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Abstract: In this review, we examine opportunities and challenges for 21st-century robotic agricultural
cotton harvesting research and commercial development. The paper reviews opportunities present in
the agricultural robotics industry, and a detailed analysis is conducted for the cotton harvesting robot
industry. The review is divided into four sections: (1) general agricultural robotic operations, where
we check the current robotic technologies in agriculture; (2) opportunities and advances in related
robotic harvesting fields, which is focused on investigating robotic harvesting technologies; (3) status
and progress in cotton harvesting robot research, which concentrates on the current research and
technology development in cotton harvesting robots; and (4) challenges in commercial deployment
of agricultural robots, where challenges to commercializing and using these robots are reviewed.
Conclusions are drawn about cotton harvesting robot research and the potential of multipurpose
robotic operations in general. The development of multipurpose robots that can do multiple operations
on different crops to increase the value of the robots is discussed. In each of the sections except the
conclusion, the analysis is divided into four robotic system categories; mobility and steering, sensing
and localization, path planning, and robotic manipulation.
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1. Introduction

The cotton industry holds an important position as a commercial crop worldwide, especially in the
U.S, China, India, and Brazil, who are the leading producers of cotton [1]. However, the cotton industry
has several challenges, particularly in cotton harvesting. Timely harvesting of the quality cotton fiber
is among the most pressing challenges in the cotton production industry. The current practice of
mechanical harvesting after defoliation has led to huge losses in the industry since its inception in the
1950s [2]. The open bolls can sit 40 days waiting to be picked, since it is advised to pick the cotton after
at least 60% to 75% of the cotton bolls are opened [3]. Also, the cotton picker needs defoliated plants to
harvest, which adds expense to the farmer [3]. The defoliants are applied to the plants, and the farmers
need to wait 10 to 14 days before harvesting the crop. Defoliant activity can also be compromised by
rainfall. Also, cotton is harvested at or below 12 percent moisture because wet cotton brings clogging
problems in the picker and the ginning process, which can add more waiting time during harvesting [3].
This waiting time exposes the open bolls to harsh conditions that degrade their quality. Any solution
that would reduce cotton losses and improve quality would be welcomed by the industry. In most
cases, the mechanical combine machines are very big and expensive (the current six-row cotton picker
costs around $725,000). Unfortunately, expensive cotton pickers are stored under the shed for more
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than nine months a year, waiting to harvest for only three months. Also, the machines weigh more
than 33 tons, causing soil compaction, which reduces land productivity [4]. The maintenance of such
machines is also expensive and complicated. Breakdowns in the field can take days to repair, reducing
operating efficiency, and exposing bolls to further weather-related quality degradation [2].

Most cotton harvesting technologies are either “stripper” or “spindle” pickers [3]. The “stripper”
grabs the lint from the plant and some amount of plant matter [3]. Later, the lint is separated from the
plant matter by dropping the heavy plant matter while leaving the lint behind, which is directed to
the basket at the back of the machine. The “spindle” grabs the seed-cotton from the plant by using
barbed spindles that rotate at a high velocity. Then, a counter-rotating doffer is used to strip the
seed-cotton from the spindles [3]. So, for each row, one “stripper” or “spindle” picking tool is used.
This means six-row picking technology has six picking tools for each row. The current six-row picking
technology navigates at 5.5 mph in the field and covers around 8 to 10 acres per hour. [5] and [6]
estimated that 40-inch row spacing has 23.2 bolls per row-ft for a two bales per acre yield while 30-inch
row spacing has 17.4 bolls per row-ft for a two bales per acre yield. A 40-inch row has 13,081 linear feet
per acre, while a 30-inch row has 17,424 linear feet per acre. This means that an acre has an estimated
303,479 bolls per acre for a 40-inch row and 303,178 bolls per acre for 30-inch row spacing (Table 1).
Small robotic rovers that collect at least 12,140 bolls per trip every day 25 times per harvest cycle will
cover around 303,500 fresh open bolls that have been exposed to minimum degradation. A small
rover moving at 3 mph and picking one boll every 3 s and working 10 hours per day would finish
harvesting one acre of 40-inch rows within 50 days (Table 1). Hence, the development of a robot that
costs around $7000 will equate to 104 robots to compare with one large machine that costs more than
$725,000 (Table 1).

Table 1. Comparison of the conventional machine and robot for cotton harvesting.

Parameters Conventional Machine Robot

Number of bolls per acre 303,178 303,178
Times to harvest per acre (pass) 1 25
Time to harvest an acre(hours) 0.1 250

Unit Cost $725,000 $7000

One potential advantage of robotics is using a single rover platform for multiple tasks by
using interchangeable attachments. By changing attachments and selecting the appropriate software
application, robots can perform tasks like planting, weeding, spraying, and harvesting. Also, these
machines can be reprogrammed to cover different tasks on a different crop, which can be a huge
cost-saving measure for both small and large farmers.

The deployment of autonomous machines can improve the quality of the fiber since only a boll is
picked. Autonomous means no human intervention, which reduces labor costs. Also, the need to serve
the environment by stopping the use of undegradable defoliants is very important, as the robots may
pick the mature bolls as they appear without defoliation. The use of lightweight machines dramatically
reduces soil compaction [7]. The cost of operations can also be reduced since autonomous robots may
need less supervision and hence low labor costs. Also, electrical energy sources like solar energy can
be introduced to reduce fuel costs because robotic machines are light, electric and can survive with
limited energy consumption.

The unstructured environment, like the agricultural field, requires more advanced methods of
machine learning [8]. The unstructured approach is required for agriculture rather than a structured
approach [9]. However, advancements of machine vision, machine learning (especially deep learning),
sensing, and end effector manipulation have fueled the application of robots in an unstructured
agricultural environment. However, most of these machines have been deployed in horticultural crops
only [10].
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The development of a cotton harvesting robot is feasible because there is an opportunity to use
the current advancements in machine vision, actuators, motors, and agricultural robotics to develop
an autonomous platform to harvest cotton bolls and be adaptable to other cotton operations like
planting, spraying, weeding and scouting. To the best of our knowledge, there is no commercial cotton
harvesting robot available yet. Hence, we propose to review current cotton harvesting robot research
and opportunities and challenges for future development.

2. Methodology

We discuss the most important issues concerning agricultural robots, harvesting robots, and
finally, cotton harvesting robots. We start our discussion with general agricultural robots and then
harvesting robots because we believe multipurpose agricultural robots have more value compared to
single-purpose agricultural machines. So, it is feasible to adopt some of the commercially available
machines to develop cotton harvesting robots at a lower cost. To achieve this, the literature was
identified using the following keywords; “robot,” “agricultural robot,” “cotton harvesting robot,” “crop
imaging,” “cotton harvesting,” “cotton robot,” “picking robot,” “robots in agriculture” and “harvesting
robots.” Several relevant papers with the keywords from the leading databases and indexing, such as
Web of Science, Google Scholar, Science direct, UGA libs, ProQuest, IEEE Xplore, and Scopus, were
retrieved and identified. Also, Google and Bing search engines were used to retrieve any commercial
or non-academic material related to the mentioned keywords, as most of the commercial companies
prefer to advertise products instead of writing scientific papers. Since the cotton harvesting robot
is a new idea, there were very few materials covering the topic. Other sources of information like
YouTube were also investigated to uncover any commercial or related works presented by companies or
hobbyists. Approximately 74 peer-reviewed articles, 4 chapters, 3 books, 6 scientific reports, 24 refereed
conference proceedings, and other sources from websites of commercial agricultural robotic companies
were selected and included in this review.

Each of the articles retrieved was analyzed according to the robot components in Figure 1. Robots
usually consist of 4 components (Figure 1): sensing and localization (Sensing), path planning (Planning),
mobility and steering (Mobility), and end effector manipulation (Manipulation) [11]. The adoption
and performance of agricultural robots rely solely on those four components [11]. It is difficult for
a robot to succeed when some of the components do not meet expectations. Mobility and steering
mainly focuses on providing the movement ability of the robot to reach the target and accomplish
the mission. This can consist of legs, wheels, tires, plane wings, undulation abilities, propellers, etc.
Sensing and localization is the perception of the environment and its occupying objects that may allow
or hinder the operation of the robot. The robot needs to reason which environmental characteristics are
conducive or not for it to operate. This is done by detecting a clear path, obstacles, detecting targets,
and remembering current and past positions. Path planning is the optimized decision made by the
robot to reach the targets. Robots need to be designed to identify the target position and then plan
their movement according to their capability and the sensed information. This allows the robot to
decide the most optimized path that can lead to a quick achievement of the mission. When the robot
reaches the target, then end effector and manipulators (manipulation) are executed to accomplish the
mission. In the case of agriculture, this can be picking fruit, spraying chemicals, measuring the size of
the target, killing weeds, picking soil or leaf samples, planting seeds, plowing land, or plant irrigation.

Therefore, the robot’s operation is summarized as sense, reason, plan, and act. In each of these
procedures, the robot may succeed or fail and take some time to succeed or fail. Therefore, it is possible
to measure success rates and execution times of each operation. [12] proposed a very good method and
parameters to measure robot performance in the field (Table 2).
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Table 2. Methods and parameters to measure the performance of the robot in the field
(adapted from [12]).

Measure Description

CT: Cycle Time (s)
The average time required to finish a specific action in a task.
(e.g., harvesting a cotton boll, spraying herbicides, scouting

with camera)

OT: Operation Time under real-time
conditions (s)

The average time required to finish an intended task under real-time in
an agricultural field. This can be time taken from the start of robot

planning, navigation, sensing, and manipulation.

OV: Operation Velocity under real-time
conditions (inch s-1)

Average velocity taken by the robot to finish a mission (navigation can
be very complex or simple depending on-farm management task)

PR: Production Rate (lbs h-1, ac h-1, number
of actions h-1, etc.)

Amount of successful actions or task (e.g., number of cotton bolls
picked) treated per time unit

CORT: Capability to Operate under
Real-Time conditions (CORT+ or CORT-)

The ability of a robot to accomplish tasks under real-time conditions
presented in binary form: either can operate under real-time conditions,
CORT+, or cannot operate under real-time conditions, CORT-. This can
be achieved if navigation, sensing, and manipulation are well designed.

DC: Detection Capability (DC+ or DC-)
The ability of robot sensors to detect objects to accomplish a specific

mission and it is presented in binary form; either a robot can detect an
object, DC+; or cannot detect an object, DC-

DP: Detection Performance (%)

Performance of the robot in detecting objects for its mission. Detection
results can be True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN). DP is the sum of the True positives and
True Negatives over all the elements that were presented for detection.
Other parameters like accuracy, recall, precision, and F1 score can be

calculated [13].

ASR: Action Success Ratio (%) The ratio of successful actions performed by the robot without
destroying the plant over the total number of actions

ADM: Appropriate Decision-Making (%) The ratio of the number of correct decisions made over all the decisions
done by the robot while accomplishing an agricultural task

PEa: Position Error Average and PEsd:
Position Error Standard Deviation (inch,

etc.)

The standard deviation and average of positioning error made by a
robot from true locations where it is located to reported location sensed

by the robot’s sensors.

Safety
It the parameter that describes robot behavior on the farm that cannot

threaten other objects around the farm. It is the safe actions of the robot
while operating in an agricultural field.

Wholeness
The ability of the robot to execute tasks as required or as designed to full
completion using its autonomous coordination of actions to accomplish

all the tasks.

Finally, we discuss four main topics regarding cotton harvesting robots consisting of the four
main operations in Figure 1. In the first topic, we discuss general agricultural robotic advances and
opportunities that can be inherited in specified field operations. In the second topic, we discuss the
main harvesting robots available and similarity to other farm operations. In the third topic, we discuss
cotton harvesting robotics status and compare it with other harvesting robots. Lastly, we conclude and
frame the future work required for cotton harvesting robots
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3. Agricultural Robotics

General operations in agricultural robots are equivalent to each other for similar crops and differ
slightly in other types of crops. It is important to discuss the agricultural robot framework that can be
adapted to other crops. In agriculture, various jobs such as plant phenotyping, sorting and packing,
scouting, mowing, pruning, thinning, planting, spraying, weeding, harvesting and picking could be
automated using robots. This can be achieved by the same robot with changes in attachments and
selecting a different computer program for robotic perception and a different end-effector for the new
task. This kind of robot is called a multi-functional intelligent agricultural robot (MIAR).

3.1. Agricultural Robot Mobility and Steering

Most agricultural robots reported use wheels or legs (Table 3). Legs are advantageous for flexible
movement in the agricultural field with high occlusion of stems and branches, but wheels provide
faster and more convenient navigation in the field. Some emerging technologies involve the use
of drones for agricultural operations, such as spraying and scouting, but are excluded from other
operations such as crop harvesting and pruning. A more leveraged approach for operations like
scouting is to combine the drone large area sensing with a ground robotic system that is partially
directed by analysis of drone data [14]. The combined system achieves timely and efficient operations
in the agricultural field [14]. Legged robots may be limited in speed, but are advantageous for multiple
obstacle avoidance, irregular terrains, and crevices [15]. Over time, the deployment of wheeled robots
has become more prevalent [15]. Comparing the two, the execution time is good with the wheeled
robot, but legged robots achieve a good success rate, and have the flexibility to maneuver over diverse
terrains [15].

There are several types of mobility in agricultural robots according to the condition of the
agricultural field or robotic operation that would be cost-effective and fast. For high-speed navigation,
robots over rails are useful, especially in phenotyping studies (Figure 2b). Legged robots like AgAnt
(Figure 2a) and the Tarzan robot, which swings over the crops on a wire (Figure 2c), are both preferred
in wetlands and close inspection of crops and animals. The rack-like [16] weeding robot (Figure 2d)
and Fuji Agricultural robot (Figure 2f) are preferred in slippery grounds to reduce skidding. Dogtooth
(www.dogtooth.tech), which is a strawberry harvesting robot, uses a track in a nominal strawberry
growing system because it is a convenient method of navigation in greenhouses. Swinging robots like
the Tarzan robot discussed above can be very good for high throughput phenotyping tasks as they
can maneuver close to the plants or animals compared to drones. However, the mobility needed also
depends on the flexibility required on the farm. Four-wheel steered robots like SwagBot (Figure 2i),
Thorvald II (Figure 2e), or Agribot (Figure 2g) are required for conditions where the wheel traction is
difficult, such as a feedlot, or any muddy environment. However, in most cases, for normal operation,
a two-wheel turning robot is enough for farming operations.

Auat Cheein et al. [17], Ouadah et. al. [18], and Cheein et.al. [19] presented a simple model for
a mobile robot that can explicitly demonstrate how mobility is modeled with a car-like unmanned
mobile robot.

Xue et.al. [20] reported a skid-steer robot that controlled the wheels on either side of the mobile
robot by linking them.

The navigation of a robot (Figure 3) in row-crop production should be easy to track and retrieve
while working to allow self-navigation when some of the sensors (GPS or IMUs or cameras) fail.

www.dogtooth.tech
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IPK dual-arm robot (source: agromarketing.mx), (c) Tarzan swing robot [21,22] (d) Weeding Robot 
[16] (e) Thorvald II Agricultural Robotic System Modules [23] (f) Fuji industry Robot (source: 
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autonomous.systems.stfc.ac.uk) (i) SwagBot, omnidirectional electric ground vehicle (source: 
confluence.acfr.usyd.edu.au). 
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confluence.acfr.usyd.edu.au
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path taken by the rover. 
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(the autonomous rover can be tracked while working on the farm by using visual SLAM and GPS);
(a) Rover is starting to navigate, (b) Rover is about to finish the farm (c) Rover can generate the returning
path by using history navigation (d) Blue is the predicted path going back while red is the path taken
by the rover.

3.2. Agricultural Robot Sensing

Sensing is done to update the system on the environment so that it can navigate or pick fruits [2,11],
discover disease, insects, or weeds, control spraying height above the canopy, and other tasks. Robust
sensing systems are required for the robot to work well in dynamic environments with changing
weather conditions, vegetation variation, topographical changes, and unexpected obstacles. Most
agricultural robots, so far, use image sensing systems and Global Navigation Satellite Systems (GNSS) to
achieve the localization of the robot (Table 3). The advancement of imaging technologies has provided
a great opportunity to sense and create 2D, 3D, and 4D (spatial + temporal) images of plants [24].
Technologies to obtain 2D, 3D and 4D perception of the environment has been achieved using the
following sensors in agricultural fields; visible light, near-infrared, thermal, fluorescence, spectroscopy,
structural topography imaging, fluorescence, digital imaging (RGB), multispectral, color infrared,
hyperspectral, thermal, spectroradiometer, spectrometer, 3D cameras, moisture, pH, light-reflective,
light detection and ranging (LIDAR), sound navigation and ranging (SONAR), ground-penetrating
radar and electrical resistance tomography [24–30]

Other sensors, such as potentiometers, inertial, mechanical, ultrasonic, optical encoder, RF receiver,
piezoelectric rate, Near Infrared (NIR), laser range finder (LRF), Geomagnetic Direction Sensor (GDS),
Fiber Optic Gyroscope (FOG), piezoelectric yaw, pitch and roll rate, acoustic and Inertial Measurement
Units (IMUs) have been used to provide direction of the robot and navigation feedback [7,31–33].

The choice of imaging sensor somewhat depends on the distinct characteristics of the target from
the rest of the obstacle-dense environment. The normal digital camera may be used if the target on
the field can be visually identified. For example, to identify green citrus or green bell pepper in a
population of green plants may require using an alternative sensor, or the method of detection may be
complicated by involving advanced methods of machine learning [2,34–38]. Images may suffer from
illumination changes, motion change, cluttering, temperature swings, camera motion, wind-induced
movements, deformation, and scene complexity. Hence, some image refinement algorithms may be
required to enhance the images [35,38]. Then, object recognition or feature extraction using pattern
recognition and other machine vision algorithms can be performed. There are several methods of image
rectification and enhancement that have been reported; image smoothing and segmentation [2,36,39],
morphological operations and filters [2,34,38], a fast bilateral filtering based Retinex [35], illumination
normalization [2,35], image color space-changing [40], and normalized co-occurrence matrix and gray
level co-occurrence matrix [41]. Feature extraction can be achieved using classical image processing
techniques or advanced techniques in machine learning, such as color filtering and masking [2].
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After sensing the surrounding environment, the robot sensors need to recognize and establish a
position within the environment so that the robot can make navigation decisions to reach its target.
The use of machine vision and GPS has been used in agriculture to recognize the position and even
help the robot to move in-between or over the rows of crops and turn at the end of the row [42]. The
robot needs a quick decision for localization so it can decide to move. In so doing, the simultaneous
localization and mapping (SLAM) algorithms are required to achieve the mission [42].

In a compact robot, it could be useful to use wireless sensors and utilize the Robotic Operating
System (ROS) to transmit data between controllers and sensors. However, the wireless transmission
may be affected by several features like the radio transmission standard used, data rate, nodes
allowed per master controller, slave enumeration latency, the data type to be transmitted, the range of
transmission, extendibility, sensor battery life, costs and complexity [43].

3.3. Agricultural Robot Path Planning

Path planning in agricultural fields means the decisions made by the robot to navigate in an
agricultural field safely without destroying the plants (Figure 3). Path planning also involves a
technique to plan for the movement of the manipulators to the target. In other words, path planning is
the technique used to utilize the information provided by the sensing unit of the robot to decide on
steering and manipulation to accomplish the mission.

There are several path planning algorithms developed for robotics systems, such as grid-based
search algorithms (assumes every point/object is covered in a grid configuration [44,45]), interval-based
search algorithms (generates paving to cover an entire configuration space instead of grid [44]),
geometric algorithms (find safe path from the start to goal initially [46]), reward-based algorithms
(a robot tries to take a path, and it is rewarded positively if successful and negatively if otherwise [47]),
artificial potential fields algorithms (robot is modeled to be attracted to positive path and repelled
by obstacles [48]), and sampling-based algorithms (path is found from the roadmap spaces of the
configuration space). Each of the algorithms has potential use, and some are just classic methods like
grid-based algorithms [49]. However, the most advanced methods are sampling-based algorithms,
as they attain considerably better performance in high-dimensional spaces using a large degree of
freedom. Since many robots in agriculture will work in swarms to accomplish tasks comparable to the
big machines currently used, real-time path and motion planning are required to control and restrict
swarm agents’ motion [49].

For plants like cotton, overlapping leaves prevent the robot from seeing clear rows to navigate
and move the manipulator [7]. This was not the case for large plants like citrus, in which the rows
were clear for the robot to move in between and pick the fruit on both or one side of the row [50]. The
robot also needs to plan how it is going to move between the row without repeating the same rows
using simultaneous localization and mapping (SLAM) and how the arm is going to move without
destroying branches [51].

3.4. Agricultural Robot Manipulation

Manipulators and end effectors are tools designed for the smooth operation of the robot on
objects and the environment. End effectors consist of the gripper or a certain tool to be impactive
(physically grasping objects, like the citrus robot reported by [39]), ingressive (physically penetrate the
surface of the object, like the soil sampling robot reported by [52]), astrictive or attractive (suction objects
by using external forces, like the tomato gripper reported by [53]) or contigutive (direct adhesion to
the object) [54–59]. Some robots may use a combination of two or more end effector techniques; for
example, [53] used both astrictive and impactive grippers to improve success rates in tomato picking.

Table 3 discusses other agricultural robots designed to work on non-harvesting tasks. N/A means
the authors did not report any information related to that category. Most of the robots use GPS, camera,
and four-wheel platforms.
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Table 3. Other agricultural robots for weeding, soil sampling, scouting/phenotyping, pruning, spraying, and sowing.

Activity Reference Mobility Sensing Path Planning Manipulation

Weeding [60,61] Four-wheel vehicle Camera, GPS, and angle
sensors

Hough transform method for detection
of rows N/A

[31] Four-wheel vehicle Camera, GPS, gyroscope,
magnetometer

Strategic planning (based on previous
knowledge of weed population), adaptive
planning (for the unexpected occurrence of

weeds) and path tracking control

N/A

[33] Continuous track vehicle IMU and LRF Path Tracking methods

The inter-row spacing
weeder was made of three
spiral-type cutters (three
arms and three weeder

plows) [2DOF]

Pruning [62]
Four active wheels are set

at regular intervals
around the tree

N/A
Climbing method (implementing rotation of

wheels along the vertical direction and
diameter of the trunk).

2DOF (with cutting blade)

[63] Two active wheels N/A

Climbing method (implementing rotation of
wheels along the vertical direction and
diameter of the trunk). Arm trajectory

motion planning with a search mechanism

9DOF (with cutting blade)

[64] Four-wheel vehicle 3D cameras The randomized path planner [random tree
(RRT)-based planner, RRT-Connect]

6DOF (cutting tool
consists of a router

mill-end attached to a
high-speed motor)

[65] Four active wheels
3D position measurement
device and 3D orientation

sensor
Innovative climbing strategy [grid based] 2DOF

Soil
Sampling [52] Two-wheel robot GPS, encoder GPS path tracking [Adaptive grid-based

Navigation]
2DOF (Linear actuator

and Cone penetrometer)

[66] Four-wheel vehicle
(Thorvald)

RTK-GPS, force sensor,
measurement device, soil

moisture sensor
GPS tracking method [grid-based] 2 DOF (penetrometer)

[67] Four-wheel vehicle
(BoniRob)

RTK-GPS, and soil
moisture sensor GPS tracking method [grid-based] 2 DOF (penetrometer)
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Table 3. Cont.

Activity Reference Mobility Sensing Path Planning Manipulation

Scouting or
phenotyping [68] Four-wheel vehicle

RTK-GPS, NIR camera,
and RGB Multicamera

system
GPS Auto steering methods N/A

[69] Four-wheel tractor RGB Stereo camera,
RTK-GPS GPS Auto steering method N/A

[70] Four-wheel tractor
GPS, RGB camera, inertial

sensors, 3D LIDAR, 2D
security lasers, IMU

Simultaneous Localization And Mapping N/A

[71] Continuous track

RGB Stereo cameras,
single-chip ToF sensor, IR

sensor, RTK-GPS
gyroscope, and optical

encoders

Extended Kalman filter (EKF) and nonlinear
model predictive control N/A

Spraying [72] Sliding on rails vehicles Induction sensors, IR
sensors, bump sensors N/A since it was following the rails N/A

[73] Four-wheel vehicle
Camera, temperature,

humidity, soil moisture
sensors, GSM modem

N/A N/A

[74] Four-wheel vehicle LRF sensor, GPS and
magnetic sensor

Path tracking method and self-positioning
method N/A

[75] Four-wheel vehicle
LRF sensor, ultrasonic,

laser scanner, stereo
camera, encoders and GPS

Path tracking using planned trajectory N/A

Sowing [76] Four-wheel vehicle Encoder, angle sensor,
pressure sensor, IR sensor Path tracking methods 2DOF (sowing device)

[77] Continuous track
[caterpillar treads ]

Magnetometer, the
ultrasonic sensor

Navigation by using sensor data to
follow rows 2DOF (sowing device)
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Manipulators can be identified by their freedom of movement in space. This is known as degree
of freedom (DOF) (Figure 4) which means the body can freely change the position as up/down
(known as heave), left/right (known as sway), forward/backward (known as surge) and it can do
orientation through rotation by yawing (around normal axis), pitching (around lateral axis), or rolling
(around longitudinal axis) [57]. In agriculture, robots have been designed to accommodate various
levels of DOF from three DOF (strawberry robot designed by [58]) to seven DOF (tomato robot designed
by [53]). As DOF increases, flexibility increases, but it may become heavier and slow in response [8,59].
In agriculture, high power-weight ratio actuators are more suitable and effectively used [42].
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4. Agricultural Harvesting Robotics

We identified several harvesting robots that have been developed and reported that could
potentially be used as a template for a robotic system in cotton.

4.1. Agricultural Harvesting Robot Mobility and Steering

Most of the reported robots in agriculture above for harvesting were wheeled robots (Table 4). Also,
these robots have an arm mounted on top of the vehicle moving in-between or over the rows (Table 4).
Most of the four-wheeled robots reported turn using front tires (Ackerman steering model) (Table 4).
Some that are deployed in greenhouses use rails, since greenhouses are semi-structured farms [78,79].
Fraunhofer Institute for Production Systems and Design Technology IPK (www.ipk.fraunhofer.de)
developed a prototype of a dual-arm robot that navigated by using rails for cucumber harvesting
(Figure 2b) that was semi-autonomous.

4.2. Agricultural Harvesting Robot Sensing

Cotton bolls appear like flowers; hence, any potential flower harvesting robot could be adaptable.
The 3D positions of flowers can be obtained using stereotypic cameras [80]. Also, [80] reported that
in stereotypic cameras, increasing the distance between lenses reduces errors, while increasing the
distance between the lens and the object (flower) increases error. In harvesting, it becomes more
complicated due to the occlusion of the bolls. Ripe fruit may be located inside the canopy, where access
can be limited.

4.3. Agricultural Harvesting Robot Path Planning

In harvesting, path planning is dependent on the manipulators, end effectors, and the agricultural
produce to be harvested. In any case, if the fruit to be gripped is very delicate, then path planning
becomes more complicated for impactive end effectors compared to sucking end effectors to avoid
collisions that may damage the fruit [81]. Also, the fruit to be sold to consumers is expensively
harvested as the robot needs to match human picking action compared to fruits harvested for juice or
industrial processing. Most of the heavy mechanical robotic machines may be used to harvest fruits for
industrial use since the machines may be fast enough compared to a robot.

sensing.honeywell.com
www.ipk.fraunhofer.de
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If the plant branches are weak or the fruit is very delicate, path planning becomes expensive to
preserve the plant that needs to be left undestroyed. Path planning is also expensive when many
degrees of freedom (DOF) arm is used. However, most methods for path planning are more effective
and successful when the number of DOF is optimized to be small enough to achieve the purpose [82].
Also, in multiple arm robots, some machines use a prescription map to harvest many fruits at high
speeds [83]. Hohimer et al. [81] concluded that by increasing the degrees of freedom, the apple fruit
picking robot was performing well but at the slowest speed. This was caused by the path prediction
algorithms, and the time the actuators took to reach the target. They advised attempting to use a lower
degree of freedom to achieve the speed required to attend large fields like cotton farms.

Most of the robots reported path tracking algorithms to navigate on the farm using GPS and
cameras (Table 4). Most of the robots used for greenhouse harvesting use rails; hence they do not
need navigation algorithms but rather position control algorithms (Table 4). Also, most of the studies
except [84] reported motion planning, which is done using arm trajectory motion without including
search mechanism algorithms for path planning or obstacle avoidance. However, [85] introduced path
planning in agriculture using advanced methods in neural networks (NN) and a genetic algorithm
(GA) in 1997. Also, [86] developed a robot path planning system with limited end-of-row space using
a Depth-First Search (DFS) algorithm.

4.4. Agricultural Harvesting Robot Manipulation

For manipulators, various degrees of freedom (DOF) have been studied, including a three-DOF
rectangular coordinate manipulator to the nine-DOF manipulator (Table 4). For end-effectors, it mainly
depends on the type of farm product to grip and the degree of abrasion that can be tolerated. Impactive,
attractive, and contigutive end effectors are the most common, with most of the end-effectors being
attractive, impactive, or both. This was because fruits that require robotic harvesting need expensive
handling to avoid abrasions [87]. Hence, ingressive end effectors are not common in agricultural
harvesting of fruits as most must be pristine for the fresh market.

Manipulators are evaluated using success rates [12]. Cotton boll harvesting needs less than 3 s for
each boll to be effective. [88] reported a strawberry robot success rate of 53.9% while [89] got a success
rate of 62.2% on picking tomatoes. [90] got a success rate of 84% for apple picking. All the researchers
(Table 4) that reported the execution time have achieved an execution time of more than 20 secs per
fruit. Hence, cotton harvesting cannot adopt the manipulation methods reported, at least without
some modification to increase success.
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Table 4. Recent robotic systems developed for harvesting agricultural produce.

Reference/Crop Mobility Sensing Path Planning Manipulation

[78] for Sweet pepper The railed vehicle robot
platform A ToF camera, RGB cameras

Robot over the rails. Manipulator used
Arm trajectory motion planning with a

search mechanism

9DOF, Fin Ray end effector
(scissors and fingers) and

Lip-type end effector (knife and
vacuum sensor).

[84] for Tomato Four-wheel vehicle binocular stereo vision
PID control for Ackerman steering

geometry. The manipulator used C-space
and the A* search algorithm

5DOF harvesting manipulator

[88] for strawberry Four-wheel vehicle [Thorvald II] RGB-D camera, IR sensor
Vehicle controlled manually by a joystick,
but manipulator used motion sequence

planning algorithm

5DOF arm with a cable-driven
gripper

[79] for cherry-tomato The railed vehicle robot
platform

RGB Stereo camera, Laser
sensor

Arm trajectory motion planning for the
manipulator

6DOF with double cutter
end-effector

[91] for Kiwi-fruit Four-wheel vehicle robot
Laser sensors, Hall position

sensor, Pressure sensor, Optical
fiber sensor

Arm trajectory motion planning without
search mechanism

2DOF with 3D printed bionic
fingers end-effector

[83] for Mellon
The 2-m wide rectangular frame

which spans the melon bed
robot with four wheels

RTK-GPS, encoders, RBB stereo
cameras

Arm trajectory motion planning without
search mechanism

3DOF Multiple Cartesian
manipulators

[92] for Tomatoes The railed vehicle robot
platform

RGB Cameras, wheel encoders,
a gyroscope and an

ultra-wideband (UWB) indoor
positioning system

Arm trajectory motion planning without
search mechanism

6DOF manipulator with a 3D
printed gripper

[93] for Apples Four-wheel vehicle RGB cameras, wheel Encoders
A visual servo algorithm based on fuzzy
neural network adaptive sliding mode

control for vehicle and manipulator
5DOF manipulator

[94] for Tomatoes The railed vehicle robot
platform RGB stereo camera

Inverse kinematics for manipulator and
no navigation algorithm for vehicle and

Arm trajectory motion planning

Two 3-DOF Cartesian type
robot manipulators with saw

cutting type end-effector
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5. Cotton Harvesting Robot

Cotton bolls, as seen in Figure 5, do not require soft robotics like other fruit crops, which may
require very careful design of the end effector and manipulation to avoid fruit damage. The plants are
close to each other because the cotton plant tends to fill out spaces as it grows [95]. Most of the bolls
begin opening from the bottom of the canopy [95].
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5.1. Cotton Harvesting Robot Mobility and Steering

Most of the cotton harvesting robots reported use four-wheel vehicles (Figures 6–8). Figure 7 is a
prototype developed in India by a startup owned by Sambandam company. The prototype involves
a four-wheel vehicle that is used in small farms in India. However, this prototype was designed to
be controlled by human operators for navigation. The same approach (Figures 6 and 8) of using a
four-wheel rover but with center-articulation was proposed in our group as well [2,7,96]. Currently,
no other type of mobility or steering and navigation algorithm or method for cotton harvesting has
been reported.
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Figure 7. Cotton picker robot prototype (source: www.kas32.com). 

The use of robots in harvesting cotton faces a complex environment for robot mobility (Figure 
5). Since plants are very close to each other and leave a thin path, the adoption of accurate 
autonomous navigation that uses the fusion of sensors like IMUs, GPS, and machine vision becomes 
a vital requirement. Accurate path following without breaking branches will increase the precision 
and other metrics of the robotic system. Due to this complexity, [11] proposed the use of humans in 
operating semi-autonomous robots just to increase the productivity and quality of the operation 
rather than leaving the machines alone. The technology for semi-autonomous or autosteering 
navigation is also currently available; hence, it can be more easily accepted and adopted. However, 
commercial autonomous tractors are highly desirable in precision farming because they are cost-
effective, can reduce labor requirements, and are safe to humans if designed well. [7] proposed a 
navigation algorithm for navigating the cotton field by detecting the rows from above. Depth maps 
are acquired, transformed into binary depth maps, and then rows detected using a sliding window 
algorithm, which compares the depth of the pixel to differentiate between canopy and land. 
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The use of robots in harvesting cotton faces a complex environment for robot mobility (Figure 5).
Since plants are very close to each other and leave a thin path, the adoption of accurate autonomous
navigation that uses the fusion of sensors like IMUs, GPS, and machine vision becomes a vital
requirement. Accurate path following without breaking branches will increase the precision and
other metrics of the robotic system. Due to this complexity, [11] proposed the use of humans in
operating semi-autonomous robots just to increase the productivity and quality of the operation rather
than leaving the machines alone. The technology for semi-autonomous or autosteering navigation is
also currently available; hence, it can be more easily accepted and adopted. However, commercial
autonomous tractors are highly desirable in precision farming because they are cost-effective, can
reduce labor requirements, and are safe to humans if designed well. [7] proposed a navigation algorithm
for navigating the cotton field by detecting the rows from above. Depth maps are acquired, transformed
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into binary depth maps, and then rows detected using a sliding window algorithm, which compares
the depth of the pixel to differentiate between canopy and land.

5.2. Cotton Harvest Robot Sensing

Cotton is an indeterminate crop and continues to open bolls for a period of approximately 50
days [95]. Hence, there is a need to harvest bolls as they open. Sensing capability should be able to
distinguish fully opened bolls from others, and it should be able to detect open bolls located at the
bottom of the plant canopy. However, lowering the camera into the canopy could readily destroy the
lenses due to plant branches’ impact.

Fortunately, the cotton’s whitish color gives it a distinguishing feature to be easily detected by a
color camera. Also, the cotton recognition algorithm should be able to work well under direct sunlight.
There are several cotton recognition algorithms reported using machine vision techniques like color
segmentation [2], optimized segmentation algorithm based on chromatic aberration, color subtraction
and dynamic Freeman chain coding, region-based segmentation, deep learning methods and ensemble
methods [96–101]. All the methods described in these studies can be adopted to improve the current
cotton harvesting prototypes. However, it was a challenge to detect separately occluded bolls using
color segmentation [2,100].

Our group designed a cotton detection algorithm using a stereo camera that was able to precisely
locate and track cotton bolls using deep learning [97]. A stereo camera (ZED) was used to estimate
boll positions and found the mean error standard deviation increased as the speed of the rover and
installed camera increased to 0.64 km/h [2]. The robot was performing well with 9 mm RMSE and
an average R2 value of 99% when stationary, but when the vehicle started moving to approximately
0.64 km/h, the R2 dropped to 95%, and RMSE increased to 34 mm [2]. It was the only study that has
demonstrated the detection and estimation of the location of cotton bolls in field conditions in real-time
using an embedded system.

5.3. Cotton Harvest Robot Path Planning

With high cotton boll occlusion, path planning for navigation and manipulators becomes a very
crucial requirement for the successful deployment of a commercial agricultural robot [102]. There is
no research discovered that describes path planning a cotton harvesting robot rather than navigation
planning of the robot along the rows [7]. However, it seems the current researchers do not see the
necessity to develop a commercial product in a non-specialty crop that demands good path planning.
Most of the designed path planning algorithms in agricultural robots use IMU, camera, and RTK-GPS
(Tables 3 and 4). Hence, cotton harvesting systems may adopt this approach too. If small robots
are adopted in cotton harvesting, navigation between the rows using Lidar has been shown to be
successful [103].

The cotton field environment is highly unpredictable due to varying plant canopy growth patterns.
Cotton crop canopy grows to fully cover the space between the rows, and it can grow very tall [95].
Planting practices, especially plant spacing, requires special recommendations for robotic harvesting.
This could be done in cotton by modifying farm management practices or by manipulating the genes
of the crops to allow easy access to the bolls for robotic manipulators. This is common for specialty
crops like apples, strawberries, and grapes, which were bred to provide effective access to fruits.

5.4. Cotton Harvest Robot Manipulation

Current approaches to grippers are not effective for cotton plants because the cotton boll fibers
stick on the end effector. So, grippers need to be strong enough to grab the boll effectively without
destroying the plant. With harvesting as bolls open comes a challenge to design manipulators which
start harvesting bolls at the bottom of the plants, and that are highly occluded by the canopy. The
reported cotton harvesting manipulators and end effectors picked the cotton boll, but they also broke
the plant branches, removed leaves, or knocked down unharvested bolls to the ground [97]. Therefore,
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a well-designed astrictive or attractive method is desirable for cotton harvesting. Figure 6 shows a
prototype of a cotton harvesting robot with the two-DOF cartesian manipulator that holds a vacuum
suction end effector [97]. Figure 11 shows a Clemson-developed cotton harvesting prototype robot that
uses a two-DOF cartesian manipulator. Figures 9 and 10 present a gRoboMac prototype robot that uses
a three-DOF manipulator and four-DOF manipulator, respectively. All the reported manipulators in
cotton harvesting use astrictive or attractive grippers since cotton lint does not require careful handling
like other fruits [97].
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In 2019, a team in India designed a rigid vacuum cleaner machine as the best alternative for a
cotton harvesting end effector (Figures 9 and 10). The gRoboMac team did not report execution time,
which was a very important parameter for effective cotton harvesting. [97] obtained a preliminary
execution time of 17 s per boll. Both groups ([97] and gRoboMac) reported manipulators that used
two-DOF and four-DOF manipulators, respectively. Simple manipulators have a high execution
time [81]. For example, [81] reported that the eight-DOF apple harvesting robot was 10,000 times
slower compared to the five-DOF manipulator robot. However, the eight-DOF robot was flexible to
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reach most of the fruits hence provided high success rates. A Clemson University team (Figure 11) also
proposed a similar approach but using a small rover riding in between the rows. [97] reported the use
of a vacuum end effector with rotating tines to remove bolls (Figure 6), which has been widely used by
humans to pick cotton in China and other developing countries. [97] modified the system to be used in
robotic systems.AgriEngineering 2020, 2 168 

 

 

Figure 11. Cotton robot testing at Clemson University (source: agweb.com). 

6. Challenges in Commercial Deployment of Agricultural Robots 

The initial investment in row crop robotics systems may become very big for an average farmer 
[10]. As much as USD 319,864 for an 850 ha farm is required for investment in intelligent machines to 
achieve maximum break-even point [104]. Fortunately, [104,105] concluded that farming robots 
would bring profitable business to farmers because robots can reduce 20% of the scouting costs for 
cereals, 12% for sugar beet weeding, and 24% for inter-row weeding. Robots can work like a swarm 
of small robots to accomplish farm operation at a very competitive cost compared to current machines 
[106]. Non-horticultural crops like maize, soybean, barley, potato, wheat, and cotton have not been 
given priority in economic studies on robotic systems after evaluating several studies in databases 
such as GreenFILE, Business Source Complete, AgEcon Search, Food Science Source, Emerald, CAB 
Abstract, ScienceDirect, and [10]. Fortunately, the same challenges in agricultural robotics cut across 
different farming operations and crops. 

There are five commercial parameters, and at least one of them should be unlocked for 
agricultural robotics to succeed [11]. Firstly, the cost of the new robot should be lower than the current 
methods used. Secondly, the introduction of robots should increase the capability, productivity, 
quality, and profitability of production. Thirdly, the introduction of robots should increase 
uniformity and quality in farm production and decrease variability and uncertainty. Fourthly, the 
use of robots may increase and fasten farm management decisions that are not able to be achieved by 
the current methods. Lastly, the use of robotics should remove human beings from operating on 
environmental risky tasks, particularly the use of heavy machines and chemicals, hence reducing 
labor and insurance payment for labor. Also, there are other factors that can be indirectly important 
for farmers, such as the ease of use and maintenance of the robot compared to current methods and 
reduction in soil compaction [11].  

The design of the manipulators may also be a great challenge in the agricultural field. Single-
arm robot design also may not be effective for large farms. However, the challenge of agricultural 
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Figure 11. Cotton robot testing at Clemson University (source: agweb.com).

6. Challenges in Commercial Deployment of Agricultural Robots

The initial investment in row crop robotics systems may become very big for an average farmer [10].
As much as USD 319,864 for an 850 ha farm is required for investment in intelligent machines to
achieve maximum break-even point [104]. Fortunately, [104,105] concluded that farming robots would
bring profitable business to farmers because robots can reduce 20% of the scouting costs for cereals,
12% for sugar beet weeding, and 24% for inter-row weeding. Robots can work like a swarm of small
robots to accomplish farm operation at a very competitive cost compared to current machines [106].
Non-horticultural crops like maize, soybean, barley, potato, wheat, and cotton have not been given
priority in economic studies on robotic systems after evaluating several studies in databases such as
GreenFILE, Business Source Complete, AgEcon Search, Food Science Source, Emerald, CAB Abstract,
ScienceDirect, and [10]. Fortunately, the same challenges in agricultural robotics cut across different
farming operations and crops.

There are five commercial parameters, and at least one of them should be unlocked for agricultural
robotics to succeed [11]. Firstly, the cost of the new robot should be lower than the current methods
used. Secondly, the introduction of robots should increase the capability, productivity, quality, and
profitability of production. Thirdly, the introduction of robots should increase uniformity and quality in
farm production and decrease variability and uncertainty. Fourthly, the use of robots may increase and
fasten farm management decisions that are not able to be achieved by the current methods. Lastly, the
use of robotics should remove human beings from operating on environmental risky tasks, particularly
the use of heavy machines and chemicals, hence reducing labor and insurance payment for labor.
Also, there are other factors that can be indirectly important for farmers, such as the ease of use and
maintenance of the robot compared to current methods and reduction in soil compaction [11].

The design of the manipulators may also be a great challenge in the agricultural field. Single-arm
robot design also may not be effective for large farms. However, the challenge of agricultural robotics
with more than three DOF has been “sensing and moving” at rapid harvesting rates [102]. It has
been a challenge for on-the-go field harvesting due to the robotic arm moving the branches of the
target; hence, camera feedback was necessary to determine the latest position of the target before
harvesting by the manipulator [102]. So, it was concluded that research and development of commercial

agweb.com
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harvesting systems should concentrate on increasing the speed and accuracy of robots in a harsh and
varying environment.

The current research in the cotton harvesting robot our team is developing provides a MIAR
prototype for cotton production. To our knowledge, no research has been conducted to develop
robotic systems for other cotton operations, as seen in Table 3. An MIAR that would work on
multiple farming tasks like sowing, spraying, weeding, scouting, and soil sampling would be useful.
Cotton Inc has committed itself to funding robotic systems research in cotton and emphasizes the
adoption of open-source robotics. Open-source systems have the advantage of open collaboration,
multiple partners, and continuous updating. The Robotic Operating System (ROS) is a good example
of open-source adoption and continuous improvements and additions through the community of
open-source users [107]. Thus, open-source creates a harmonized environment for researchers that is
cost-effective and can speed up development efforts. It also encourages reuse of the core libraries in the
development of robots, hence reducing costs [107] and enabling more cost-effective commercialization
of robotic platforms. The robotics industry is a profitable industry to engage in now. In 2019, the
IDTechEx research company analyzed the robotic market and technology development growth and
predicted the agricultural robotics industry would be worth $12 billion worldwide by 2027 [108]. There
is an advantage of using robots as the economics models show that the net returns can increase by up
to 22% compared to the current practice of using conventional machines in row crop production [104].

7. Conclusion and Future Work

In this paper, we performed a literature review on robotics in agriculture. We have looked at the
relationship and similarities of the robotics systems in agriculture that can accelerate the development
of cotton harvesting robots. We also examined aspects of mobility, sensing, path planning, and
manipulator design. Our aim in this study was to highlight the recent opportunities and challenges of
agricultural systems and the promising future of cotton harvesting robotic systems.

Sensor development for machine vision is advancing quickly, and commercial products that
support sensing have also been realized. Despite modern technological advancement, the algorithm
to allow a smooth interpretation of visual sensing is still a challenge in agricultural fields [109]. The
sensitivity, aperture, and resolution are improving, and the present technologies in deep learning
have surpassed human eye accuracy in object classification and identification [110]. Machine learning,
especially deep learning algorithms, has brought high accuracy in the identification of weeds,
plant cultivars, fruit counting and estimation, land cover classification, and crop and fruit type
classification [109–111]. Most of the navigation and motion planning algorithms to navigate in row
crops do not provide fully autonomous capability compared to tree crops [109,111]. Cotton needs color
sensors to differentiate open bolls from semi-open bolls and flowers during harvesting.

Mobility in a cotton field may use four-wheel-drive systems to increase the speed of harvesting as
reported by some researchers because cotton fields are big and require speedy and long navigation.
Trained robots cannot be used since cotton is produced on outdoor farms. However, it has shown
good adoption in greenhouses. Path planning is needed in four-wheel-drive systems because the robot
needs to pass over the rows carefully so as to not break branches or knock cotton bolls onto the ground.

Manipulators have shown good performance when fewer degrees of freedom are used. However,
for the careful handling of fruits, more degrees of freedom are required. This is not the case for cotton
plants, for which the fruit is the lint. The grippers may just use astrictive or attractive grippers without
destroying the lint. This is the main reason most of the research in cotton harvesting has focussed on
two-DOF, three-DOF, and four-DOF manipulators.

Future designs of cotton harvesting robots need effective manipulators and sensing that can locate
and pick cotton bolls located at the bottom of the canopy. Designs that involve multiple manipulators
will provide fast harvesting that can match current harvesting machines. Manipulators that use fewer
degrees of freedom will provide fast picking of cotton, which is critical to get to one boll every 3 s.
Future design and development research should also include alternative energy sources to decrease
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energy costs. Studies to determine power requirements, footprint, and cost are necessary for robots to
be developed for multipurpose functions and work in collaborative “swarms.”
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