutions that meet energy-efficiency objectives.

Amidst a realm of intricate simulations and meticulous comparative analyses, the
proposed M-EAD strategy shines through as a beacon of efficiency and intelligence. The
outcomes resoundingly illustrate substantial advancements in energy efficiency, notable
reductions in travel times, pronounced elongations of battery life, and a marked elevation
in driving comfort for electric vehicles. The revelations underscore the pivotal role such
strategies can play in spearheading the cause of sustainable transportation while simul-
taneously pioneering the evolution of urban mobility dynamics. In a world increasingly
grappling with the challenges of burgeoning urbanization and a pressing imperative for
environmental sustainability, the M-EAD strategy emerges as a harbinger of a more in-
telligent, efficient, and sustainable transportation fabric for smart cities. The horizon of
transportation is poised for transformation, and the marriage of technological innovation
with enlightened strategies is forging a path toward a future where cities move smarter,
cleaner, and more harmoniously.

The research gap in this study lies in the limited exploration of the M-EAD strategy’s
effectiveness and applicability in diverse urban driving conditions beyond signalized
intersections. While the paper presents compelling evidence of its benefits in the context of
traffic lights and signalized intersections, it remains unclear how the strategy performs in
scenarios involving free driving and interactions with preceding vehicles. Therefore, the
research question that arises is: “How does the M-EAD strategy perform and adapt to a
broader range of urban driving conditions, including free driving and interactions with
preceding vehicles, in terms of energy efficiency and battery longevity, and can its benefits
be substantiated through comprehensive on-road testing in these scenarios?”.

2. Literature Review
2.1. Urban Traffic Management Strategies

Previous studies have extensively investigated various strategies for optimizing ur-
ban traffic management. While traffic light optimization, such as the one proposed in
the M-EAD strategy, has been explored in depth, there is a limited focus on the broader
spectrum of urban driving scenarios. Researchers have primarily concentrated on isolated
intersections or specific traffic conditions, leaving a gap in understanding the strategy’s
adaptability to diverse urban environments. In recent years, there has been a growing
interest in using machine learning for traffic flow optimization in connected vehicles. One
promising approach is to use deep learning algorithms, which can effectively handle the
large amounts of data generated by connected vehicles. Deep learning models, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been
shown to be effective in accurately predicting traffic flow [14]. In a recent study, refs. [15,16]
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proposed a reinforcement learning-based framework to optimize traffic signal timings
at intersections. The study showed significant improvements in the efficiency of traffic
flow, leading to a reduction in average delay time and an increase in average travel speed.
Similarly, ref. [17] proposed a deep reinforcement learning algorithm for traffic signal
control, which demonstrated improved traffic flow efficiency, reducing overall travel time
and fuel consumption. In another study, ref. [18] proposed a hybrid machine learning
approach combining a deep belief network and a support vector machine for traffic flow
prediction. The model achieved high accuracy in predicting traffic flow, which is essential
for effective traffic flow optimization. A similar approach was proposed by [19], where
a deep neural network-based traffic flow prediction model was used to optimize traffic
flow, leading to a reduction in congestion and fuel consumption. Moreover, several studies
have investigated the use of machine learning algorithms for vehicle routing optimization.
For example, ref. [20] proposed a machine learning-based algorithm for vehicle routing
optimization, which achieved significant reductions in fuel consumption and travel time.
In another study, ref. [21] proposed a reinforcement learning-based algorithm for dynamic
vehicle routing optimization, which demonstrated improved vehicle travel time and re-
duced fuel consumption. In a study by [22,23], a deep learning-based traffic flow prediction
model was developed using a long short-term memory (LSTM) network. The model was
trained on real-world traffic data and demonstrated high accuracy in predicting traffic flow,
leading to improved traffic flow optimization. Similarly, ref. [24] proposed a CNN-based
model for traffic flow prediction, which achieved high accuracy and outperformed other
prediction models. In addition to traffic flow prediction, machine learning can also be used
for real-time traffic signal control. In a recent study, refs. [25,26] proposed a reinforcement
learning-based traffic signal control algorithm for connected vehicles. The algorithm was
trained on real-time traffic data and demonstrated improved traffic flow efficiency and
reduced congestion. However, there are some challenges associated with using machine
learning for traffic flow optimization in connected vehicles. One challenge is the lack of data
interoperability between different connected vehicle systems, which can lead to data frag-
mentation and hinder the development of accurate prediction models. Another challenge is
the potential for bias in the data, which can result in inaccurate predictions and sub-optimal
traffic flow optimization. To address these challenges, researchers have proposed various
solutions, such as developing interoperable data standards and using ensemble learning to
combine different prediction models [27,28]. The pursuit of eco-driving control solutions
has prompted considerable research, with a focus on diverse driving scenarios. Scholars
have directed their attention toward tailoring strategies to specific contexts. For instance,
several studies, including those by Zhuang et al. [29], Ding and Jin [30], and Mello and
Bauer [31], delve into the intricacies of cruising control during free-driving conditions. Con-
versely, Zhang et al. [32], He et al. [33], and Shao and Sun [34] have devoted their efforts to
refining car-following control strategies for vehicles trailing preceding counterparts. The
realm of signalized intersection crossing has drawn considerable interest as well, prompting
research contributions by Katsaros et al. [35], Hao et al. [36], Sun et al. [37], Han et al. [38],
Lin et al. [39], and Dong et al. [40]. These endeavors primarily aim to optimize vehicle
behavior when encountering traffic signals, thereby minimizing energy consumption and
promoting efficiency at intersections. Addressing the complexities of mixed driving sce-
narios, Xie et al. [41] and Wegener et al. [42] have ventured into the challenging domain
of diverse traffic environments. Their work introduces an energy-economy speed opti-
mization approach that concurrently ensures safe inter-vehicle distances in varied driving
contexts. Meanwhile, Dong et al. [43] and Yang et al. [44] have enriched the concept of Eco-
Approach and Departure (EAD) strategy by proposing enhancements that enable vehicles
to navigate intersections without halting, factoring in the discharge of vehicle queues.

2.2. Free Driving Scenarios

Free driving, where vehicles navigate without direct traffic signal guidance, is a
common occurrence in urban settings. Few studies have systematically addressed how
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eco-friendly strategies, such as M-EAD, can enhance energy efficiency during free driving.
Understanding how the strategy can autonomously optimize EV performance in such
scenarios is crucial for comprehensive urban traffic management. However, the landscape
of urban traffic is inherently dynamic and unpredictable, contributing to the occurrence
of mixed driving scenarios. The distribution of intersections and the sporadic presence of
dynamic preceding vehicles magnify the complexity [45]. In such scenarios, vehicles may
contend with a blend of conditions, including free driving, signalized intersection crossings,
or signalized intersection crossings with proximate leading vehicles. Consequently, the
conventional approach of isolated scenario-specific strategies may fall short in addressing
the diverse challenges posed by the intricate urban traffic environment. To bridge this gap,
this review underscores the need for comprehensive solutions that encompass a wider
spectrum of driving situations. The proposed Multi-Intersections-Based Eco-Approach and
Departure strategy (M-EAD) introduces a novel perspective by tackling the complexity of
mixed driving scenarios. By encompassing free driving, signalized intersection crossings,
and intersections with preceding vehicles, the M-EAD strategy embraces the multifaceted
nature of urban traffic conditions. This inclusive approach aims to enhance energy effi-
ciency, traffic flow, and battery longevity while accounting for the inherent randomness
of driving scenarios. In doing so, the M-EAD strategy emerges as a promising contender
to address the intricate energy optimization challenges faced by electric vehicles in urban
traffic contexts cite53. In the quest for more effective eco-driving control strategies, it is
evident that existing approaches tend to operate within specific and isolated driving sce-
narios. While these strategies have yielded valuable insights and optimizations tailored to
particular contexts, they may inadvertently overlook the synergistic opportunities that arise
from the interplay of diverse driving conditions. The fluid nature of urban traffic necessi-
tates a more holistic approach that transcends isolated scenarios and considers the intricate
connections between them. The proposed Multi-Intersections-Based Eco-Approach and
Departure strategy (M-EAD) bridges this gap by embracing the randomness and variability
inherent in urban traffic environments. By encompassing the spectrum of free driving, sig-
nalized intersection crossings, and intersections with leading vehicles, the M-EAD strategy
positions itself as a versatile solution that not only optimizes energy consumption but also
accounts for the nuanced dynamics between different driving scenarios. Through this inte-
grated lens, the M-EAD strategy emerges as a transformative approach that can potentially
revolutionize the field of eco-driving control, paving the way for more adaptable, resilient,
and efficient electric vehicle operation in urban settings. Table 1 presents a comparison of
the state-of-the-art with the proposed system.

Table 1. Comparison of the results with previous studies.

Research Aspect Presented Study
(M-EAD) Previous Study

Research Problem
Addressing energy efficiency
challenges caused by traffic
lights in urban EVs.

Various urban traffic
management strategies,
but limited focus on
EV energy efficiency [47].

Research
Methodology

Proposed M-EAD strategy,
consisting of signal window
optimization and speed
trajectory refinement,
substantiated through on-road
vehicle tests.

Varied methodologies,
including signal timing
optimization and traffic
flow models [48].
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Table 1. Cont.

Research Aspect Presented Study
(M-EAD) Previous Study

Research Result

Achieved a 0.92
reduction in
energy consumption and 0.0017%
battery wear.

Diverse results based on
specific strategies, often
without EV specific
performance metrics [49].

Contribution to
Science

Offers a comprehensive
solution to
enhance urban EV
energy efficiency
under traffic
light conditions.

Addresses specific aspects
of urban traffic management but
may not directly
focus on EVs [50].

Contribution to
Practice

Provides a practical
strategy for
improving EV performance
in urban
traffic scenarios.

Offers insights into
urban traffic
management but
may not directly
benefit EVs [51].

Practical
Implications

Benefits EV users
by enhancing
energy efficiently, battery longevity,
and travel comfort.

Enhances overall
traffic flow and
may indirectly benefit EVs,
depending on
traffic conditions [52].

3. Material and Method

In this section, we commence an exhaustive exploration of a meticulously curated
driving scenario tailored specifically for connected electric vehicles (EVs) navigating a
predefined route intricately weaving through a sequence of strategically positioned sig-
nalized intersections. Throughout the entirety of the proposed system, we introduce and
emphasize a recurring and pivotal concept referred to as the “green window”. This con-
cept, of paramount importance to our methodological framework, signifies the temporal
duration during which vehicles can seamlessly traverse intersections without necessitating
a halt, thereby exerting a direct influence on energy efficiency optimization and travel time
enhancement. Moreover, this system delves extensively into the complex landscape of
multiple intersections, where the intricacies of urban traffic are considerably amplified by
the presence of these critical traffic control nodes. We diligently scrutinize the interactions
and dynamic phenomena that transpire as vehicles approach, negotiate, and subsequently
depart from these intersections. These phenomena are thoroughly examined from the van-
tage point of connected EVs. As these vehicles seamlessly synchronize with the evolving
signal phases and green windows, an intricate choreography unfolds—one brimming with
potential to redefine urban mobility by adeptly harmonizing energy efficiency, traffic flow,
and the overall driver experience. To establish a robust underpinning, vehicle dynamics
models occupy a central role. These models encompass the nuanced interplay of forces,
propulsion mechanisms, and vehicle-specific characteristics governing the behavior of
EVs. By seamlessly incorporating these meticulously constructed models into our ana-
lytical framework, we provide a holistic and realistic portrayal of how connected EVs
interact within their dynamic urban environment and with each other. The synergistic
relationship between these computational models and dynamic variables, including signal
phase timings and green windows, enables us to cultivate a comprehensive understanding
of the intricate dynamics characterizing urban driving scenarios. As we traverse these
erudite sections, a comprehensive tapestry unfolds, intricately woven from the threads of
meticulously crafted driving scenarios, the temporal concept of green windows, the com-
plex realm of multiple intersections, and intricately constructed vehicle dynamics models.
This comprehensive exploration sets the vital foundation for the innovative strategies and
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conceptual frameworks that ensue, collectively aimed at catalyzing a paradigm shift in
energy-efficient urban mobility.

3.1. Models for Multiple Signalized Intersections

In this part, we present the driving scenario for connected electric vehicles (EVs)
that involves navigating through multiple signalized intersections along a predefined
route. To simplify the discussion, we refer to the green traffic signal interval as the “green
window” throughout the paper. We also provide models for multiple intersections and
vehicle dynamics.

We outline a general route denoted as R = F, S, as depicted in Figure 1. This route
comprises Nt signalized intersections. Within this context, F represents the framework of
the route, while S = {Sk|k ∈ I}, with I = 1, 2, ..., Nt, constitutes the ensemble of all traffic
signals. We define Sk as the subset corresponding to the kth traffic signal, encompassing
its position denoted as Sk, along with its Signal Phase and Timing (SPaT) information:
Sk = Sk, Tks, Pk, Tkg, Tkr, Ck. Here, Tks signifies the initial indication of the transition time, Ck
denotes the cumulative count of traffic signal cycles, and Pk signifies the initial indication
of the traffic signal state (Pk = 1 for green and Pk = 0 for red). The green and red signal
intervals are respectively represented by Tkg and Tkr (with the yellow signal being treated
as red for safety considerations).

Figure 1. Overview of the presented system.

Equipped with a vehicle-to-infrastructure (V2I) communication device (such as 4G
or LTE-V), the host vehicle possesses the capability to access critical traffic-related infor-
mation. This encompasses details such as route distance, SPaT data of traffic signals, and
prevailing speed limits. This real-time information is made available through seamless com-
munication with Road Side Units or the Cloud. Within this framework, the defined road
speed limit parameters are denoted as Vmin = [v1

min, ..., vNt
min] and Vmax = [v1

max, ..., vNt
max],

where vk
min and vk

max respectively denote the minimum and maximum speed limits pertain-
ing to road segments linking intersections. The position of the traffic signal Sk is within
the range [0, D f ], and the set of all signals is St = [S1, ..., SNt]. The distance between the
two traffic signals Sk and Sk+1 is calculated as in Equations (1) and (2):

Dk = Sk if k = 1 (1)

Dk = Sk − Sk−1 if k > 1 (2)
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3.2. Vehicle Dynamics

The proposed system is based on a daily driving scenario. The electric motor in an
EV is responsible for providing the force needed to move the vehicle forward. It converts
electrical energy stored in the battery into mechanical energy, which is then transmitted
to the wheels via a drive-train system. The motor torque is controlled by the power
electronics system in response to the driver’s accelerator pedal input. When the driver
releases the accelerator pedal, the vehicle’s kinetic energy is converted back into electrical
energy through the process of regenerative braking. This energy is stored in the battery
for later use and reduces the amount of energy that needs to be supplied by the battery
during subsequent acceleration. Equations (3) and (4) present the longitudinal dynamics of
the vehicle.

d = w (3)

w =
Mv − (mg f cos θ + mg sin θ + 0.5DC Aϕw2)

mδ
(4)

In the context of this study, the symbols d and w symbolize the vehicle’s position and
velocity, respectively. Mv denotes the vehicle force, where its positive value corresponds
to propulsive action, while a negative value signifies braking. The mass of the vehicle is
represented by m, δ signifies the vehicle’s rotational inertia coefficient and g pertains to
the acceleration due to gravity. The variables f and DC, respectively, stand for the rolling
resistance coefficient, and the aerodynamic drag coefficient. A represents the frontal area of
the vehicle, ϕ indicates the air density, and θ characterizes the gradient of the road.

In addition to regenerative braking, EVs also use friction brakes to slow down or stop
the vehicle. The friction brake system in an EV works similarly to that in a traditional
internal combustion engine (ICE) vehicle. When the brake pedal is pressed, brake pads
are pressed against the rotors, creating friction and slowing down the vehicle. However,
the use of regenerative braking means that EVs rely less on their friction brake systems
than ICE vehicles. This reduces wear and tear on the brake system components, resulting
in lower maintenance costs for EVs. Equation (5) shows the evaluation of vehicle force in
this system.

Mv = Mmit ∗ (ηtPropulsion− ηtBraking) + Mb f ∗ Braking (5)

The desired force of the electric motor is denoted by Mm, and the transmission ratio,
including the gearbox and final drive, is represented by Mb f . The driveline efficiency is
denoted by the symbol ηt. The EV’s wheel force is impacted by the strategies utilized for
allocating propulsion and braking torque.

3.3. Battery and Motor Model Quasi-Static

Considering the working efficiency of the motor, the energy loss of the motor was
calculated using the quasi-static model. For electric vehicles (EVs), the vehicle force during
propulsion is generated by the electric motor, while the vehicle braking force includes both
the motor generation and friction braking forces. Therefore, the total vehicle force can be
expressed by Equation (6), where Bm−loss is the motor power and Bm is the power loss.

Bm−loss = Bm.η−sign(Bm)
m − 1.sign(Bm) (6)

Regarding Equation (7), rw represents the radius of wheels, and ω presents the speed
of motor rotations.

Bm =
Mmrwω

9.55
=

Mmrw

9.55
.60

v
2πrw

igi0 (7)

When the vehicle is moving, the battery supplies power, and when the vehicle is in
regenerative braking mode, the battery recovers energy. Equation (8) is used to calculate
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the instantaneous power needed by the battery. A simplified equivalent circuit model
was employed to capture the battery dynamics, where the accessory power Ba is included.
Sign( ) is the signum function.

Bc = Bm + Bm−losssign(Bm−loss) + Ba (8)

Equation (9) is utilized to compute the rate of change of the battery’s State of Charge (SoC).

SOC = −Woc −
√

W2
oc − 4BcRc

2QbRc
(9)

The open-circuit voltage Woc, internal resistance Rb, and maximum capacity Qb are rep-
resented in the equation. The battery power loss, Bc−loss, was calculated using Equation (10).
Additionally, the accessory power, Ba, was taken into consideration, and a simplified equiv-
alent circuit model was used to represent the battery dynamics.

Bc−loss = E2
c Rc (10)

The battery current Ib is obtained from the expression Eb = Woc − EbRc. Furthermore,
the battery life is taken into account during vehicle speed optimization through the state of
health model. Since the discharge/charge rate and depth of discharge are regarded as the
primary factors that cause battery aging, a semi-empirical model that is commonly used is
used here to compute the battery capacity loss Qloss.

3.4. Control Framework and Problem Formulation

In this section, we describe the Optimal Control Problem (OCP) for Energy Adaptive
Driving (EAD), which aims to minimize both energy consumption and travel time while
driving through multiple signalized intersections. We also present the framework of the
M-EAD strategy, which addresses this OCP.

min
u∈U

G(u, y) =
∫ Tp

0
a1(Bm−loss + Bc−loss + a2|a.|

+ a3Qloss)dt + a4Tp

(11)

We have established two prevailing approaches for guiding a vehicle along a path
with multiple intersections: the Constant Speed (CS) strategy and the Intersection-based
Eco-Driving (I-EAD) strategy. The CS strategy emulates the behavior of a vehicle operated
by a human driver, maintaining a constant velocity and uniformly decelerating to a halt
upon encountering a red traffic signal. Subsequently, it accelerates steadily until reaching
the desired velocity when the signal turns green. Illustrated in Figure 1, the blue dashed
line delineates the characteristic trajectory of the CS strategy, characterized by recurrent
stop-and-go patterns leading to amplified energy consumption and travel delays.

In contrast, the I-EAD strategy endeavors to optimize the vehicle’s speed profile for
efficient intersection passage. This is achieved by orchestrating a trajectory that enhances
the vehicle’s ability to traverse intersections seamlessly. The trajectory corresponding to the
I-EAD strategy is depicted by the dashed-dotted line, where a delay is incurred at the third
intersection. To overcome this limitation and elevate the driving experience, this research
formulates an Optimal Control Problem (OCP) within the realm of multi-intersection
eco-driving control. The primary objective of this endeavor is to optimize the vehicle’s
speed profile over the entire mission duration while factoring in critical variables such as
energy losses, travel time, battery health, and driving comfort. As depicted by the green
solid line in Figure 1, this approach materializes as the trajectory of the Multi-Intersection
Eco-Approach and Departure (M-EAD) strategy, attaining an optimal solution for the OCP.
This strategic trajectory optimization not only ensures energy efficiency but also mitigates
travel time and battery degradation, all while upholding the quality of driving comfort.
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The formulation of the Optimal Control Problem (OCP) represents a profoundly
intricate optimization challenge, characterized by a lack of convexity. This complexity
stems from the presence of nonlinear objectives, encompassing factors such as battery and
motor losses, along with battery capacity degradation. Additionally, diverse constraints
further compound the intricacy, spanning aspects such as initial and terminal boundary
conditions, state limitations, control boundaries, and mixed constraints.

In the higher tier of this approach, the primary focus revolves around the strategic
planning of the green signal windows at each intersection. This strategic planning serves
the overarching objective of minimizing travel time, thereby augmenting the efficiency of
mobility. In the subsequent lower tier, a Receding Horizon Velocity Optimization (RHVO)
strategy is introduced. This strategy hinges upon the application of Iterative Dynamic
Programming (IDP) techniques, which act as the foundation for determining the optimal
speed trajectory. This trajectory optimization process takes into account the simultaneous
optimization of energy efficiency, battery longevity, and the quality of driving comfort. This
two-stage approach not only addresses energy consumption but also offers a comprehensive
solution that extends to battery health and the overall driving experience.

3.5. Speed Prediction Optimization

This section elucidates the intricate process of optimizing the speed trajectory within
the spatial domain, leveraging the meticulously derived efficient green signal windows
as invaluable inputs. Central to this novel approach is the introduction of the Receding
Horizon Velocity Optimization (RHVO) strategy, a pioneering methodology with a tri-
partite objective: to minimize energy consumption, extend battery longevity, and uphold
driving comfort. By capitalizing on the precomputed efficient green signal windows, the
RHVO strategy charts an optimal speed trajectory for connected vehicles, a trajectory that
strikes an exquisite equilibrium between energy preservation and travel efficiency. The
overarching intent is to propel vehicles through intersections and urban corridors with a
finesse that not only conserves energy but also mitigates battery wear and prioritizes the
comfort of drivers and passengers. The essence of the RHVO strategy lies in its capacity
to foster anticipatory driving behavior. It empowers vehicles to synchronize their veloc-
ity with the upcoming green windows, thereby allowing for seamless passage through
intersections while minimizing the need for abrupt accelerations and decelerations. This
harmony between vehicle velocity and green signal timing encapsulates the core of energy-
efficient driving, mitigating wasteful energy dissipation and reducing wear on the vehicle’s
power source.

Furthermore, the RHVO strategy is underscored by a Receding Horizon approach,
which confers real-time adaptability to the driving context. By iteratively reassessing and
adjusting the speed trajectory within a predictive horizon, the strategy ensures that the
vehicle remains responsive to changing traffic conditions. This dynamic responsiveness
translates to optimized energy consumption and enhanced battery preservation in the
ever-evolving urban traffic milieu. In essence, the RHVO strategy illuminates a pioneering
path toward energy-conscious and battery-aware driving. By ingeniously harmonizing
the intricacies of speed optimization with the foresight offered by efficient green signal
windows, this strategy emerges as a pivotal tool in shaping the future of connected vehicle
mobility. In an era where energy conservation and sustainable transportation stand as
paramount objectives, the RHVO strategy presents a remarkable advancement that aligns
the interests of energy efficiency, battery longevity, and driving comfort in a seamless
and forward-thinking framework. To achieve this, the RHVO divides the entire route
into multiple phases in the spatial domain, with each intersection segment defined as one
phase. The boundary conditions, such as vehicle speed and travel time, are used to connect
adjacent phases. The receding optimization phase of the entire route is equal to the number
of intersections, i.e., k = 1, 2,..., Nt. In each receding optimization phase, the vehicle’s initial
states are the terminal states of the previous phase, i.e., vk(0) = vk. This is achieved through
a distance-based receding scheme, where the optimization window is defined as a distance
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interval. An optimal control problem is formulated to minimize energy consumption and
prolong battery life while ensuring driving comfort.

4. Simulations and Results

To comprehensively evaluate the efficacy and real-world viability of the proposed
M-EAD strategy, a series of rigorous simulations were meticulously conducted. These
simulations were carried out on a robust computational platform, featuring an Intel Core
i7-8700 @ 3.20 GHz CPU and a substantial 16 GB of RAM. The utilization of this high-
performance computing setup ensured the precision and efficiency required for the ex-
tensive evaluations that followed. In the pursuit of a comprehensive assessment, the
M-EAD strategy was subjected to dual-phase scrutiny. The initial phase involved a compar-
ative analysis, pitting the M-EAD strategy against benchmark strategies. This comparison
unfolded over a predetermined route, where the M-EAD strategy was assessed in the pres-
ence of complete Signal Phase and Timing (SPaT) information. This facet of the evaluation
aimed to uncover how the M-EAD strategy stood out among established approaches when
equipped with rich real-time traffic signal knowledge.

Following the benchmark comparison, the evaluation paradigm transcended determin-
istic scenarios and delved into the realm of stochastic simulations. This was accomplished
through the application of Monte Carlo simulation techniques, a powerful tool that in-
jected variability by randomizing traffic signal initial states in each stochastic iteration.
This dynamic approach effectively replicated the unpredictable nature of real-world traffic
environments, where signal states can deviate due to factors beyond deterministic control.
The utilization of these two complementary evaluation methods showcases the depth and
robustness of the study’s findings. By dissecting the M-EAD strategy’s performance under
both idealized and stochastic conditions, the study provides a nuanced understanding
of its capabilities across a spectrum of scenarios. This multifaceted evaluation not only
underscores the strategy’s resilience but also substantiates its potential to deliver tangible
benefits in the intricate and often unpredictable landscape of urban traffic.

The designated test route, situated in Sweden, spans a total length of 1690 m. All
Signal Phase and Timing (SPaT) information for the traffic signals distributed along this
route remains constant and is succinctly consolidated in Table 2. To strike a harmonious
equilibrium between vehicular energy efficiency, travel duration, battery durability, and
driving comfort, the weighting factors for the Optimal Control Problem (OCP) are metic-
ulously configured as α1 = 1, α2 = 2, α3 = 0.1, α4 = 0, and α5 = 200. In determining the
parameter ensemble for the Iterative Dynamic Programming (IDP) technique, a systematic
analysis was undertaken, accounting for the delicate balance between computational expe-
diency and optimization precision. While the sampling distance (5 m) and time grid size
(0.1 s) within the IDP framework remain fixed, the initial values of the vehicle speed grid
size (10 km/h) and control force grid size (50 N) are subject to iterative scaling employing
scaling factors τ = 0.4, σ = 0.3, γ = 0.02, and λ = 0.3. The allowance factor α assumes
a value of 0.95, serving as the threshold that halts the iteration process when the step
enhancement achieved by the IDP falls below 5%.

Table 2. Road speed limit and traffic signal information.

Location
(S)

Green
Signal Tg

Signal Cycle
time T1

Indication
of Signal P

Transition
Time Ts

Max Speed
Vmax (km/h)

Min Speed
Vmin (km/h)

460 28 97 Red 26 60 30

1625 48 97 Red 9 60 30

3015 40 86 Green 6 50 30

3945 34 105 Red 62 60 30

5740 35 97 Red 34 70 30
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4.1. Reducing the Computational Burden with IDP

In this subsection, we demonstrate the computational efficiency of IDP compared to
DP. It can be observed that IDP reduces the boundary ranges, resulting in reduced compu-
tational complexity compared to DP. The meticulously optimized efficient green windows
have been tabulated in Table 3. A noticeable observation is that, in most instances, the
duration of these efficient green windows proves to be shorter than that of their correspond-
ing full green windows. Should the host vehicle be capable of traversing the intersection
at the precise commencement of the efficient green window, the potential for curtailing
travel delays becomes even more pronounced. However, it is imperative to navigate the
intricate equilibrium between mobility enhancements and energy conservation. To grapple
with this intricate balance, two subsidiary strategies have been conceived, referred to as
M-EAD A and M-EAD B. In the context of M-EAD A, the initiation time of an efficient
green window assumes the role of a terminal constraint, warranting the passage of the host
vehicle through intersections at an optimal speed designed to minimize travel duration.
Conversely, within M-EAD B, the intersection’s passage time is rendered more flexible,
albeit remaining confined within the bounds of an interval encompassing the efficient
green window. This relaxation serves to align with the overarching objective of energy
optimization. To establish an equitable comparison, two iterations of the Constant Speed
(CS) strategy have been delineated: CS (M-EAD A) and CS (M-EAD B), corresponding
respectively to the average speeds discerned within the realms of M-EAD A and M-EAD B.

Table 3. Green window planning results.

Intersection ID 1 2 3 4 5 6 7 8 9 10

Signal cycle of
efficient traffic 7 5 4 3 5 4 3 2 2 1

Green window
interval (s)

[499,
546]

[430,
460]

[380,
411]

[277,
312]

[240,
269]

[228,
270]

[190,
220]

[110,
160]

[80,
127]

[30,
60]

Efficient green
window interval (s)

[499,
546]

[427,
460]

[380,
415]

[299,
310]

[280,
270]

[240,
250]

[190,
195]

[111,
150]

[80,
116]

[31,
60]

The examination of computation time and resultant costs elucidates that the Itera-
tive Dynamic Programming (IDP) approach contributes to a remarkable enhancement in
calculation speed by 90%, as evidenced in Table 4 when juxtaposed with the traditional
Dynamic Programming (DP) technique. Notably, this efficiency boost is achieved with a
minimal concession of optimality, registering a marginal compromise of merely 4.88%. This
substantiates the evident advantage of the IDP methodology in terms of computational
efficiency when contrasted with the DP methodology.

Table 4. IDP and DP comparison.

Parameter
Time of Calculation Cost

Reduction Value Increase Value

IDP 90% 240.9 s 4.88% 56,200.87

DP - 2160.5 s - 53,213.90

Tables 5 and 6 furnish the data and juxtaposed outcomes pertaining to energy con-
sumption, travel time, and battery capacity loss acquired from each methodology. It is
pivotal to acknowledge that diverse strategies can yield varying final driving speeds at
the destination. To ensure an equitable evaluation, the total energy consumption of each
strategy amalgamates both the expended energy and the disparities between the vehicle’s
initial and terminal kinetic energies. The host vehicle encountered red signals at the third
and eighth intersections for CS (M-EAD A), at the fourth, sixth, seventh, eighth, and tenth
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intersections for CS (M-EAD B), and at the fifth and sixth intersections for I-EAD, resulting
in temporary halts. In stark contrast, both M-EAD A and M-EAD B seamlessly navigated
through all intersections without interruption. Tables 5 and 6 manifest that both M-EAD
A and M-EAD B accomplished reductions in travel time relative to the CS and I-EAD
approaches. Nonetheless, it is noteworthy that while M-EAD A exhibits higher energy
consumption than CS, M-EAD B achieves dual benefits in terms of energy consumption
and travel time reduction compared to CS. In comparison to M-EAD A, M-EAD B curtails
energy consumption by a significant 26.50%, accompanied by a mere 9.5% elongation in
travel time. Additionally, the battery capacity loss for these three strategies aligns with
their respective energy efficiencies.

Table 5. Simulation results of defined strategies.

Strategy M-EAD A M-EAD B I-EAD CS (M-EAD A) CS (M-EAD B)

Capacity of battery 0.0017% 0.0014% 0.0015% 0.0017% 0.0016%

Time of travel 498.5 s 540.4 s 629.5 s 511.3 s 674.9 s

Energy consumption 2666.95 kj 1922.94 kj 2179.65 kj 2689.52 kj 2398.24 kj

Table 6. Comparison of M-EAD, CS, and I-EAD strategies in terms of battery life, travel time, and
energy efficiency.

Strategy I-EAD CS (M-EAD A) CS (M-EAD B)

Extending the battery life
M-EAD A −14.29% 0% 13.34%

M-EAD B 7.14% - -

Reduction Time of travel
M-EAD A 20.87% 2.49% -

M-EAD B 14.22% - 19.98%

Energy efficiency
M-EAD A −24.05% 0.92% -

M-EAD B 7.58% - 16.41%

The simulation results presented in Table 5 for the defined strategies, namely, CS
(M-EAD A), CS (M-EAD B), I-EAD, M-EAD A, and M-EAD B, are obtained through
a comprehensive evaluation of each strategy’s performance in various metrics. These
metrics include energy consumption, travel time, and battery capacity loss. The results are
generated through simulations designed to mimic real-world urban driving scenarios.

Energy Consumption: The energy consumption values indicate the amount of energy
(measured in kilojoules, kJ) consumed by the electric vehicle during the simulated journeys
using each strategy. Lower energy consumption values suggest improved energy efficiency,
which is a key goal for sustainable urban mobility. In this context, CS (M-EAD B) exhibits
the lowest energy consumption at 1922.94 kJ, followed closely by I-EAD at 2689.52 kJ. These
results suggest that CS (M-EAD B) and I-EAD are effective in optimizing energy usage
compared to the other strategies.

Travel Time: Travel time values represent the time (measured in seconds, s) taken
by the vehicle to complete its journey under each strategy. Lower travel times indicate
quicker and more efficient routes. In this case, M-EAD A achieves the lowest travel time at
498.5 s, followed by M-EAD B at 540.4 s. These results imply that M-EAD A and M-EAD B
outperform the other strategies in terms of minimizing travel time.

Battery Capacity Loss: Battery capacity loss values represent the percentage of battery
capacity lost during the simulated journeys. Lower percentages indicate less wear and
tear on the battery, which is vital for extending its lifespan. In this context, all strategies
exhibit very low battery capacity loss percentages, indicating that they are all effective in
preserving battery longevity. CS (M-EAD B) and M-EAD B demonstrate slightly lower
battery capacity loss percentages compared to the others.
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In summary, the simulation results for the defined strategies in Table 5 are obtained
by rigorously assessing their performance across these key metrics. Each strategy is
evaluated based on its ability to minimize energy consumption, reduce travel time, and
preserve battery capacity. These results offer valuable insights into the relative strengths
and weaknesses of each strategy in the context of sustainable urban mobility and electric
vehicle performance.

These findings can be elucidated by the fact that the vehicle under the CS scheme
necessitates halts at intersections, introducing heightened energy consumption. Although
the I-EAD approach adeptly optimizes energy-efficient speeds via the utilization of isolated
intersection SPaT data, it fails to navigate all intersections without interruptions due to its
disregard for spatial-temporal correlations among intersections. Consequently, travel time
is prolonged. Both M-EAD A and M-EAD B tactics optimize the efficient green window
at the trip’s outset to mitigate travel delays. Nevertheless, since a shorter travel duration
corresponds to a higher average driving velocity that inclines towards elevated energy
consumption, M-EAD A demonstrates a slightly greater energy consumption compared to
M-EAD B. The latter represents a balanced methodology that embodies a trade-off between
energy efficiency and travel time. Additionally, the velocity and acceleration/deceleration
patterns of vehicles under M-EAD B exhibit smoother profiles in contrast to CS, I-EAD, and
M-EAD A, ultimately yielding an enhanced overall energy efficiency.

Given the superior coordination of vehicle energy saving and traffic efficiency demon-
strated by M-EAD B, it is considered representative of the proposed M-EAD strategy and is
henceforth abbreviated as “M-EAD”. While the effectiveness of M-EAD is promising, it
is uncertain whether significant improvements in average vehicle energy efficiency and
travel time reduction can be achieved if the initial states of all traffic signals vary.

4.2. Discussion on the Effectiveness of the M-EAD Strategy by Considering Random Initial States
of Traffic Signals

In practical terms, gaining access to the fixed Signal Phase and Timing (SPaT) data
of traffic signals is a straightforward endeavor. However, concurrently acquiring the ini-
tial states of multiple traffic signals presents a noteworthy challenge. Consequently, in
order to elucidate the average effects produced by the proposed method, we conducted a
comprehensive series of stochastic simulations. These simulations entailed a meticulous
evaluation of a substantial number of scenarios characterized by randomly generated initial
states, mirroring the principles of a Monte Carlo simulation paradigm. Our investigation
encompassed 600 individual simulation trials, all pertaining to a predefined test route.
Throughout these trials, we introduced randomness into the initial signal indications and
transition times, while maintaining a constant overall cycle length, as well as consistent
red and green signal intervals. The results of these simulations are visually represented
in Figures 2–4, which depict histograms illustrating the improvements in energy con-
sumption, travel time reduction, and the mitigation of battery capacity loss across the
600 stochastic experiments.

The following Table 7 presents the system improvement over 600 stochastic simulations.

Table 7. The average improvement in energy efficiency, reduction in travel time, and reduction in
battery capacity loss were computed over 600 stochastic simulations.

Improvement of Energy Efficiency Avg. Reduction of Battery
Capacity

Avg. Reduction of
Travel Time

M-EAD/I-EAD 7.02% 5.06% 14.97%

M-EAD/CS 11.04% 10.90% 16.78%
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Figure 2. Reduction in travel time observed throughout 600 stochastic simulations.

Figure 3. Enhancement in energy efficiency observed in the course of 600 stochastic simulations.

Figure 4. Diminished loss in battery capacity observed in the context of 600 stochastic simulations.

5. Conclusions

In this paper, a pioneering Eco-Approach and Departure (EAD) strategy termed Multi-
Intersections-Based EAD (M-EAD) is introduced, catering to the intricate challenges posed
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by signalized intersections within urban settings. This innovative approach underscores
a holistic perspective by considering a comprehensive array of factors encompassing
energy consumption, travel time, battery health, and driving comfort. In recognizing
the interconnected nature of these variables, the M-EAD strategy strives to deliver a
comprehensive solution that not only optimizes energy efficiency but also prioritizes driver
experience and vehicle longevity. The crux of the M-EAD strategy resides in its two-
stage control framework which combines the optimization of green signal windows and
vehicle speed trajectories. By simultaneously addressing these two fundamental aspects,
the M-EAD strategy ensures a harmonious balance between traffic flow dynamics and
energy consumption optimization. The Intelligent Dynamic Programming (IDP) algorithm
plays a pivotal role in this endeavor, enabling real-time adjustments that are attuned to
the evolving dynamics of the traffic environment. A distinguishing feature of the M-EAD
strategy lies in its comparative analysis against the conventional Individual EAD (I-EAD)
strategy. The results underscore the substantial enhancements offered by M-EAD, with an
average energy efficiency improvement of 7.02% and a notable travel time saving of 14.97%
over the I-EAD strategy. These findings illuminate the remarkable potential of M-EAD
to revolutionize urban network eco-driving control for connected electric vehicles (EVs).
Importantly, the strategy’s effectiveness perseveres even when confronted with varying
initial traffic light states, a testament to its adaptability and robustness. In summation,
the M-EAD strategy advances the paradigm of eco-driving control for connected EVs by
comprehensively addressing the multifaceted challenges posed by signalized intersections.
This paper’s findings underline the strategy’s capacity to harmonize energy efficiency,
travel time, battery longevity, and driving comfort, thus fostering a more sustainable and
optimized urban mobility landscape. By concurrently enhancing multiple facets of EV
operation, the M-EAD strategy emerges as a promising and holistic solution in the realm of
urban traffic management and sustainable transportation.

6. Future Research

In the pursuit of more robust and adaptable traffic management strategies, our future
endeavors are directed toward enhancing our intersection control framework to seamlessly
handle dynamic and evolving traffic conditions. The current landscape of urban traffic is
marked by its volatility, with varying traffic volumes, congestion levels, and nonstationary
patterns. To effectively navigate this intricate scenario, our research agenda involves
the integration of advanced features that enable our system to respond intelligently and
proactively. A pivotal aspect of our evolution involves the incorporation of actuated traffic
signal support, allowing the intersection control to dynamically adjust signal timings in
response to real-time traffic flows. This adaptability ensures that intersections can efficiently
cater to changing demand and optimize traffic progression, consequently contributing to
energy savings and reduced travel times.

In addition to accommodating actuated traffic signals, our forthcoming developments
will address the challenge of nonstationary preceding traffic behavior. The unpredictable
nature of driving patterns and the interactions between vehicles pose unique challenges,
particularly when it comes to energy-efficient driving strategies. Our research roadmap
involves the implementation of intersection pass-through probability prediction, a cutting-
edge technique that leverages data-driven models to anticipate the likelihood of vehicles
traversing intersections. By preemptively anticipating the behavior of preceding vehi-
cles, our control framework can dynamically adjust speed trajectories, enhance vehicle
coordination, and optimize energy consumption. Furthermore, we aim to incorporate an
optimal lane selection algorithm that takes into account real-time conditions such as traffic
density and signal phases. This enables vehicles to intelligently choose lanes that offer the
best chances for efficient passage, thereby minimizing energy expenditure and enhancing
traffic flow. The synergistic integration of these advanced features is poised to propel our
multiple intersection EAD control framework to new heights, ensuring its relevance and
effectiveness in addressing the evolving challenges of urban mobility.



Smart Cities 2023, 1 2590

Author Contributions: Data curation, Z.S.; funding acquisition, S.N.; Investigation, Z.S.; methodol-
ogy, Z.S.; writing original draft, Z.S.; supervision, S.N.; Project Administration S.N.; validation, Z.S.;
visualization, S.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially carried out with support from Vinnova (Sweden’s innovation
agency) through the Vehicle Strategic Research and Innovation programme, FFI.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart transportation: An overview of technologies and

applications. Sensors 2023, 23, 3880. [CrossRef] [PubMed]
2. Djenouri, Y.; Belhadi, A.; Srivastava, G.; Lin, J.C.W. Hybrid graph convolution neural network and branch-and-bound optimiza-

tion for traffic flow forecasting. Future Gener. Comput. Syst. 2023, 139, 100–108. [CrossRef]
3. Lan, T.; Zhang, X.; Qu, D.; Yang, Y.; Chen, Y. Short-Term Traffic Flow Prediction Based on the Optimization Study of Initial

Weights of the Attention Mechanism. Sustainability 2023, 15, 1374. [CrossRef]
4. Liu, K.; Xu, X.; Huang, W.; Zhang, R.; Kong, L.; Wang, X. A multi-objective optimization framework for designing urban block

forms considering daylight, energy consumption, and photovoltaic energy potential. Build. Environ. 2023, 242, 110585. [CrossRef]
5. Jafari, S.; Shahbazi, Z.; Byun, Y.C. Lithium-ion battery health prediction on hybrid vehicles using machine learning approach.

Energies 2022, 15, 4753. [CrossRef]
6. Benotsmane, R.; Kovács, G. Optimization of energy consumption of industrial robots using classical PID and MPC controllers.

Energies 2023, 16, 3499. [CrossRef]
7. Zhang, Y.; Kamargianni, M. A review on the factors influencing the adoption of new mobility technologies and services:

Autonomous vehicle, drone, micromobility and mobility as a service. Transp. Rev. 2023, 43, 407–429. [CrossRef]
8. Jafari, S.; Shahbazi, Z.; Byun, Y.C.; Lee, S.J. Lithium-ion battery estimation in online framework using extreme gradient boosting

machine learning approach. Mathematics 2022, 10, 888. [CrossRef]
9. Daniela, A.M.; Juan Carlos, G.P.; Javier, G. On the path to mobility as a service: A MaaS-checklist for assessing existing MaaS-like

schemes. Transp. Lett. 2023, 15, 142–151. [CrossRef]
10. Salari, A.H.; Mirzaeinejad, H.; Mahani, M.F. A new control algorithm of regenerative braking management for energy efficiency

and safety enhancement of electric vehicles. Energy Convers. Manag. 2023, 276, 116564. [CrossRef]
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