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Abstract: The aim of this research was to test recent developments in the use of Remotely Piloted
Aircraft Systems or Unmanned Aerial Vehicles (UAV)/drones to map both pasture quantity as
biomass yield and pasture quality as the proportions of key pasture nutrients, across a selected
range of field sites throughout the rangelands of Queensland. Improved pasture management
begins with an understanding of the state of the resource base, UAV based methods can potentially
achieve this at improved spatial and temporal scales. This study developed machine learning based
predictive models of both pasture measures. UAV-based structure from motion photogrammetry
provided a measure of yield from overlapping high resolution visible colour imagery. Pasture nutrient
composition was estimated from the spectral signatures of visible near infrared hyperspectral UAV
sensing. An automated pasture height surface modelling technique was developed, tested and used
along with field site measurements to predict further estimates across each field site. Both prior
knowledge and automated predictive modelling techniques were employed to predict yield and
nutrition. Pasture height surface modelling was assessed against field measurements using a rising
plate meter, results reported correlation coefficients (R2) ranging from 0.2 to 0.4 for both woodland
and grassland field sites. Accuracy of the predictive modelling was determined from further field
measurements of yield and on average indicated an error of 0.8 t ha−1 in grasslands and 1.3 t ha−1

in mixed woodlands across both modelling approaches. Correlation analyses between measures
of pasture quality, acid detergent fibre and crude protein (ADF, CP), and spectral reflectance data
indicated the visible red (651 nm) and red-edge (759 nm) regions were highly correlated (ADF R2 = 0.9
and CP R2 = 0.5 mean values). These findings agreed with previous studies linking specific absorption
features with grass chemical composition. These results conclude that the practical application of
such techniques, to efficiently and accurately map pasture yield and quality, is possible at the field
site scale; however, further research is needed, in particular further field sampling of both yield and
nutrient elements across such a diverse landscape, with the potential to scale up to a satellite platform
for broader scale monitoring.

Keywords: UAV; structure from motion; photogrammetry; crude protein; acid detergent fibre;
hyperspectral sensing

1. Introduction

Queensland’s rangelands occupy over 80% of the state and are extensively grazed by sheep and
cattle, estimates in excess of 20 million exist [1]. The value of this industry to the state and national
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economy is estimated at over $5 billion per-annum [2]. Native pastures account for the majority of the
feed-base of this industry. The climate of these native pastures is highly variable. The initial antecedent
climatic conditions, including the existing soil, water and pasture growth state, is an often-overlooked
aspect of systems thinking for managing climate variability [3]. This simple concept provides the
starting point to any future projection of productivity driven by how the future seasonal climate may
unfold. Even if no formulated forecast position is taken, and median conditions (climatology) or
persistence of the current situation might be assumed, any future projection of pasture growth still
requires a current system state. Pasture resource assessment, that is current pasture biomass (growing,
senescing and dead), pasture quality and grazing land condition, is the key to setting sustainable
livestock numbers. Describing the ambient antecedent condition of Queensland pasture resources is
problematic due to the heterogeneous nature of grazing landscapes at micro and macro spatial scale
over the year.

Queensland has one of the most variable climates in the world, frequented by episodic droughts,
floods, wildfires and tropical cyclones [4]. This highly variable climate results in a wide range of
seasonal pasture production of varying quality. Therefore, the matching of livestock numbers to the
available pasture resource requires continual observation and fine-tuning of herbivore density [1,5].
Overgrazing of the pasture resource results in loss of grass cover, development of bare patches
of ground which can become highly erodible, unfavourable changes in palatable pasture species
composition and phenotype and increases in woody vegetation [6]. The effect of degradation causes a
loss in productivity and potentially more overgrazing to compensate, further development of erosion
gullies from accelerated runoff and loss of sediment into waterways and in some cases into the Great
Barrier Reef lagoon [7].

The estimation of stocking rates depends on the assessment of the available and future pasture
biomass and its quality. There are various methods for making these assessments, including (1) manual
collections of pasture biomass along defined transects using quadrat harvests or estimations [8],
(2) collecting well-calibrated rising-plate measurements also along established transects [9], (3) optical
satellite-based observations such as Landsat, Sentinel and Modis [10], (4) through simulation
modelling of pasture production, hybrid satellite-pasture simulation approaches [11], and more
recently, (5) drones or UAVs used to assess pasture growth and pasture quality [12,13]. Benefits and
limitations exist with all techniques, but UAVs whether alone or in fusion with other techniques
promise to be a major enabling technology. The scientific literature over the past few years shows
emerging benefits from UAV-captured photogrammetric, multispectral and hyperspectral imaging of
pasture condition with examples from the USA, Brazil, Europe, Australia and South Africa [13–16].
An optimum solution using data fusion possibly exists, combining the best aspects of all technologies.
Support of the simulation can be bolstered by incorporation of satellite-based remote sensing imagery
and local field measurements; however, achieving sufficient calibration observations over a large area
requires intensive field data. The introduction and evolution of sophisticated drone or UAV platforms
are a great promise for bridging this gap. For example, UAVs can observe at centimetre resolution with
photogrammetric, multispectral and hyperspectral techniques.

This study aims to build upon recent advancements in UAV technologies, to develop and test
a method to map and monitor pasture resources across the large and heterogeneous rangelands of
Queensland, Australia. It aims to be a method that can be applied at a range of spatial and temporal
scales as an important component of both long-term broad-scale pasture monitoring programs, as well
as a stand alone or complimentary onground decision support tool. It aims to do this by way of
developing similar measures of pasture yield and nutrient composition to that of traditional plot
based field sampling techniques in a more efficient and spatially explicit manner. This will improve
integration into satellite-derived products to scale beyond the extents of a field site as a key component
to broad scale monitoring and reporting. In addition, onground decision makers will also be able to
precisely assess the state of the pasture resource at a finer submetre spatial resolution, building further
confidence in remotely sensed data. Improved confidence and adoption of satellite derived pasture
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resource estimations through access and use of finer scale UAV imagery and associated pasture state
estimations, aims to provide the necessary tools for setting more sustainable long-term livestock
numbers by graziers.

Pasture biomass estimation from a UAV platform is a relatively new technique. To date the
majority of published research has been undertaken in other countries in either improved or cultivated
pastures. Natural pastures in Australia remain largely under-studied. UAV photogrammetry Structure
from Motion (SfM) is one of two methods used to determine vegetation height, the other being Light
Detection and Ranging (LiDAR). LiDAR uses laser technology in an active manner to measure the
distances from the device to the object, whereas photogrammetry SfM is a method of measuring height
and mass from many overlapping photographs [17]. Pasture biomass has been mostly determined
from the latter technique as it is a considerably less expensive technology and pastures are more
likely to be in environments that are not obstructed by other vegetation such as tall or dense
tree canopies. Linear modelling of the relationship between pasture height and biomass is a well
established method [18,19]. Modelling of this relationship with UAV SfM is becoming more popular
and several studies have reported strong correlation between UAV derived imagery and ground-based
estimates. [13,14] reported average R2 values as high as 0.78 and 0.81 in both the native pastures
of Arizona, USA and a cultivated pasture in northern Germany. This case study over a number of
dominant grasslands and woodlands of the rangelands of Queensland, attempted to develop a similar
technique that, as previously stated, could be both used to potentially cross calibrate satellite imagery
for broader applications across the rangelands of Queensland and as a standalone measure of pasture
biomass at the field, paddock and property scales for improved pasture management.

Sustainable livestock grazing, through improved matching of stocking rates to pasture resources,
depends not only on the amount of pasture biomass but importantly both its species composition
and nutrient status. Adequate crude protein in the diet of livestock is essential for their maintenance,
growth, lactation and reproduction [20]. Pasture digestibility becomes limiting to livestock growth
and reproduction when it reaches certain levels. Acid detergent fibre (ADF) is an inverse measure of
pasture digestibility. The importance of crude protein in livestock diets has been studied for many
decades [21]. The use of remote sensing, field and laboratory spectroscopy is also well established
in the literature [22–24]. Pasture nutrient status is a field of study that has recently re-emerged since
the development and affordability of UAV technologies. In comparison to past airborne/satellite and
field based systems, UAV hyperspectral remote sensing provides a more cost-effective and spatially
explicit means of measuring known plant chemical components. Such components are useful as
indicators of pasture nutrition and digestibility for livestock grazing. Crude protein and ADF are
two commonly used indicators of pasture digestion. Recent UAV studies have demonstrated the use
of hyperspectral sensing in detecting both crude protein and ADF in the natural pastures of other
countries [15]. UAV hyperspectral sensors are not low-cost; however, for nutrient estimation they are
essential. The aim of this study will be to demonstrate the use of UAV hyperspectral remote sensing to
detect both crude protein and ADF in a range of native pastures across the rangelands of Queensland.

Study Area

The study area illustrated in Figure 1a encompasses most of Queensland’s rangelands, an area
of approximately one million square kilometres. It is a mix of both dry tropical to subtropical
rangelands in the north and along the coast and arid to semiarid rangelands throughout the interior.
Annual average rainfall ranges from 1800 mm on the north east coast down to 1400 mm on the south
east coast and 1000 mm in the north west interior to below 200 mm in the south west interior [25].
Field sites were established in a mix of woodland and grassland communities to sample a range of
pasture biomass, heights and nutrient compositions. Sites in each community were further stratified
to characterise both rainfall gradients and pasture compositions. Table 1 details the number of sites
in each community and category along with the dates of each field sampling campaign. Figure 1a
illustrates the location and spatial distribution of the field sites across the study area. Figure 1b also
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presents examples of several field sites seen through high-resolution UAV imagery, illustrating the
mixtures of vegetation composition, structure and pasture biomass.

Field sites
Grassland
Woodland

Field sites
Grassland
Woodland

Study 
area

(a)

AG MG

QuadratsQuadrats

STW SW

(b)
Figure 1. Locations of field sites (a), across the study area and their vegetation community and type.
High-resolution Unmanned Aerial Vehicles (UAV) imagery examples (b) of each type including the
arid grasslands (AG), Mitchell grasslands (MG), subtropical woodlands (STW) and (SW) savanna
woodlands.

Table 1. Field site characteristics.

Woodlands

Subcategories Savanna (SW) & Subtropical woodlands (STW)
Common pasture species Heteropogen sp., Bothriochloa sp., Eragrostis sp.,

Aristida sp., Chloris and Chrysopogon sp’s.
Associated vegetation Eucalyptus melanophloia, E. crebra, E. maculata & E. teticornis
Soil types Sandy loam to clay loam
No. of field sites 9

Grasslands

Subcategories Mitchell (MG) & Arid (AG) Grasslands
Common pasture species Astebla sp. & Iseilema sp. (MG) &

Enneapogon sp., Aristida sp. & Cenchrus sp. (AG) grass species
Associated vegetation Various forbs and ephemeral grasses (MG) & numerous Acacia sps. most commonly A.aneura
Soil types Dark cracking clay (MG) to sandy red earths (AG)
No. of field sites 10
Sampling campaigns
Campaign 1 13, 16, 20, 22 March 2019 (4 sites)
Campaign 2 20, 25, 26 May 2019 (3 sites)
Campaign 3 20 June 2019 (1 site)
Campaign 4 6 August 2019 (1 site)
Campaign 5 14, 16 October 2019 (2 sites)
Campaign 6 25, 26 February 2020 & 6, 7, 12, 13, 16, 17 March 2020 (8 sites)

2. Materials and Methods

2.1. Field Site Sampling

Nineteen field sites were established using the methods and protocols developed by [26].
Each field site encompassed an area of approximately one hectare, within which three 100 m
transects were established. Pasture biomass was sampled from eighteen individual 0.25 m2 quadrats,
placed adjacent to each transect at set intervals of 15 metres apart. Prior to pasture biomass removal,
a rising plate meter was used to record pasture height (PHrp) in mm at the centre of each 0.25 m2

sample quadrat. The Jenquip EC20TM Bluetooth electronic plate-meter was used to record pasture
height along with the open-source Open-Data-Kit (ODK) app to collect and send the field data,
for management and storage, to the Australian Terrestrial Ecosystem Research Network field-data
database [27]. All standing herbaceous vegetative material was removed by electric shears to a height
of approximately 2 cm above the ground. Each individual quadrat sample was placed into a bar-coded
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paper bag, the GPS location recorded, a pre and post cut photograph taken and the sample bag scanned
using the ODK app. Each sample was then oven-dried for a period of 72 h at 65 degrees Celsius and
then weighed to determine Total Standing Dry Matter (TSDM) in tonnes per hectare (t ha−1) per each
0.25 m2 sample quadrat. TSDM samples were further processed to determine nutrient composition.
All eighteen quadrat samples from each field site were first combined, mixed and a subsample extracted.
Subsamples were ground through a 2mm screen using a centrifugal mill. Each subsample was then
sent for traditional chemistry analysis at the University of Queensland—School of Agriculture and
Food Science laboratory. Firstly organic matter and ash content of each sample was determined after
combustion at 550 degrees Celsius for eight hours. The percent of ash-free Acid Detergent Fibre
(ADF) was then determined using an Ankom fibre digestion unit, using procedures described by
the manufacturer. Percent crude protein was then determined using the methods developed by [28].
Laboratory processing was only conducted on a subset of 10 grassland sites, 8 of which were located
in the Mitchell grasslands and 2 in the arid grasslands.

2.2. UAV Data Capture

2.2.1. Mission Planning and Execution

UAV imagery was collected at each field site following the establishment of ground control targets,
sampling transects and quadrats but prior to field measurements. The UgCS mission planning software
version 2.0TM was used to program each autonomous flight. The average flight mission parameters
and the equipment used for both photogrammetric and hyperspectral missions are detailed in Table 2.
All flights were conducted between the hours of 10:00 to 14:00 h local time to reduce shadowing and
each campaign was flown in clear to minimal cloud.

Table 2. UAV flight mission parameters.

Equipment

Aircraft DJI M600ProTM

Gimbal DJI Ronin-MXTM

Photogrammetry

Camera Sony Alpha 7R IITM

Trigger intelliGTM wifi sync trigger
Lens 24 mm; aperture priority
Sensor 42 mpx; 35 mm full frame; RGB
Image format JPEG file format; 15 MB per image; bit depth RGB (14)
Flying height ∼50 m
Image size 9-10 mm ground sampling; 75 × 50 m footprints
Ground speed 1.5–2m/s
Image count ∼270 per site at nadir
Image forward & side overlap 85%
Flight time 20–30 min
Flight pattern Grid in north/south alignment; stop and turn at ends

Hyperspectral

Sensor Corning microHSI 410 SHARKTM

Trigger Bounding area box
Pixel size 9–10 mm ground sampling; 682 × 40000 pixel array
Swath width 25.49 m
Flying height ∼50 m
Oversampling 1.0
Spectral range 400 to 1000 nm +/− 1%
Spectral bin size 4 nm; 150 bands
Image format 682 × 40,000 pixels; 15 GB; envi HSI image format
Frame rate 160 Hz
Average exposure 6000 µ

Lens 16 mm; f-stop 1.4; zoom ∞
Ground speed 5.86 m/s
Flight time 10–20 min
Flight pattern Area scan in east/west alignment; 5 m end lead in distance & 5 m side overlap
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2.2.2. Ground Control

Submetre geographic position and elevation accuracy of each UAV capture was achieved by
way of the deployment of Ground Control Point (GCP) targets across each field site. Each GCP
consisted of a Propeller AeroPointTM ground control point that was used in the correction of UAV
imagery. A minimum of four hours of differential GPS data was collected for each target, submetre
accuracy of each target was achieved through either correction to the Propeller AeroPointTM network,
or where it was not available, each target was corrected to a Septentrio Altus NR3TM GNSS receiver
that was established as a base-station for each survey. The base-station position was established
through the Australian AUSCORS network [29] online processing tool. The GCP positions utilising
the Propeller correction network was assessed against established coordinates for a field site. A Leica
TS50TM robotic total station along with Topcon HiPer SRTM GNSS receivers were used to conduct a
combined GNSS and terrestrial observation survey of each of eight GCP targets to a precision of less
than 0.6 mm + 1 ppm distance and 0.5′′ (Hz&V) angular measurements.

2.3. Data Processing and Analysis

2.3.1. UAV DSLR RGB Imagery

Image processing of the DSLR RGB images was performed with the Pix4D commercial
software [30]. As [31] states, numerous studies have assessed this software for the generation of surface
modelling and the estimation of plant height, including [32,33]. Ref. [31] further explains the use of
computer vision methods including Structure-from-Motion (SfM) for the automated/simultaneous
estimation of the interior and exterior orientation parameters and coordinates of a sparse point
cloud from many overlapping individual images. This study employed such techniques including
the integration of ground control targets as an important component for planimetry and altimetry
accuracy [34] in [31]. Applying the SfM methods in Pix4D with the RGB images and GCP targets
a Digital Surface Model (DSM) was generated over each field site. The processing parameters and
resources are presented in Table 3 and the steps involved are summarised in Figure 2. Pasture height
(PHUAV) was next calculated as the difference between each DSM elevation pixel value and the
minimum surrounding elevation value, that aims to represent the ground surface elevation. A moving
window of a set size was used to determine the PHUAV value of each window’s central focus pixel.
An appropriate window size was determined through testing the linear relationships of each field site’s
rising plate measurements (PHrp) with their calculated PHUAV for many window sizes. A maximum
window size of five metres was chosen, as beyond this the slope of the site was assumed to influence
an accurate measurement of PHUAV. The correlation coefficient R2 of each incremented window
size from one centimetre up to five metres was calculated in single pixel increments. The highest
coefficient was then used to determine the optimum window size for each field site. Processing of large
window sizes is computationally resource intensive, the python package geo-wombat [35] employs a
number of parallel and block processing tools that were tested and successfully deployed on both a
Linux based high performance compute facility and a standalone alone high-specification desktop PC.
Maximum PHUAV was next extracted from each field site’s individual quadrats across each PHUAV

image and matched with the same field PHrp and TSDM (tha−1) measurements. The strength of
the relationship was then tested through least squares linear modelling. Maximum PHUAV was
chosen to closely match that of the rising plate measure settling height. This was carried out in a
GIS by way of identifying each quadrat in the UAV orthomosaic image of each field site. A polygon
around each quadrat was manually digitised then utilised to extract the maximum height values of
each quadrat from each PHUAV field site surface image. In the instance that an individual quadrat
was occluded or partially occluded by tree or shrub cover, it was excluded from further analysis.
Quadrats that were identified to be in the shadow of associated tree and shrub cover were not excluded
from further analyses.
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2.3.2. UAV Hyperspectral Imagery

The ReSe PARGETM orthorectification and the Harris ENVITM image analysis software were used
to perform image correction, orthorectification and atmospheric calibration of each UAV hyperspectral
imaging campaign. To begin with the Corning MicroHSITM hyperspectral sensors onboard dark
target calibration and Non-Uniformity Correction (NUC) was applied to each raw scan by default.
Further image processing utilised the NUC corrected imagery. Next, each scan was imported into
the PARGE software and an orthorectification completed. Pixel-wise direct geo-referencing was
conducted based on the interpolation of the sensors onboard coordinate position, elevation and
attitude information for each scan-line position in a parametric geo-coding approach. The input and
output parameters of the rectification are detailed in Table 3. Radiometric calibration was next carried
out to further reduce atmospheric effects and derive relative surface reflectance (SRuav) from the
orthorectified data cube. Areas of flat homogeneous reflectance in the imagery were determined from
an ASD handheld2TM AVNIR spectrometer. The surfaces of the Propeller AeroPointsTM ground control
point targets were tested and determined to be suitable flat spectra. Using the ENVI image analysis
software Region of Interest (ROI) tool the orthorectified image spectra across the surface of each GCP
target was sampled and used in the flat field normalisation procedure in ENVI. The surface reflectance
value of each image pixel was calculated according to Equation (1).

Ri,j ,λ =
DNi,j ,λ

WR
(1)

where i, j and λ represent image row, column and band; DN is the microHSI sensor dark target and
NUC corrected digital number and WR is the aero-point white reference target averaged spectral value.

Spectra from each field site’s individual quadrat were next sampled from the SRuav imagery in a
similar manner to that of the normalisation target selection. The field sampled pastures within each
quadrat were digitised as polygons with the ROI tool. A false colour near-infrared colour composite
of the SRuav imagery was produced to enable interpretation of pastures from background soils and
other nonvegetative material. The average spatial spectral response from all 18 quadrat polygons for
each spectral band was calculated and matched to the same laboratory measured proportions of acid
detergent fibre and crude protein, for further statistical analysis. Each stage in the hyperspectral image
processing is further summarised in Figure 2.
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Figure 2. Flow-diagram of each of the three image and field sample processing streams. Acronyms:
DSM—Digital Surface Model, GCP—Ground Control Point, IGM—Input Geometry Method,
SR—Surface Reflectance, Auto ML—Automatic Machine Learning, DSLR—Digital Single-lens Reflex
camera, TPOT—Tree-based Pipeline Optimisation Tool, TSDM—Total Standing Dry Matter.
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Table 3. Photogrammetry SfM & Hyperspectral imagery processing parameters.

Pix4D SfM photogrammetry

Keypoints image scale Full
Point cloud densification Original image size
Minimum no. of matches 3
Point density Optimal
Resolution 1 × GSD
DSM filters Noise filtering; sharp surface smoothing

Hyperspectral Ortho-rectification

PARGE raw scan import Conversion from BIL to BSQ
Raw navigation file Non-DGPS GNSS L1 band receiver; Coordinate system: geographic; datum: WGS84
IGM cube processing Resampling method: Fast nearest neighbour; Exclusion/fill pixel distance: 1 pixel

Processing resources

Desktop computing details 128 GB RAM; 64 CPU threads; 1 × GeoForce RTX 2080 Ti GPU; 1TB M.2 SSD

2.4. Statistical Analysis

2.4.1. Pasture Biomass

Two approaches to estimating pasture biomass through predictive modelling were developed
and compared. The first approach utilised a selected statistical model based on prior knowledge of its
suitability to the modelling task. The second utilised an automated process, termed “automatic ML”
or automated machine learning. The first approach involved the use of a Random Sample Consensus
(RANSAC) robust linear regression modelling technique. The aim of this method is to improve the
fit of the model based on subsets of the data that is determined as inliers and outliers. It was chosen
based on its performance with noisy data problems [36]. The second automatic ML approach involved
the use of the Tree-based Pipeline Optimisation Tool (TPOT). TPOT is a python automated machine
learning tool that optimises machine learning pipelines using genetic programming [37]. A number of
input parameters are chosen to initialise the TPOT process and are summarised in Table 4. The default
TPOT ten fold cross-validation procedure using a 75/25 split was employed to train and test 10,000
model configurations to find the most suitable model and its associated parameters.

Table 4. TPOT parameters.

Parameter

Generations 1000
No. of jobs 5
Population size 100
Random state 42
Config dictionary default (all regression models)

Preprocessing of both the interdependent variable PHUAV and dependant variable TSDM (tha−1)

involved an assessment of potential erroneous outliers. This involved calculation of each variable’s
Z-score or signed number of standard deviations above or below its mean value. A filter of
2.5 deviations was set and those records above and below were flagged for further error assessment.
The TSDM harvest weight of each identified quadrat, along with the associated field sites pasture and
landscape variables, i.e., dominant vegetation and soil types, was used to select a corresponding pasture
standard photograph from an archive of available pasture photograph standards [38]. The matching
standard photograph was then compared with the quadrat photograph taken prior to harvest, a visual
assessment of the likelihood of the quadrat photograph matching the standard photograph and its
associated yield was made and the quadrat record either removed from further analysis or included.
Matching photographs in this manner was only indicative as the standard photographs were taken
at an oblique angle and the quadrat photographs in a nadir position above each quadrat, where the
visual error assessment was not obvious the record was not excluded from further analysis. A total of
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12 samples were removed from further analysis in this manner from an overall sample of 242 records.
Further preprocessing of the dependant variable included its normalisation using the Box & Cox power
transformation [39]. Following both modelling procedures, an evaluation of each was performed.
A Monte-Carlo simulation, similar to the resampling technique evaluated by [40], was run for several
thousand iterations, with each iteration randomly selecting training and testing data sets. In each
iteration the TSDM (tha−1) model developed from both RANSAC and the TPOT optimisation was
fitted with 75% of the data and a prediction tested with the remaining 25%. The Root Mean Square
Error (RMSE) of each iteration of each model was calculated and stored. The distribution of the overall
RMSE from all of the iterations was then used to illustrate the stability of both modelling processes
and the variability of the PHUAV methods ability to predict TSDM (tha−1). As an illustration of the
two modelling processes, each output model was then applied to an independent grassland field sites
PHUAV image and the spatially averaged TSDM (tha−1) of the image across each sample quadrat
compared to the average field sampled TSDM (tha−1) values.

2.4.2. Pasture Nutrient Estimation

In a similar approach to [15], correlation analysis was first conducted to determine the relationship
between ADF and CP in the field sampled TSDM (tha−1) with that of the corresponding SRuav

sampled spectra. Normalisation of SRuav was carried out using the vector transformation of
Equation (2) [15] where Xi is the spectral vector for i = 1, 2,..., n.

Xi =
Xi√

∑ ‖Xi‖2
(2)

The first derivative of the normalisation function was also calculated as a means of potentially
revealing further spectral characteristics. The spectral ratio (SR) and normalisation difference spectral
indices (NDSI) were calculated as additional metrics to be tested for correlation with the field
measurements of pasture quality. Least-squares linear regression modelling was then used to test
the correlation. The coefficient of determination R2 values of both the transformations and spectral
features and the original SRuav spectra, were then used to determine the optimal method, ratio or
indices, based on the highest average correlation coefficient value. Following the correlation analysis,
further statistical modelling was constrained by the limited sampling size of only 10 field site pasture
quality measurements. The aim of this study was to explore the application of the methods developed
by [15] to identify similar wavelength correlations with the same pasture quality measures in a
landscape of very different vegetation to their study. The same robust regression modelling procedure
used in the pasture yield modelling of this study was next applied to the SRuav imagery of an
independent Mitchell grassland field site in the study area. Based on the results of the correlation
analysis, the most suitable wavelength was selected and used to model both pasture quality measures
across the field site.

3. Results

3.1. Ground Control Accuracy

The accuracy of the Propeller AeroPointTM GCP’s utilising their base station network solution was
tested against a combined GNSS/terrestrial theodolite survey. Results of the survey and discrepancies
between them and their estimated position and elevation are presented in Table 5.
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Table 5. Results of Propeller AeroPointTM GCP comparison with terrestrial based survey (m).

GCP x1 y1 z1 x2 y2 z2 x3 y3 z3

1 456243.400 6974635.912 88.162 456243.445 6974635.937 88.137 −0.044 −0.024 0.025
2 456237.163 6974586.501 91.709 456237.187 6974586.475 91.672 −0.023 0.026 0.037
3 456194.435 6974644.939 85.752 456194.468 6974644.965 85.753 −0.032 −0.025 −0.001
4 456249.303 6974685.550 85.853 456249.312 6974685.553 85.915 −0.008 −0.002 −0.062
5 456280.424 6974602.521 90.421 456280.444 6974602.505 90.477 −0.019 0.016 −0.056
6 456206.564 6974669.454 85.191 456206.622 6974669.448 85.242 −0.057 0.006 −0.051
7 456292.393 6974626.093 89.108 456292.419 6974626.051 89.16 −0.025 0.042 −0.052
8 456197.051 6974617.439 87.549 456197.095 6974617.413 87.629 −0.043 0.026 −0.08

Average - - — - - — −0.032 0.007 −0.03

xyz1 = GCP coordinates & elevation. xyz2 = Survey coordinates & elevation. xyz3 = Differences. Coordinate
projection: Map Grid of Australia zone 56. Datum: GDA2020.

3.2. Field Site Sample Results

Results of both pasture biomass yield and wet chemistry analyses are illustrated in Figure 3.
Pasture yield has been grouped by vegetation subcategory, biomass is highest for the Mitchell grassland
category with an average of 1.5 t ha−1 and lowest 0.4 t ha−1 for the Arid grasslands. Yield of the
two woodland categories were 1.4 t ha−1 and 0.8 t ha−1. Pasture nutrient analyses are presented by
individual grassland field sites Figure 3b. Protein is relatively low across all sites with an average
of only 9%. Differences between sites is also low with an average of only 1%. Acid detergent fibre
is, however, distinctively different with a much higher overall average of 41% and a higher average
difference of 4% between field sites.
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Figure 3. Pasture yield (a) and acid detergent fibre and crude protein laboratory results (b).

3.3. Pasture Height Comparisons

Comparisons of a linear least-squares regression between PHUAV and PHrp are illustrated for all
four subcategories in Figure 4. The two woodland subcategories had the lowest levels of precision
with an overall R2 value of 0.24. The two grassland subcategories demonstrated higher precision with
an overall precision of 0.44. The linear relationship between PHUAV and PHrp decreased as height
increased for both broad categories. Individual PHrp measurements in the majority of cases were less
than that of their associated PHUAV measurement. Figure 5 illustrates some of the constraints of the
pasture height modelling method including occlusion and shadowing of individual sample quadrats
by tree and shrub cover.
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Figure 4. Least squares linear relationship between pasture height from UAV-based RGB imaging
(PHUAV) and manual rising plate meter measurements (PHrp) for both the grassland (a) and woodland
(b) categories along with each of their associated subcategories.
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Figure 5. Example orthomosaic imagery of a woodland field site to highlight the extent of tree and
shrub cover. Occlusion of the sampling quadrats are illustrated as well as those quadrats that were in
shadow at time of capture.

3.4. Predictive Modelling

3.4.1. Pasture Biomass

The application of both modelling procedures to an independent field site is first illustrated in
Figure 6. Plate (a) provides a photograph of the field site illustrating the pastures of the site from an
oblique perspective and map (b), an orthomosaic image of the site from the photogrammetry survey,
provides an aerial perspective. Map (c) illustrates the automated ML model and map (d) the robust
regression model. Slight differences can be seen between the models whereby map (d), the robust
regression model has a higher overall yield. This is confirmed in comparing the field measured
yields against each modelled yield. The automated ML TSDM yield was calculated on average
across all 18 quadrats at 0.96 t ha−1 compared to the field measured average TSDM of 1.84 t ha−1.
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The robust regression was in comparison closer to the field measurement at 1.23 t ha−1, a difference of
only 0.61 t ha−1.

The results of both the prior knowledge robust regression model and automated ML learning
procedure are next presented. The automated ML procedure resulted in the selection of an XGB
regressor model for the woodlands training data set and a SGD regressor model for the grassland
training data set. The results of the testing data set are next presented in Figure 7. The automated ML
models have a slighter higher RMSE error and therefore lower accuracy than the robust regression
modelling, as seen in both the individual plots of each model for each category (a–d) and in the results
of the accuracy assessment (e and f). The accuracy of both modelling procedures is higher for the
grassland category than the woodland and in the case of the woodland automated ML algorithm,
model overfitting has occurred as seen in Figure 7b.
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Figure 6. Modelled TSDM yields for both modelling procedures at an independent grassland field site.
Photograph (a) is first an example of the field sites pasture from its centre point, next map (b) illustrates
the orthomosaic image of the field site and finally maps (c,d) illustrate the automatic ML and robust
regression models of TSDM t ha−1 applied to the PHUAV modelled surface. Individual field sampled
quadrats are further illustrated as red crosses across both maps (b,c) along with their field measured
TSDM t ha−1.



AgriEngineering 2020, 2 535

100 200 300 400 500
PHUAV (mm)

0

1

2

3

4

TS
DM

 (t
 h

a
1)

RMSE:1.0

Model

(a)

100 200 300 400 500
PHUAV (mm)

0

1

2

3

4

TS
DM

 (t
 h

a
1)

RMSE:1.63

Model

(b)

100 200 300 400 500
PHUAV (mm)

0

1

2

3

4

TS
DM

 (t
 h

a
1)

RMSE:0.84

Model
Inliers
Outliers

(c)

0 100 200 300 400 500 600 700
PHUAV (mm)

0

1

2

3

4

TS
DM

 (t
 h

a
1)

RMSE:1.25

Model
Inliers
Outliers

(d)

Woodland Grassland
Treatment

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RM
SE

 - 
TS

DM
 (t

 h
a

1)

(e)

Woodland Grassland
Treatment

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

RM
SE

(f)
Figure 7. Robust regression and auto ML model results of pasture yield predictions for both the
grassland and woodland categories. Auto ML regression model of the grassland (a) and woodland (b)
categories, robust regression model of the grassland (c) and woodland (d) category and auto ML (e)
and robust (f) regression modelling accuracy assessment results.

3.4.2. Pasture Quality

The results of the correlation of each of the 150 spectral bands with that of the field sampled
acid detergent fibre and crude protein are presented in the form of a correlogram. Figure 8 illustrates
these relationships and Table 6 further details and identifies the strongest correlations. The normalised
transformation appears to have the strongest correlation. The single band, ratio and NDSI index are
all relatively similar for each pasture quality measure with the exception of the single band spectral
feature for the crude protein measure. Acid detergent fibre has a strong correlation in the visible
red portion of the spectrum and crude protein has a distinctive peak past the red edge portion of
the spectrum.
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The two example images in Figure 9 illustrate the application of the robust regression modelling
to an area of Mitchell grassland utilising the normalised single-band spectral feature for the acid
detergent fibre measure and the simple ratio for the crude protein measure. The spatial distribution
of both acid detergent fibre and crude protein can be seen across the field site. The crude protein
element appears to be visually higher than the acid detergent fibre both in its overall proportion and
spatial distribution.
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Figure 8. Correlograms of both acid detergent fibre (a) and crude protein (b) with; 1. Original SRuav

spectra, 2. Normalised SRuav and 3. the first derivative of the normalised SRuav spectra.

Table 6. Best linear regression models of both acid detergent fibre and crude protein for each spectral
feature and data transformation including the raw spectral reflectance.

Nutrient Quality Measure Spectral Feature Transformation B1 B2 r2

ADF Single-band
Original 667.82 nm - 0.648

Normalised 651.81 nm - 0.896
First derivative 543.78 nm - 0.466

CP Single-band
Original 759.85 nm - 0.160

Normalised 759.85 nm - 0.502
First derivative 551.78 nm - 0.287

ADF Simple ratio
Original 655.82 nm 919.91 nm 0.897

Normalised 655.82 nm 919.91 nm 0.897
First derivative 667.82 nm 475.75 nm 0.794

CP Simple ratio
Original 947.92 nm 939.92 nm 0.745

Normalised 947.92 nm 939.92 nm 0.745
First derivative 947.92 nm 939.92 nm 0.625

ADF NDSI
Original 651.81 nm 939.92 nm 0.903

Normalised 651.81 nm 939.92 nm 0.903
First derivative 475.75 nm 667.82 nm 0.792

CP NDSI
Original 939.92 nm 947.92 nm 0.742

Normalised 939.92 nm 947.92 nm 0.742
First derivative 939.92 nm 947.92 nm 0.624



AgriEngineering 2020, 2 537

7779620 7779620

7779640 7779640

201780

201780

201800

201800

201820

201820

201840

201840

201860

201860

7779620 7779620

7779640 7779640

201780

201780

201800

201800

201820

201820

201840

201840

201860

201860

ADF %

0

6

12

18

24

30

36

42

48

54

60

ADF %

0

6

12

18

24

30

36

42

48

54

60

(a)

7779620 7779620

7779640 7779640

201780

201780

201800

201800

201820

201820

201840

201840

201860

201860

7779620 7779620

7779640 7779640

201780

201780

201800

201800

201820

201820

201840

201840

201860

201860

Protein %

0

1

2

3

4

5

6

7

8

9

10

Protein %

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 9. Examples of robust regression modelling of acid detergent fibre (a) and crude protein (b)
for an area of Mitchell grassland. The top map of each is a reference true colour orthomosaic image
for context.
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4. Discussion

Survey accurate ground control was important to this study for the matching of field observations
with UAV imagery, processing of the SfM photogrammetry and in the orthorectification of the
hyperspectral scan imagery. Survey accuracy at each field site varied depending on the base station
solution. As described in the methods section the Propeller AeroPointTM network solution was
used where it was available, and a portable base station solution, corrected through the AUSCORS
network [29], was utilised in more remote locations. Submetre accuracy of both solutions was achieved
but likely varied between one another; however, in the absence of an extensive base station network
across the vast rangelands of Australia this was still considered an acceptable level of accuracy.

Field sampling of pasture height, yield and quality is not without its own sampling error.
Previous studies have used other methods such as terrestrial laser scanning and hand-held
spectroscopy [22,41], although these methods were initially trialled in this study, a simple and direct
means of collecting field measurements was chosen. Limitations of each method exist, in this study
these included the ability of the rising plate method to accurately measure pasture height across rough
and undulating ground surfaces, often resulting in erroneous pasture heights due to the rising plate
base not accurately contacting with the true ground surface. Pasture yield harvesting of TSDM also
has limitations, including the ability to physically harvest low sample sizes such as in arid and sparse
grasslands. Other limitations in sampling efforts included the amount of samples collected that would
adequately represent the variability of each metric in both their statistical and spatial distributions.
Limitations in time and resources meant a smaller overall field sample set was collected than would
likely be needed to definitively model each metric across the diverse range of landscapes of the study
area. However, this research was able to demonstrate the applicability of the various field sampling
techniques and methods to both compare and calibrate the UAV-borne imagery and associated metrics.

The UAV pasture height model (PHUAV) was compared with the rising plate field measurements
(PHrp) (see Figure 4). Results of the comparisons across all four pasture subcategories illustrate the
potential of this method. Both grassland categories showed on average a strong correlation in the
lower pasture height range that weakened as height increased. This was also present in the woodland
categories, however not as distinctively. Pasture heights of most grasslands of the study area were
relatively low, on average less than 70 cm tall. Taller pasture may become problematic using the rising
plate field measurement method. A number of limitations of the PHUAV method were discovered.
The presence of tree and shrub-cover limits the ability to accurately determine the pasture sward
height both in the physical obstruction or occlusion of the pasture sward by tree and/or shrub canopy
cover as well as the effects of shadowing from the canopy layer and its effects on the calculation of
the elevation and pasture height surfaces. An example of such a field site is illustrated in Figure 5
and the degree of these effects upon the accurate determination of both PHUAV and the resultant
modelled TSDM t ha−1 estimates is seen in both the robust and automated ML modelling outputs.
In the case of the automated ML output, spurious estimates of PHUAV have resulted in an overfitting
of the model. The robust regression modelling approach, however, is able to exclude some of these
potential outliers and provide a better fit. Further to this limitation, the chosen window size used in
determining the ground surface elevation has a significant impact on the overall accuracy of the PHUAV

surface. An iterative process was chosen whereby the strength of the correlation of PHUAV and PHrp

was used to determine the most suitable window size. Although this showed potential, its practical
application may be limited, particularly in the problematic landscapes for accurate PHrp measurement.
Automated ground layer determination is problematic in high resolution photogrammetry based
digital elevation or terrain modelling, particularly in finer scale (<5 cm) imagery. Numerous tree and
forestry based point cloud filtering methods exist, including [42,43]; however, application at a finer
scale becomes computationally resource intensive. This becomes further problematic in dense pastures
of sloping terrain, whereby a true measure of the ground surface elevation is difficult to determine for
each pixel. Several recent studies such as [13,31] have physically selected and/or surveyed ground
surface elevations used in the calculation of a digital terrain model to then determine the pasture or
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canopy height surface. This approach was considered impractical in this study and problematic in
the often sloping terrains of the study area. Although a number of limitations exist in the field and
UAV measurement of pasture height exist, a least-squares linear regression of both the field and UAV
derived measures in this study indicated the potential of the UAV based method to replace the manual
method, with enough ongoing validation across a range of pasture heights, swards and species.

The ability to develop accurate UAV based models of pasture yield have been demonstrated in
this study. The estimation of pasture yield or biomass was explored with both a prior knowledge
robust regression modelling approach and an automatic machine learning method. Both approaches
proved successful with reasonable levels of accuracy. The robust regression approach performed
slightly better, likely due to its ability to deal with some of the before mentioned erroneous field
measurements through its classification and weighting of statistical outliers. Although this approach
could potentially reduce valid outliers, it was deemed a useful technique. The stratification of the
field measurements of pasture yield and the development of separate models for both woodland and
grassland pasture groups improved each model’s performance. The grassland model performed better
than the woodland, likely the result of the before mentioned limitations of modelling pasture height
in mixed tree and grassland pastures. The robust regression again performed better than the auto
ML model in both the grassland and woodland separate models. This was particularly evident in the
woodland group whereby overfitting of the model occurred as discussed previously. The accuracy
assessments of each modelling method and its associated stratification shows a similar trend in that
the variability of the accuracy of each model increases for the woodland group and to some degree
the auto ML method. Improvements to the auto ML modelling method’s output accuracy could
include optimisation and potentially weighting models in the selection procedure to include those
with advanced procedures in removing or weighting outliers. The calibration of further predictive
modelling of pasture yield will likely need further field measurements. The models developed in this
study provide a basis for further modelling.

High correlation between specific bands of the UAV hyperspectral imaging with that of the
proportions of acid detergent fibre and crude protein, in predominantly the Mitchell grassland pastures
of the study area, has been demonstrated in this study. In a study with similar pastures, [22] reported
crude protein absorption features of a moist grassland in South Africa, to be in the wavelength
range between 720 to 745 nm of the red edge portion of the spectrum. This study reported a similar
distinctive peak in correlation of the single-band spectral feature at 759.85 nm (see Figure 8). However,
this study reported a stronger correlation with both the simple-ratio and normalised index at the
939.92 and 947.92 nm portions of the spectrum, also referred to as the third overtone absorption
mechanism [44], whereby plant tissue oil and protein compounds are absorbed; however, it is more
commonly associated with the short wave near infrared portion of the spectrum. Regression of
acid detergent fibre was also different to [22] but similar to [15] in that the best correlation was in
the visible portion of the spectrum for the single-band spectral feature, specifically visible red at
651.81 nm. The visible red (651.81 nm) and protein absorption/near-infrared portions (919.91 and
939.92 nm) illustrated the highest correlation for the simple ratio and normalised index. These results,
although slightly dissimilar to other studies with similar techniques, illustrate the potential for further
research utilising these techniques, into the pastures of the study area. In particular, these results show
the sensitivities of this type of visible near infra-red hyperspectral imaging to accurately estimate the
proportions of crude protein and acid detergent fibre in the pastures of the study area in differing
growth stages and/or states of pasture decay or senescence, whereby the short-wave near-infrared
portion of the spectrum has been more commonly used.

A number of difficulties in accurately mapping both measures were encountered including the
successful orthorectification of UAV hyperspectral imagery. Although an area that covered the majority
of each field site in a single scan was used in the analysis, subsequent adjacent scans were not, due to
difficulties in accurately aligning each scan. Onboard post processing differential GPS position data
that can be matched to the hyperspectral sensors IMU positioning is a potential solution to improve
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the geometric accuracy of each flight scan. Further sensor spectral calibration is the other consideration
for ongoing mapping efforts. The UAV hyperspectral sensor used in this study was factory calibrated
and will likely need recalibration to ensure spectral measurements are of the highest grade. Only 10
field samples were used to develop a robust regression model of both pasture quality measures;
these samples were, however, across a vast geographic range of similar mostly native rangeland
pastures and provides a basis for further research. Demonstration of the modelling across an area of
Mitchell grassland captured with the same hyperspectral sensor used in this study, provides a basis
for further work. This includes the development and testing of further modelling to predict changes
in both crude protein and ADF under differing pasture management regimes and pasture growth
stages. Ongoing research and development from this initial case study will provide innovative and
improved predictions of pasture quality to further develop, inform and improve sustainable grazing
decision-making systems.

5. Conclusions and Further Work

The aim of this study was to develop an accurate and spatially explicit measure of pasture biomass
and nutrient composition that can be used for both scaling up to satellite-borne imagery for long term
broad scale pasture resource monitoring as well as a fine scale measure for improved onground pasture
resource management. A number of challenges still exist as already discussed; previous studies using
similar techniques have mostly been undertaken in cropped pastures. This study has demonstrated
that these techniques can be applied with rigour across the rangelands of Queensland, providing
further opportunities to both integrate UAV imaging into satellite-derived products and importantly
as standalone measures of real-time pasture state at the paddock and potentially property scales.
Improved spatial and temporal measures of pasture state, utilising the methods developed in this
study, provide new opportunities for improved pasture management. The existing GRASP pasture
growth simulation modelling, developed by [45] and implemented across Queensland’s rangelands
by [46], has traditionally utilised point based measurements of climate and pasture state. Integration
of both the field scale measures developed in this study and future satellite integrated measures,
could provide a more efficient and spatially explicit system, providing producers with further tools to
adopt more resilient and longer-term grazing strategies in an increasingly variable climate.

The limitations found in this study lead to a number of key recommendations for further
improvements including; (1) further assessment of potential spatial inaccuracies of a differential GPS
solution utilising a portable base station versus the Propeller AeroPointTM correction network and the
potential impacts of any differences upon down stream photogrammetry processing, (2) improvements
to the orthorectification of hyperspectral image products through the incorporation of onboard
UAV post processing differential GPS corrections, (3) testing the suitability and practicality of more
sophisticated methods of collecting coincidental field measurements for ongoing UAV pasture model
calibration and validation including terrestrial laser scanning and both AVNIR and SWIR field
spectroscopy, (4) development and incorporation of a tree and shrub canopy and shadow image
segmentation, (5) exploration of further automated methods to efficiently and accurately determine
ground elevations in fine-scale photogrammetric digital surface modelling, (6) investigation of
improvements to pasture yield modelling through further testing and optimising of automated machine
learning techniques and importantly further field sampling in areas of poor model performance,
including tall and sparse pastures, and lastly (7) further field sampling of pasture quality measurements
to enable further sophisticated pasture quality modelling with a larger data set and in a broader range
of pasture types in varying stages of growth.

In addition to specific improvements to the methods used in this study, to more accurately model
and map both pasture quantity and quality at the field, paddock and potentially property scales,
further development of methods to scale each UAV based measure up to satellite derived imagery is
needed. This could begin with high to medium spatial resolution platforms such as the Dove Planet
and the Copernicus Sentinel constellations of optical and radar satellites. Scaling from centimetre UAV
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imagery up to one to 10 metre resolution imagery would provide the first steps in understanding the
challenges in integrating both platforms. A number of challenges will likely exist, such as differences
in radiometric and geometric calibrations between platforms and the effects these differences may
have upon the scaling of measurements from one platform to another. However, such efforts will
provide further opportunities to apply accurate and efficient field scale measurements to satellite borne
imagery for long term/broader scale monitoring. Similar earth observation studies, including [47,48],
have begun to explore UAV to satellite imagery integration and along with this research provide a
basis for further development in the native pastures of the Queensland rangelands.
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