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Abstract: Strawberry is an important fruit crop in Canada but powdery mildew (PM) results in
about 30–70% yield loss. Detection of PM through an image texture-based system is beneficial, as it
identifies the symptoms at an earlier stage and reduces labour intensive manual monitoring of crop
fields. This paper presents an image texture-based disease detection algorithm using supervised
classifiers. Three sites were selected to collect the leaf image data in Great Village, Nova Scotia,
Canada. Images were taken under an artificial cloud condition with a Digital Single Lens Reflex
(DSLR) camera as red-green-blue (RGB) raw data throughout 2017–2018 summer. Three supervised
classifiers, including artificial neural networks (ANN), support vector machine (SVM), and k-nearest
neighbors (kNN) were evaluated for disease detection. A total of 40 textural features were extracted
using a colour co-occurrence matrix (CCM). The collected feature data were normalized, then used
for training and internal, external and cross-validations of developed classifiers. Results of this study
revealed that the highest overall classification accuracy was 93.81% using the ANN classifier and
lowest overall accuracy was 78.80% using the kNN classifier. Results identified the ANN classifier
disease detection having a lower Root Mean Square Error (RMSE) = 0.004 and Mean Absolute
Error (MAE) = 0.003 values with 99.99% of accuracy during internal validation and 87.41%, 88.95%
and 95.04% of accuracies during external validations with three different fields. Overall results
demonstrated that an image texture-based ANN classifier was able to classify PM disease more
accurately at early stages of disease development.

Keywords: image processing; colour co-occurrence matrix; artificial neural network; support vector
machine; k-nearest neighbors

1. Introduction

Strawberry powdery mildew (Sphaerotheca macularis) is a polycyclic disease, caused by a fungal
pathogen, which affects petioles, leaves, runners, flowers, and fruits that appear to be specific to
strawberry plants [1,2]. Particularly, powdery mildew (PM) disease begins with white powder on the
leaf surface, so the front side of the leaf images are needed to detect the disease [3]. Healthy leaves
are saw-tooth shape in the edge with dark green colour and have no discoloration or defect on the
leaf surface. However, strawberry leaves infected with PM are deformed as the edge faces upward.
The edges of the leaves have a purplish hue, and the underside and upside of the leaves appear to have
been coated with fine white powder [4]. The disease also impacts the plant’s photosynthetic ability
influencing fruit quality, growth potential, and productivity [5]. Plant fruit quality and yield are closely
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tied to appropriate disease management and control of this disease. The ability to detect disease at early
stages when less than 10 white spots begin to appear is essential to be able to apply suitable controls in
order to decrease impacts on fruit quality [6]. Plant diseases have unique developmental characteristics
and behaviors that can aid in their detection [7]. Although the application of fungicides is the most
effective way to control the disease of the crops, it is desirable to minimize the use of fungicides as
cost and environmental problems increase for growers. Therefore, understanding the distribution and
severity of disease before applying fungicides is very useful information for growers [8]. Development
of accurate and rapid techniques to detect plant diseases is of critical importance to the fruit and
crop industry.

Image processing-based approaches can be fast and accurate in detecting plant diseases [9].
Digital images form important data units that can be analyzed to generate key pieces of information
across a range of applications [10]. Since the early 2000s, imaging techniques such as hyperspectral,
multispectral, thermal, and colour imaging have been developed to solve various problems in
agriculture. In terms of hyperspectral imaging, Qin et al. [11] extracted the information from the
spectrum which was used to determine the health of the crops. The ultra-spectral images of 450–930
nm was utilized to distinguish the canker and other damages on the Ruby red grapefruit with 96%
accuracy. Rumpf et al. [12] automatically detected the early disease of the sugar beet leaves with 97% of
the classification accuracy by using SVM based on hyperspectral reflectance. In terms of multispectral
imaging, Laudien et al. [13] found that red spectra from 630 nm to 690 nm and near infrared spectra
from 760 nm to 900 nm are important areas in agricultural applications. They detected and analyzed a
fungal sugar beet disease with high resolution multispectral and hyperspectral remote sensing data.
In terms of thermal imaging, Chaerle et al. [14] reported that heat around the tobacco mosaic virus
(TMV) disease spots on the leaves was monitored before the disease symptoms appeared on the tobacco
leaves, and thermal imaging technique was used to visualize that heat in areas infected with TMV.
Besides, the red-green-blue (RGB) colour coordinates are cost-effective and the most general colour
system. Kutty et al. [15] extracted regions of interest from the RGB colour model and categorized
watermelon anthracnose and downy mildew leaf disease by using neural network. Khirade and
Patil [16] converted RGB images into Hue, Saturation, and Intensity (HSI) and used them for disease
identification. Green pixels were recognized using k-means clustering, and various threshold values
were obtained using the Otsu’s method. Kim et al. [17] analyzed images collected for grapefruit peel
disease recognition and achieved the best classification accuracy of 96.7%.

Various studies have reported success with image processing-based technology, as a plant disease
identification mechanism [18,19]. Schor et al. [20] applied image processing techniques as an automated
diseases detection tool capable of ensuring timely control of PM and Tomato spotted wilt virus (TSWV)
diseases. This system also increased crop yield, improved crop quality and reduced the quantity of
applied pesticides on bell pepper. A thresholding-based imaging method proposed by Sena Jr et al. [21]
aimed to distinguish fall armyworm affected maize plants from healthy ones. Camargo and Smith [22]
used colour transformation-based image processing technique to identify the visual symptoms of
cotton diseases. Textural feature analysis is also widely used as an image processing approach to
extract key plant health information. Spatial variation pixel values are described by image textures [23]
to explain regional properties like smoothness, coarseness, and regularity [24]. Colour co-occurrence
matrix (CCM) based textural analysis was introduced for plant identification [25] and leaf and stem
disease classification [26]. Xie et al. [27] extracted eight features to develop a detection model for leaf
early and late blight diseases from tomato leaves with co-occurrence matrix. However, it should be
noted that the features themselves are not enough for object identification and need classifiers for
further plant disease recognition.

Machine learning techniques, such as artificial neural networks (ANNs), support vector machines
(SVMs), k-nearest neighbors (kNNs), and decision trees have been utilized in agricultural research [28]
as part of supervised learning. The ANNs, SVMs and kNNs classifiers have classified different plant
diseases with higher success rate [29–31]. Wang et al. [32] reported improved control of tomato
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diseases by predicting late blight infections using ANNs. Pydipati et al. [33] utilized backpropagation
ANNs algorithm and colour co-occurrence textural analysis for citrus disease detection and achieved
classification accuracies of over 95% for all classes. The researchers also claimed that an overall
99% mean accuracy was achieved when using hue and saturation textural features. Camargo and
Smith [22] detected visual symptoms of cotton crop diseases using SVMs classifier. The measurement
of texture used as a useful discriminator for this detection. A method using kNNs to detect nitrogen
and potassium deficiencies in tomato crops was proposed by Xu et al. [34]. Conversely, VijayaLakshmi
and Mohan [35] suggested some limitations using SVM and kNN for leaf type detection by using
colour, shape and texture features. Yano et al. [36] found artificial neural network provide better
accuracy compared with kNN and Random Forest (RF) classifier.

The potential to combine image texture-based machine vision and machine learning algorithms
for plant disease detection is significant. To date, there has been no research conducted applying
machine vision with different machine learning algorithms for PM disease detection in strawberry
cropping systems. As the first step of detecting PM disease, an RGB camera was used as an image
source, which can be extended to hyper-/multi-spectral camera or thermal camera as in other crop
disease detection. Therefore, the main purpose of this research is to compare image texture-based
machine vision techniques for PM disease classification using a series of supervised classifiers.

2. Materials and Methods

2.1. Study Area and Experimental Overview

Three strawberry fields were selected in western Nova Scotia, Canada to collect PM infected
and healthy plant strawberry image samples. The selected fields were located on two farms in Great
Village: the Millen farm site I (Field I: 45.398◦ N, 63.562◦ W), Millen farm site II (Field II: 45.404◦ N,
63.549◦ W), and the Balamore farm site III (Field III: 45.413◦ N, 63.567◦ W). Strawberry leaves were
collected throughout two growing seasons of the strawberry, summer and fall, between 10 a.m. and
4 p.m. in 2017–2018. They were randomly selected from fully grown plants which were producing
strawberries. Separated leaves (from the plants) were stored in the icebox which had 5–7 ◦C internal
environment and were brought to the lab directly. The images of the leaves were taken around 5–6 p.m.
at the same day of leaf collection. Regional climate of Figure 1 is the same as condition of the usual
Nova Scotia, with the hottest temperatures of 24 ◦C in July and August in summer and the coldest
of −11.8 ◦C in January in winter. The average annual precipitation in this area is 779.66 mm [37].
Three strawberry varieties, Albion, Portola and Ruby June, were cultivated in Field I, Field II and Field
III, respectively (Figure 1).

Images can be collected under different lighting conditions, which means collection under natural
light, and controlled lighting condition. In this experiment, initially two lighting conditions were set
and processed for preliminary image acquisition. The first lighting condition was sunny condition and
the second lighting condition was cloudy condition which we made the artificial cloud condition (ACC)
with the black cloth. According to Steward and Tian [38], they implemented segmentation algorithm
with two sets of weed images which were photographed under sunny and cloud conditions. Estimation
of weed density was highly related to lighting conditions. The variability occurred more in images
that were taken under sunny conditions. The results of the correlation coefficient for images taken
under cloud conditions was closer to 1 which means more stable about the variability. This aligned
with our preliminary results that showed less accuracy under sunny conditions.

Thus, leaves were harvested from randomly selected plants across each of the fields and individual
leaf images were taken under artificial cloud conditions (ACCs) to increase the accuracy.
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Figure 1. Geographical information about data collection. The yellow mark on the map on the right, 
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different set of data from same field. Cross-validations were done with 4-fold and 5-fold, splitting the 
total data from all fields in 4 or 5 different subsets and then 3 or 4 sets of data were utilized for training 
and one set for validation. K-folds is the method used to maximize the use of available data for model 
training and testing. This avoids overfitting the predictive model and solves the problem of low data 
count. The data set was divided into k subsets and a holdout method was repeated k times. At each 
time, k-1 subsets were utilized for training and kth subsets was utilized for testing. Finally, the average 
error across all k trials was computed. Thereafter, every data point gets to be in a test set exactly once 
and gets to be in a training set k-1 times. In terms of external validation, Field I and Field II images 
were used to train the classifiers and Field III images were used for validation. Accordingly, Field I 
and Field III were used for training and Field II for validation. Final external validation was 
conducted with Field II and Field III for training and Field I for validation. 

2.3. Image Acquisition 

The image acquisition system consisted of two major components: an artificial cloud chamber 
and a digital single lens reflex (DSLR) camera model: EOS 1300D (Canon Inc., Tokyo, Japan) with a 
sensor resolution of 5184 × 3456 pixels and a 30 mm focal length lens for taking very detailed images. 
Individual leaves were collected by separating them from each bundle and the images were taken 
while the leaf sat on a white paper under the controlled environment, ACC. The images were taken 
at a height of 30 cm above the leaves and the same height was maintained for all image acquisitions. 
Exposure time and ISO gain were automatically controlled with an F/8.0 aperture to maintain both 
same depth of field and same ACCs. The images were processed with a hardware system of Intel® 
Core™ i5-3320M CPU @ 2.60 gigahertz (GHz) and 4.00 gigabyte (GB) Random Access Memory (RAM) 
laptop (Lenovo Group Ltd., Morrisville, NC, USA). The images were saved from the camera in the 
RAW format and were subsequently converted to Windows Bitmap (BMP) format to overcome loss 
related issues caused by image compressions. 

2.4. Image Processing and Data Normalization 

A graphic user interface (GUI) program was developed for image pre-processing, textural 
features extraction, and to save the features in a text file. The first step embraced in textural features 
extraction was the conversion of Blue, Green, and Red (BGR) channels to National Television System 
Committee (NTSC) standard for luminance and HSI colour models. Windows Graphics Device 
Interface (GDI) uses BGR channel space for bitmap representation, so BGR channel was selected 
when image processing in order to match with the GDI information. The luminance (Lm) of each 
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1,2, and 3 matches the information of the sites I, II, and III.

2.2. Performance Evaluation

A total of 450 images were collected from all fields, specifically, 150 leaves from each field
(total 3 fields). Each field data consisted of 75 healthy and 75 infected leaves. The 450 images were
divided into two sets containing 300 images for training and 150 images for validation in three different
classifiers. Internal, external and cross-validations were experimented for performance evaluation
(Accuracy (%) =

correctly classified number
Total number × 100) of this study. Internal validations were conducted with

different set of data from same field. Cross-validations were done with 4-fold and 5-fold, splitting the
total data from all fields in 4 or 5 different subsets and then 3 or 4 sets of data were utilized for training
and one set for validation. K-folds is the method used to maximize the use of available data for model
training and testing. This avoids overfitting the predictive model and solves the problem of low data
count. The data set was divided into k subsets and a holdout method was repeated k times. At each
time, k-1 subsets were utilized for training and kth subsets was utilized for testing. Finally, the average
error across all k trials was computed. Thereafter, every data point gets to be in a test set exactly once
and gets to be in a training set k-1 times. In terms of external validation, Field I and Field II images
were used to train the classifiers and Field III images were used for validation. Accordingly, Field I and
Field III were used for training and Field II for validation. Final external validation was conducted
with Field II and Field III for training and Field I for validation.

2.3. Image Acquisition

The image acquisition system consisted of two major components: an artificial cloud chamber
and a digital single lens reflex (DSLR) camera model: EOS 1300D (Canon Inc., Tokyo, Japan) with a
sensor resolution of 5184 × 3456 pixels and a 30 mm focal length lens for taking very detailed images.
Individual leaves were collected by separating them from each bundle and the images were taken
while the leaf sat on a white paper under the controlled environment, ACC. The images were taken
at a height of 30 cm above the leaves and the same height was maintained for all image acquisitions.
Exposure time and ISO gain were automatically controlled with an F/8.0 aperture to maintain both
same depth of field and same ACCs. The images were processed with a hardware system of Intel®

Core™ i5-3320M CPU @ 2.60 gigahertz (GHz) and 4.00 gigabyte (GB) Random Access Memory (RAM)
laptop (Lenovo Group Ltd., Morrisville, NC, USA). The images were saved from the camera in the
RAW format and were subsequently converted to Windows Bitmap (BMP) format to overcome loss
related issues caused by image compressions.

2.4. Image Processing and Data Normalization

A graphic user interface (GUI) program was developed for image pre-processing, textural features
extraction, and to save the features in a text file. The first step embraced in textural features extraction
was the conversion of Blue, Green, and Red (BGR) channels to National Television System Committee
(NTSC) standard for luminance and HSI colour models. Windows Graphics Device Interface (GDI) uses
BGR channel space for bitmap representation, so BGR channel was selected when image processing in
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order to match with the GDI information. The luminance (Lm) of each pixel constituting the image
was converted from 24-bit Bitmap (BMP) into 8-bit brightness image of NTSC standard, and Lm was
calculated by the following equation by using BGR [24].

Lm = (0.1140 B + 0.5870 G + 0.2989 R) (1)

In this study, BGR channels were converted to HSI, which represents the colour similar to how the
human eye senses colour, to create three 2-dimensional arrays. The principle of converting BGR to HSI
was calculated by Equations (2)–(5). First, θh represents the angle in Equation (2) then Hue (H) was
calculated and normalized into [0,255]. The original BGR, Luminance, Hue, Saturation, and Intensity
based images of healthy and PM infected leaves can be seen Figures 2 and 3.
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In Equation (6), p (m, n) represents the marginal probability function. Inside of p (m, n), m is
the intensity level at a particular pixel, and n is the intensity level of a matching pixel with an offset.
Of the offsets from 1 to 5, offset 1 gives the best results at any orientation angle such as 0◦, 90◦, 180◦,
and 360◦ [39]. Shearer and Homes (1990) extracted 10 features based on CCM which contains the
luminance and HSI [24] (Table 1).

θh = cos−1
{

1
2 [(R−G) + (R− B)]

[(R−G)2 + (R−G)(G− B)]
1/2
} (2)

H =

 θh
360 ∗ 255 if B ≤ G

360− θh
360 ∗ 255 if B > G

 (3)

S = 255× {1−
3

(R + G + B)
(Min(R, Min(G, B)))} (4)

I =
R + G + B

3
(5)

p(m, n) =
P(m, n)∑N−1

m=0
∑N−1

n=0 P(m, n)
(6)
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Table 1. Textural feature equations (Shearer & Holmes, 1990).

Description Textural Features Equation [u]

Contrast TF1
N−1∑
|m−n|=0

(m− n)2 N−1∑
m=0

N−1∑
n=0

p(m, n)

Homogeneity TF2
N−1∑
m=0

N−1∑
n=0

p(m, n) 1
1+|m−n|

Entropy TF3
N−1∑
m=0

N−1∑
n=0

p(m, n) In p(m, n)

Dissimilarity TF4
N−1∑
m=0

N−1∑
n=0

p(m, n)|m− n|

Angular 2nd Moment TF5
N−1∑
m=0

N−1∑
n=0

p(m, n)2

Inverse Difference Moment TF6
N−1∑
m=0

N−1∑
n=0

p(m, n)
1+(m−n)2

Average TF7
N−1∑
m=0

m px(m)

Sum of Squares TF8
N−1∑
m=0

(m− µ)2px(m)

Product Moment TF9
N−1∑
m=0

N−1∑
n=0

p(m, n)(m− µ)(n− µ)

Correlation TF10
N−1∑
m=0

N−1∑
n=0

p(m, n) (m−µm)(n−µn)
6m6n

[u] N is the total number of intensity levels, p(m, n) is the (m, n)th entry in a normalized CCM; and µ is the mean,
µm is the mean of row, µn is the mean of column, 6m and 6n are the standard deviation along the mth row and nth

column of p(m, n) and px(m) was obtained by summation of CCM values in mth row.

A total of 40 features, 10 from each color plane (Luminance, Hue, Saturation, and Intensity),
were extracted from one image which were utilized as inputs for classifiers. In order to improve the
performance of the classifiers, the input data were normalized [40]. The following equation was used
for the normalization of the data.

ui =
(Ri −Mini)

(Maxi −Mini)
(7)

where, ui = Normalized value of input; Ri = Actual value of input; Mini = Minimum value of input;
Maxi = Maximum value of input.

2.5. Classifiers

In this study different types of classifiers were evaluated to determine the most effective ones
at classifying strawberry PM disease characteristics using CCM based textural features analysis.
In MATLAB software, various classification models from the data were trained by using classification
learners. The three classifiers evaluated including the ANN, SVM, and kNN. Firstly, 9 parameters
were used for ANN tuning. The epoch size of 15,000 was determined to be enough for the model
structure to perform the classification rather than other epochs. The output range of tanh sigmoid was
−1 to 1, that is, the transformed version of the logistic sigmoid with an output range of 0 to 1 and it
was used as a mathematical function because it tends to be more fit well with neural networks [41].
The proposed settings of the developed model are given in Table 2.
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Table 2. Developed model setting of an artificial neural network.

Parameters Settings

Training pattern 300 out of 450
Optimum Epoch 15,000

Learning rate 0.10
Momentum 0.70

Number of hidden layers 2
Nodes per hidden layer 40
Mathematical Function Tanh Sigmoid

Internal Validation 50 out of 150 from each field
External validation 150 out of 450

Secondly, 4 different kernels were used as a parameter for SVM: Linear, Quadratic, Cubic, and Fine
Gaussian. SVM can train when there is more than one class in the data in the classification learner.
Each classifier type differs depending on prediction speed, memory usage, interpretability, and model
flexibility. Linear SVM is the most commonly used because of its fast prediction speed and easy
interpretability compared to other kernels. Fine Gaussian SVM, on the other hand, is more difficult
to interpret than Linear SVM, but offer more model flexibility and finer separation of classes than
other kernels.

Lastly, 4 different kernels were used as a parameter for kNN: Fine, Cosine, Coarse, and Cubic.
Model flexibility decrease with the number of neighbours setting. kNN with Fine is showing the
detailed distinctions between classes and the number of neighbours was set to 1. kNN with Coarse is
showing the medium distinctions between classes and the number of neighbours is set to 10. kNN
with Cosine uses Cosine distance metric and kNN with Cubic has slower prediction speed than Cosine
kNN [42].

2.5.1. ANN Classifier

In this study, textural features of the CCMs were used to provide the input data for training
the ANN model. Neural network models were found to incorporate all the textural features in
the discrimination scheme. Peltarion Synapse (Peltarion Corp., Stockholm, Sweden) was used for
classifying the textural features, as well as images of healthy and PM affected leaves. A back-propagation
artificial neural network (BP-ANN) algorithm was applied for training of the proposed network.
Total three model structures were examined in this experiment, and one of example is the 40-80-1 ANN
network structure which represents forty nodes for the input layer, eighty nodes for two hidden layers,
and one node for the output layer for the data analysis (Figure 4). The extracted textural features were
selected as inputs for the input layer and corresponding healthy or disease labels were established
as an output in the output layer with Synapse Peltarion software. Four different functions, such as
the tanh sigmoid, exponential, logistic sigmoid, and linear transfer were used to translate the input
signals into output signals ranging from 1 to 2. The predictor model was used Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) to find the best model structure. The formulas for MAE is
given by 1

n
∑n

i=1

∣∣∣yi− ŷi
∣∣∣, that is, multiplication between a division the total number of data point and

the sum of the absolute value of the residual of the subtraction from actual output value, yi, to the

predicted output value, ŷi. The formulas for RMSE is given by
√∑n

i=1(yi−ŷi)2

n , that is, measurement of
the differences between values predicted by a model and the values observed by giving how much
error there is between two data sets.
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Figure 4. Artificial neural networks (ANN) model structure.

The training process was initiated using randomly selected initial weights and biases.
The experimental conditions involved a supervised training mechanism providing the network
output by labelling. The MSE and RMSE values were used to determine the performance of the
model structures. The activation, or non-linear function, was determined by the presence of particular
neural features that determined the optimal weights. The neural network performed a non-linear
transformation on the input variables (N) to achieve an output (M) by Equation (8).

{M} = f ({N}) (8)

where, M = Output; f = Non-linear function; and N = Input variables.
Three ANN model structures were developed and tested to discover a satisfactory mathematical

function to process image data. Around twenty simulations of the ANN model were conducted to
select the three optimal model structures. Although a complex network can be used, it is claimed
that a hidden layer is sufficient to represent a continuous nonlinear function because overfitting can
occur, as the number of hidden layers increases [43]. All the selected models were run at an epoch
size (iterative steps) of 15,000 with learning rate of 0.1. To determine the optimal epoch size, the best
selected ANN model was operated at different epoch sizes at an interval of 1000 and the error values of
MAE and RMSE were calculated at each interval. According to Madadlou et al. [44], the epoch size has
a major influence on error terms. The momentum rule of the developed models was 0.7 to establish
a comparison of the processing capabilities of the different mathematical functions. The best model
structure and mathematical function were selected based on lower MAE and RMSE values and by
comparing the actual and predicted values. Finally, the model developmental process was completed
having the acceptable errors (i.e., MAE < 0.003 and RMSE < 0.005) from predicted data set compared
with actual data set. The MAE is a measure of absolute difference between actual and predicted
observation and the RMSE is the square root of the average of squared differences between prediction
and actual observation that measures the average magnitude of the error. After training the model,
the performance of the ANN model was tested by employing the internal, external, and cross-validation
separately (Figure 5).
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2.5.2. SVM Classifier

An SVM classifier was selected for the experiments based on previously established studies
reporting efficient implementation and performance for high dimensional problems and small datasets.
MATLAB® Classification Toolbox version 2017a (MathWorks, Natick, MA, USA) was used for SVM
classifier evaluation. The general concept of SVM (Figure 6) is to provide a solution of classification
problems by plotting the input vectors into a new high-dimensional space through some nonlinear
mapping and constructing an optimal separating hyperplane that measures the maximum margin to
separate positive and negative classes [45]. The SVM constructs a hyperplane in the space to observe
the training input vector in an n-dimensional space for classification that has the largest distance to
the closest training data point of any class. A linear and separable sample sets belonging to separate
classes are separated by the hyperplane. The generalization ability of SVM model is usually better as
the distance between the closest vectors to the hyperplane is maximized. The mathematical form of
SVM classifier is as follows:

F:UˆX→ Q (9)

where, specified data set mapping is made via a map function F from input space into higher dimension
feature space Q (dot product space).
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A linear learning algorithm was performed in Q which required the evaluation of dot products.
If Q is of a higher dimensional value, then the right-hand side of Equation (9) will be very costly to
compute [46]. Hence, kernel functions are utilized using the input parameters to compute the dot
product in the feature space.

Four different kernels such as linear, quadratic, cubic, and fine Gaussian were utilized for
experimentation. Internal, external, and cross-validations were tested for performance evaluation
of classifier. Two fields of data were used for training and one field of data was simultaneously
utilized for the model validation. The external validation process began with exporting the model
after development. The exported model tested the data from separate fields that were not used for
training the model. Finally, the accuracy was determined based on correctly classified textural features
from disease and healthy strawberry leaves.

2.5.3. kNN Classifier

Another supervised learning classifier evaluated in this study was the kNN. The kNN classifier is
a non-parametric method that separates a test object according to the class of majority of its kth nearest
neighbour in the training set. It applies the Euclidean distance in the multidimensional space as a
similarity measurement to separate the test objects. K represents the number of highly data-dependent
tuning of neighbours and uses uniform weights meaning which is assigned the value to a query point
is computed from a simple majority vote of the nearest neighbours. In other word, the unknown object
in the query object is compared to every sample of objects which are previously being used to train the
kNN classifier. The distance measurements of kNN classifier were conducted using Euclidean distance
with the following equation:

EDp(P, Q) =

√∑x
i=1 (mi − ni)

2

m
(10)

where P and Q are represented by feature vectors P = (m1, m2, m3......., mx ) and Q = (n1, n2, n3......., nx )

and x is the dimensionality of the feature space. The equation measures the Euclidean distance between
two points P and Q.

The performance of kNN varies with different kernel functions. Fine, cosine, coarse and cubic
kernels were used for performance evaluation in this study. Like previous classifiers, kNN performance
was evaluated by using internal, external, and cross-validations.

3. Results and Discussions

3.1. Classification Using ANN

The experimental outcomes established the most suitable model, i.e., having the lowest RMSE
value. A normalized dataset, based on Equation (7), was imported into Synapse Peltarion software and
the variables, i.e., input and output, were defined using the software interface. The results from three
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network structures evaluated to obtain a suitable ANN network for data processing are listed in Table 3.
All the settings of developed models were kept constant, the mathematical functions were changed
and MAE and RMSE were recorded. The highest RMSE was derived from the exponential function and
compared to the other functions evaluated to classify healthy and PM affected leaves. The exponential
function resulted in an infinity error for two model settings, suggesting its non-suitability for data
processing. The tanh sigmoid function was able to process data with a reasonably low RMSE (0.004 to
0.019) and MAE (0.003 to 0.012) when compared to the other functions in the networks. Based on low
error rates, tanh sigmoid was chosen for further processing. All the networks were operated at an
epoch of 15,000.

Table 3. Tested mathematical functions at an epoch size of 15,000 with normalized data.

Model Structure 1 Tanh Sigmoid Loigistic Sigmoid Linear Exponential

MAE 2 RMSE 3 MAE 2 RMSE 3 MAE 2 RMSE 3 MAE 2 RMSE 3

1W (40/80) & 1F (80/1) 40 Inputs 1 Output 0.012 0.019 0.034 0.053 0.139 0.179 ∞ ∞

1W (40/40) 1W (40/40) 1F (40/1) 40 Inputs 1 Output 0.003 0.004 0.030 0.045 0.139 0.179 ∞ ∞

1W (40/80) 1W (80/80) 1F (80/1) 40 Inputs 1 Output 0.004 0.005 0.026 0.038 0.167 0.216 0.512 0.612

Where, 1 W = weight layer; F = function layer; and (∞) = infinity error. 2 Mean absolute error is the average vertical
distance between each point and the identity line. 3 Root mean square error is the standard deviation of the residuals
which are a measure of how far from the regression.

After determination of an optimal model, the model was tested and evaluated to select appropriate
epoch (iterations) size using different numbers of epoch. In total, five different epoch sizes were
evaluated using the optimized model with a tanh sigmoid function (Table 4). The model (1W (40/40)
1W (40/40) 1F (40/1) with an epoch size of 15,000 was selected as the best conditions based on low MAE
(0.003) and RMSE (0.004). The optimized model using epochs of 1000, 2000, and 3000 resulted in higher
RMSE values suggesting poorer performance than 15,000 epochs (Table 4).

Table 4. Selection of approximate epoch.

Sr. No. Model Structure Epoch Tanh Sigmoid

MAE 1 RMSE 2

1.

1W (40/40)1W (40/40) 1F (40/1) 40 Inputs 1 Output

1000 0.064 0.091
2. 2000 0.028 0.039
3. 3000 0.024 0.036
4. 5000 0.011 0.015
5. 15,000 0.003 0.004

Where, W = weight layer; F = function layer. 1 Mean absolute error is the average vertical distance between each
point and the identity line. 2 Root mean square error is the standard deviation of the residuals which are a measure
of how far from the regression line data points are.

Table 5 shows ANN classifier performance based on internal, external and cross-validations with
different dataset. The model classified healthy and PM leaves with high accuracy in the case of internal
validation. The highest accuracy was observed with internal validation and the lowest accuracy was
found with external validation. Results suggested that the overall accuracy which is the averaged
value of internal, external, 4-fold cross and 5-fold cross-validations, was 93.81%, using the selected
model structure, with an effective epoch size of 15,000.
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Table 5. Performance of artificial neural networks (ANN) classifier for powdery mildew
disease classification.

Validation Model Structure Accuracy (%)

Internal 1

1W (40/40) 1W (40/40) 1F (40/1) 40 Inputs 1 Output

99.99

External-I 2 87.41

External-II 3 88.95

External-III 4 95.04

4-fold Cross 5 95.03

5-fold Cross 5 96.45

Overall accuracy 6 93.81
1 Internal is an internal validation; 2 External-I: training with Field I + Field II and validated with Field III;
3 External-II: training with Field I + Field III and validated with Field II; 4 External-III: training with Field II + Field
III and validated with Field I. 5 k-fold is splitting the total data from all fields in k different subsets and then k-1 sets
of data were used for training and the rest one set for validation; 6 Overall accuracy is an averaged value of internal
validation, three external validations, and cross-validations.

3.2. Classification Using SVM

The SVM classifier was implemented to demonstrate the effectiveness of the classification of
PM disease leaf from healthy leaves. For this purpose, the feature vectors were applied as the input
to an SVM classifier after normalization. Training and testing were evaluated for measuring the
performance of the classifier. Experimental results showed that the accuracy of the classifier varied
with different kernel functions (Table 6). The highest overall performance was from the linear kernel
(96.66%), whereas a 91.14% of accuracy was observed using the fine Gaussian kernel. The linear kernel
had an average accuracy > 94% across all validation steps (Table 6). The best kernel was selected
by evaluating the accuracy of internal and cross-validation, having the highest overall accuracy of
approximately 96.66% (Table 6). Different assessments were applied for calculating the performance of
the proposed classifier with linear kernel. The best test performance of SVM classifier is presented in
Table 7. The SVM classifier predicts measured values at a high accuracy rate. The highest classification
accuracy was 98.67% and the lowest classification accuracy was 81.33% during internal and external-I
validations, respectively. The external validations (Table 7) varied with different field data used for
validation. The lowest external validation accuracy was found with Field II data and highest accuracy
achieved with Field I validation. The cross-validation resulted in an accuracy > 94%, whereas the
5-fold cross and 4-fold cross-validations had accuracies of 96.67% and 94.64%, respectively. The overall
average performance result of SVM was about 91.66% including external validation results.

Table 6. Selection of kernel for support vector machine (SVM) classifier.

Kernel 1 Internal Validation
(%)

4-fold Cross
Validation 2 (%)

5-fold Cross
Validation 2 (%)

Overall Accuracy 3

(%)

Linear 98.67 94.64 96.67 96.66
Quadratic 98.10 92.53 95.02 95.22

Cubic 94.87 89.44 91.17 91.83
Fine Gaussian 94.23 88.26 90.92 91.14
1 The kernel transforms input data into the required form; 2 k-fold is splitting the total data from all fields in k
different subsets and then k-1 sets of data were used for training and the rest one set for validation; 3 Overall
accuracy is an averaged value of internal validation, three external validations, and cross-validations.
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Table 7. Performance of SVM classifier for powdery mildew disease classification with linear kernel.

Data Set
Validation Accurately Classified Incorrectly Classified Accuracy (%)

Training Testing

300 150 Internal 1 148 2 98.67
300 150 External-I 2 128 22 85.33
300 150 External-II 3 122 28 81.33
300 150 External-III 4 140 10 93.33
338 112 4-fold cross 5 106 6 94.64
360 90 5-fold cross 5 87 3 96.67

Overall accuracy 6 91.66
1 Internal is an internal validation; 2 External-I: training with Field I + Field II and validated with Field III;
3 External-II: training with Field I + Field III and validated with Field II; 4 External-III: training with Field II + Field
III and validated with Field I; 5 k-fold is splitting the total data from all fields in k different subsets and then k-1 sets
of data were used for training and the rest one set for validation; 6 Overall accuracy is an averaged value of internal
validation, three external validations, and cross-validations.

3.3. Classification Using kNN

MATLAB software was used for implementing the kNN classifier. After normalizing the textural
features, data classification was done between the data of healthy leaves and PM affected leaves using
kNN classification method. Table 8 shows classification accuracy using different kernels of kNN model.

Table 8. Selection of kernel for k-nearest neighbors (kNN) classifier.

Kernel
1

Internal Validation
(%)

4-fold Cross
Validation 2 (%)

5-fold Cross
Validation 2 (%)

Overall Accuracy 3

(%)

Fine 89.33 85.71 87.78 87.61
Cosine 88.64 85.23 87.78 87.22
Coarse 78.70 77.21 77.30 77.74
Cubic 84.23 83.66 84.07 83.99

1 The kernel transforms input data into the required form; 2 k-fold cross validation is splitting the total data from
all fields in k different subsets and then k-1 sets of data were used for training and the rest one set for validation;
3 Overall accuracy is an averaged value of internal validation, three external validations, and cross-validations.

The results from Table 8 show that the highest classification accuracy was found with fine kernel
at 89.33% during internal validation. The results also show a high classification accuracy of 87.78% for
the two different types of cross-validation with 4 different kernels. The highest classification accuracy
of 85.71% for 4-fold cross-validation was achieved using the fine kernel. The best kernel was selected
with the highest overall accuracy of 87.61% using fine kernel. Table 9 outlines the performance of kNN
classifier in three different validations, e.g., internal, external and cross-validations using fine kernel.
As shown in Table 9, the best accuracy achieved was when the kNN classifier worked with internal
data (89.33%), and the lowest accuracy was 53.33% which was achieved in external-II validation with
Field II data. An overall accuracy was 78.80% which is exposed to be close result in previous study
during plant diseases classification. Previous research results have reported classification accuracy of
82.5% with kNN classifier for tomato diseases classification [34].
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Table 9. Performance of kNN classifier for powdery mildew disease classification with fine kernel.

Data Set
Validation Accurately Classified Incorrectly Classified Accuracy (%)

Training Testing

300 150 Internal 1 134 16 89.33
300 150 External-I 2 110 40 73.33
300 150 External-II 3 80 70 53.33
300 150 External-III 4 125 25 83.33
338 112 4-fold cross 5 96 16 85.71
360 90 5-fold cross 5 79 11 87.78

Overall accuracy 6 78.8
1 Internal is an internal validation; 2 External-I: training with Field I + Field II and validated with Field III;
3 External-II: training with Field I + Field III and validated with Field II; 4 External-III: training with Field II + Field
III and validated with Field I; 5 k-fold is splitting the total data from all fields in k different subsets and then k-1 sets
of data were used for training and the rest one set for validation; 6 Overall accuracy is an averaged value of internal
validation, three external validations, and cross-validations.

3.4. Performance Comparison of Three Classifiers

The performance of this study was examined by evaluating the external validations and overall
accuracies of each model. The classification methods were tested with the same dataset and the
classifier performances are summarized in Table 10. The performance comparisons of classifiers
were analyzed based on external validation and overall accuracy. The best overall accuracy score
(93.81%) was achieved for the ANN classifier with (1W (40/40) 1W (40/40) 1F (40/1)) model where
the external validation results were higher than the other two classifiers. The SVM based predictive
model also performed well, with an overall accuracy score over 90%, on the dedicated validation
set for same data. However, the kNN based classifier had the lowest accuracy scores in both case of
external validation and overall performance. Although ANN and SVM classifiers had an accuracy
value over 90%, the SVM classifier is not suggested as the best model due to limitations in training,
testing of the data, and external validation accuracy. The speed of data processing was also found to be
slower in SVM model development. On the other hand, the ANN classifier with the textural features
was suggested as the best classifier in our study. The external validation results were comparatively
lower in all the classifiers because the training and testing of classifiers were conducted with different
varieties of strawberry. Each variety had some differences associated with leaf texture. Despite some
misclassifications between some healthy and PM infected leaves, the proposed use of a machine vision
algorithm based on ANN was successfully able to classify strawberry PM diseased leaves with an
average accuracy score of 93.81%.

Table 10. Performance evaluation of three classifiers.

Validation ANN Accuracy (%) SVM Accuracy (%) kNN Accuracy (%)

External-I 1 87.41 85.33 73.33
External-II 2 88.95 81.33 53.33
External-III 3 95.04 93.33 83.33

Overall accuracy 4 93.81 91.66 78.80
1 External-I: training with Field I + Field II and validated with Field III; 2 External-II: training with Field I + Field III
and validated with Field II; 3 External-III: training with Field II + Field III and validated with Field I; 4 Overall
accuracy is an averaged value of internal validation, three external validations, and cross-validations.

3.5. Discussions

PM disease identification at earlier stage is very important for strawberry growers to prevent
yield loss, to reduce labour costs, and to increase the fruit quality. A computer vision-based disease
classification algorithm has been shown to have great potential to provide information for early disease
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detection. Wspanialy and Moussa [47] detected PM disease in tomato plants with a detection rate of
85%. Ei-Helly et al. [18] achieved 94% of accuracy for cucumber PM disease detection in leaf.

Since the visual difference of images used in this study was slight, it was important to utilize
image colour matrix, i.e., hue, saturation and intensity for textural features extraction. The CCM based
textural analysis of 40 features was found to be effective for this specific problem. An ANN based
plant disease detection system previously proposed by Kulkarni and Patil [48] with diverse image
processing techniques had high recognition rates of up to 91% in pomegranate crop. They suggested
that ANNs based classifier detected numerous plant diseases with combination of colour and texture
features to recognize Alternaria, Bacterial Blight Disease and Anthracnose diseases. Ramakrishnan [49]
found much higher accuracies of disease detection, around 97.41% for Ground nut. Their experiments
were done with CCM textural analysis and back propagation ANNs algorithm for detection of leaf
disease. Results from our study using the ANN classifier with strawberry leaves and PM appear to
support previous assertions as to the accuracy of ANN.

Islam et al. [50] presented an approach that integrates machine learning (i.e., SVM) and image
processing techniques to allow diagnosing diseases from potato leaf images. The proposed techniques
provide a path toward automated plant disease diagnosis on a large, i.e., field, scale with potential
accuracy of detection >95% using SVM classifiers. An image pattern classification was studied by
Camargo and Smith [22] for detection of the cotton crop diseases using SVM. CCM, co-occurrence
matrix, having five features were extracted on their research and reached a classification accuracy of 90%.
Their study suggested that texture-related features and SVM might lead to successful discrimination of
plant diseases but a study by VijayaLakshmi and Mohan [35] reported some difficulty using SVM to
understand the structure and size and speed limitations both in training and testing the data. Outcomes
from our study resulted in similar limitations in speed of training from SVM but detection accuracy
was also high.

In contrast, kNN had the lowest accuracy in plant disease classification. Sankaran et al. [30]
classified citrus disease in leaves resulting in overall accuracies of 83.3%, 86.8% and 86.8%, for 1st
derivative, 2nd derivative, and combined spectral features using kNN, respectively. Similar results
were obtained in our study using kNN. The inferior results reported by kNN having the overall accuracy
was 78.80% where the external validation results were 73.33%, 53.33% and 83.33%, respectively.

From the analysis, it is revealed that the classification worked successfully when all the textural
features are utilized. In this study, we did not perform any method which can reduce the number
of textural features. However, reduction method would be required for future real-time application
which would require fast calculation. We leaved the feature reduction for future study.

Kurtulmus et al. [51] stated that an irregular amount of the illumination outdoors is a major
hindrance to crop detection with machine vision. Aggelopoulou et al. [52] shot images between 11 a.m.
and 1 p.m. to reduce the effects of sunlight and removed distorted images due to light from the
collected images. Furthermore, a black cloth is placed behind the tree, so the white of the flower
contrasts with the black background and it results in reducing the influence of the light. Therefore, the
controlled environmental condition of the ACCs presented in this paper is the important factors for
future real-time application. Our results also revealed that analysis using the ANN classifier provide
higher accuracy values than SVM and kNN. The poorest result was reported using kNN in diseases
classification and there were some difficulties acquiring with SVM classifiers. The outcome of this
study indicated that analysis of images texture by using a CCM technique and an ANN approach had
high precision for classifying the PM affected leaves in strawberry crops.

4. Conclusions

In this study, colour co-occurrence matrix textural analysis and supervised learning classifiers
were implemented for classification of healthy and PM disease leaves. The CCM based textural
analysis was executed for extracting image features. Forty features were extracted, which were utilized
for classification after normalization. Three supervised classifiers, i.e., ANN, SVM, and kNN were
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evaluated and the best result was generated using the ANN classifier while the kNN had the lowest
overall accuracy. The SVM had high accuracy of disease detection but some limitations associated
with speed of training and testing of data were found. Results suggested that the ANN is capable to
model non-linear relationships and performed better classification. The study experimented on ACCs,
artificial cloud conditions, environment, which reduced different environmental factors like light and
leaf density during image acquisition.

The smaller image size used as an input in the machine learning process, the more information
could be vanished because the value of the pixel is summarizing. However, the smaller size of the
image, the less processing time is required to train and evaluate the model [53]. Also, different image
processing techniques besides colour co-occurrence matrix, will need to be examined to find optimum
supervised machine learning technique. Histogram of Oriented Gradients (HOG), Scale Invariant
Feature Transform (SIFT), and Speeded up Robust Features (SURF) are possible follow up research
areas for the detection of PM. Therefore, it is necessary to study the variation of classification accuracy
and processing time according to various image sizes and different image processing techniques. As an
area for following study, inclusion of other factors would need to occur in model development for
utilization in real-time PM disease classification under field conditions.

Also, the development of an unmanned ground vehicle (UGV) to collect the image data
automatically will be an essential tool. The camera will be set up in the proper place on the
UGV to take a row of crops in the field and a custom image acquisition program should be developed to
save images or videos in the computer. In that case, segmentation techniques and adjusting the height
due to the resolution could be needed to consider overlapping leaves. Furthermore, deep learning
would be more effective than traditional machine learning approaches because it performs automatic
feature extraction. Fast processing of deep learning can be effectively used in robots for real-time
decision making, which also needs to be explored as a following study. This paper would motivate
more researcher to experiment with machine learning and deep learning to solve agricultural problems
involving classification or prediction.
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