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Abstract: Plant diseases are one of the grand challenges that face the agriculture sector world-
wide. In the United States, crop diseases cause losses of one-third of crop production annually.
Despite the importance, crop disease diagnosis is challenging for limited-resources farmers if per-
formed through optical observation of plant leaves’ symptoms. Therefore, there is an urgent need
for markedly improved detection, monitoring, and prediction of crop diseases to reduce crop agri-
culture losses. Computer vision empowered with Machine Learning (ML) has tremendous promise
for improving crop monitoring at scale in this context. This paper presents an ML-powered mobile-
based system to automate the plant leaf disease diagnosis process. The developed system uses
Convolutional Neural networks (CNN) as an underlying deep learning engine for classifying 38 dis-
ease categories. We collected an imagery dataset containing 96,206 images of plant leaves of healthy
and infected plants for training, validating, and testing the CNN model. The user interface is devel-
oped as an Android mobile app, allowing farmers to capture a photo of the infected plant leaves.
It then displays the disease category along with the confidence percentage. It is expected that this
system would create a better opportunity for farmers to keep their crops healthy and eliminate
the use of wrong fertilizers that could stress the plants. Finally, we evaluated our system using
various performance metrics such as classification accuracy and processing time. We found that our
model achieves an overall classification accuracy of 94% in recognizing the most common 38 disease
classes in 14 crop species.

Keywords: plant leaf diseases; agriculture; mobile app; convolutional neural networks (CNN);
deep learning

1. Introduction

Plant diseases [1], pest infestation [2], weed pressure [3], and nutrient deficiencies [4]
are some of the grand challenges for any agricultural producer, at any location and for what-
ever commodities or size of the operation is dealing daily. It is crucial that farmers would
know the existence of such challenges in their operations on a timely basis. Nevertheless, it
would be tremendously helpful to agricultural producers to have access to readily available
technology to instruct them on how to deal with each of these threats for agricultural
production to enhance crop production and operation profitability.

For instance, in the United States, plant disease causes losses of between 20 and
40 percent of the agricultural crop production annually [5]. Therefore, farmers must
promptly diagnose the different types of plant diseases to stop their spread within their
agricultural fields. Traditionally, underserved farmers try to diagnose plant diseases
through optical observation of plant leaves’ symptoms, which incorporates a significantly
high degree of complexity [6]. Any misdiagnosis of crop decreases will lead to the use
of the wrong fertilizers that could stress the plants and lead to nutrient deficiencies in the
agricultural field.

Machine Learning (ML) coupled with computer vision [7,8] have already enabled
game-changing precision agriculture capabilities by providing the ability to optimize farm
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returns [9], preserve natural resources [10], reduce unnecessary use of fertilizers [1], and
identify disease in crops and animals from remotely sensed imagery [11]. Imagine a smart
mobile-based system that farmers can use to identify the different types of plant diseases
with high accuracy. Such systems would help both small- and large-scale farmers to make
the right decisions on which fertilizers to use to confront plant diseases in their crops.

This paper presents a mobile-based system for detecting plant leaf diseases using
Deep Learning (DL) in realtime. In particular, we developed a distributed system that
is organized with parts executing on centralized servers on the cloud and locally on the
user’s mobile devices. We created a dataset that consists of more than 96k images for the
most common 38 plant disease categories in 14 crop species, including apple scab, apple
black rot, cherry powdery mildew, corn common rust, grape leaf blight, and many others.
Figure 1 shows some examples of various types of healthy and infected plant leaves from
our imagery dataset.

(a) Grape Esca (b) Tomato Target Spot (c) Apple Healthy

(d) Cherry Healthy (e) Apple scab (f) Apple cedar rust

(g) Grape Black rot (h) Potato Late Blight (i) Corn Northern Leaf Blight

Figure 1. Samples from our Imagery Dataset that Show Different Types of Healthy and Diseased
Plant Leaves.

At the cloud side, we created a Convolutional Neural Network (CNN) model [12]
that can feed images directly from farmers’ mobile devices. The model then performs
object detection and semantic segmentation, and displays the disease category along with
the confidence percentage and classification time have taken to process the image. We
developed an Android mobile app to allow limited-resources farmers to capture a photo
of the diseased plant leaves. The mobile app runs on top of the CNN model on the user
side. Also, the application displays the confidence percentage and classification time taken
to process the image.

The contributions of this paper are threefold. First, we propose a distributed ML-
powered platform that is organized with two parts executing on the mobile user devices at
the agricultural field and high-performance servers hosted in the cloud. Second, the pro-
posed system is capable of capturing, processing, and visualizing large imagery agrarian
datasets. Third, we developed a user-friendly interface on top of the CNN model to allow
farmers to interact with the disease detector conveniently on the mobile side.

The rest of the paper is organized as follows: Section 2 presents related work.
Sections 3 and 4 present the design and prototype implementation of the system, respec-
tively. Section 5 experimentally evaluates the developed model in terms of classification
time and accuracy. Finally, Section 6 summarizes the results of this work.
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2. Related Work

Recent developments in machine learning approaches in the agriculture sector are
up-and-coming. They have been receiving significant interest from academia [2,3,6,7],
industries [1,10], and governments [13,14]. This section reviews some of the existing work
supporting the detection of crop diseases using different machine learning approaches.

Since plant diseases cause significant crop production losses worldwide, tremendous
research efforts have been conducted to make crop monitoring and disease diagnosis
processes more efficient. For instance, in [15], the authors presented a deep learning
model to identify foliar symptoms of diseases in cassava. A CNN model was trained
using an imagery dataset of 720 diseased leaflets in an agricultural field in Tanzania.
The developed model could detect seven classes of healthy and infected cassava leaflets,
namely, healthy, brown streak disease, mosaic disease, green mite damage, red mite
damage, brown leaf spot, and nutrient deficiency. However, the developed system suffers
from a low classification rate when used to detect cassava diseases in real-world images.

Chen et al. [7] used a combination of the Internet of Things (IoT) and Artificial
Intelligence (AI) technologies to detect the rice blast disease in its early stages. An IoT
platform, called RiceTalk, was developed to detect rice blast utilizing non-image IoT devices,
which generate sensing data from soil cultivation. The sensed data could be automatically
trained and analyzed by a CNN model in realtime. RiceTalk achieved an average prediction
accuracy of 89.4% for detecting a rice blast disease in the natural agricultural field.

Another DL-based platform for detecting crop diseases and insect pests is proposed
in [2]. Similar to [7], the authors used CNN as an underlying DL engine to identify 27 crop
diseases located in the harsh mountainous environment in China. The user interface was
implemented as a Java applet, which enables Chinese farmers to use the system conve-
niently. The authors conducted a set of experiments that showed the overall recognition
accuracy to be 86.1%.

Jiang et al. [6] proposed an apple leaf disease detection approach based on the Mask
Region-based CNN (R-CNN) model [8]. R-CNN is a DL model for object instance seg-
mentation that can detect interest objects in an image while generating a segmentation
mask for each instance. A dataset containing 2029 images of diseased apple leaves is used
to train a CNN model for detecting the common apple diseases. The developed model
could detect five disease classes: Alternaria leaf spot, brown spot, mosaic, grey spot, and
rust. Given the relatively small dataset used for training the CNN model, the classification
accuracy was calculated to be 78.8%.

In [3] the authors developed a DL-based approach for detecting the citrus disease
severity. A dataset consists of 5406 images of infected citrus leaves used to train six
DL models, namely AlexNet, DenseNet-169, Inception-v3, ResNet-34, SqueezeNet-1.1,
and VGG13. In addition to the original training dataset, a data augmentation technique
was implemented to increase the dataset size, which helped in improving the models’
learning performance. The authors compared the performance of these six models to
determine which models are more suitable to detect the severity of citrus diseases. The
best classification achieved was 92.60% using the Inception-v3 model.

The benefits of hyper-spectral imaging for plant disease detection and plant protection
are discussed in [4]. Thomas et al. described the basic principles of hyperspectral measure-
ments along with its available sensors in the market on different scales —from the tissue
level to the canopy level— and external factors, such as light, wind, viewing angle, etc.
The authors found that the camera spatial resolution and the number of mixed pixels are
essential factors influencing hyper-spectral images’ information content. This parameter
highly depends on the distance between the sensor and the plant object.

In summary, the review of plant disease detection using machine learning [7] and
computer vision [4] shows that most of these approaches focus on particular disease
classes [6,15], crop species [3], geographical regions or countries [2,15]. Moreover, most
DL-based models are designed to work offline, which is not appropriate for real-time crop
disease detection. Furthermore, to the best of our knowledge, none of the current DL-based



AgriEngineering 2021, 3 481

approaches can be deployed on mobile devices due to their limited computational capabil-
ities, which precludes minimizing the communication delays and enhancing the farmer
experience in using the system.

3. System Design

As illustrated in Figure 2, the distributed run-time system for the plant disease detector
is organized with parts executing on mobile devices at the user side, as well as on cen-
tralized servers at the cloud side. Layer 1 describes the deep learning model used in the
system (i.e., CNN) and the Intermediate Representation (IR) model that runs on the mobile
device. Layer 2 illustrates the user interface, which is developed as an Android app to
enable systems users (shown in layer 3) to interact with the system conveniently.

System Users
Layer 3:
User Layer

Layer 2:
Application Layer

Layer 1:
ML Layer

Android Platform Cloud Servers

Intermediate Representation Model CNN Model

Figure 2. System Architecture.

3.1. CNN Structure

We trained a CNN model with 2 convolutional layers, one input layer and one out-
put layer. I = [i1, i2, .., ir] and O = [o1, o2, .., oh] represent the input and output vectors,
respectively, where r represents the number of elements in the input feature set and h
is the number of classes. The main objective of the network is to learn a compressed
representation of the dataset. In other words, it tries to approximately learns the identity
function F, which is defined as:

FW,B(I) ' I (1)

where W and B are the whole network weights and biases vectors.
A log sigmoid function is selected as the activation function f in the hidden and

output neurons. The log sigmoid function s is a special case of the logistic function in the t
space, which is defined by the formula:

s(t) =
1

1 + e−t
(2)

The weights of the CNN network create the decision boundaries in the feature space,
and the resulting discriminating surfaces can classify complex boundaries. During the train-
ing process, these weights are adapted for each new training image. In general, feeding
the CNN model with more images can recognize the plant diseases more accurately. We
used the back-propagation algorithm, which has a linear time computational complexity,
for training the CNN model.
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The input value Θ going into a node i in the network is calculated by the weighted
sum of outputs from all nodes connected to it, as follows:

Θi = ∑(ωi,j ∗ Υj) + µi (3)

where ωi,j is the weight on the connections between neuron j to i; Υj is the output value
of neuron j; and µi is a threshold value for neuron i, which represents a baseline input to
neuron i in the absence of any other inputs. If the value of ωi,j is negative, it is tagged
as inhibitory value and excluded because it decreases net input.

The training algorithm involves two phases: forward and backward phases. During
the forward phase, the network’s weights are kept fixed, and the input data is propagated
through the network layer by layer. The forward phase is concluded when the error signal
ei computations converge as follows:

ei = (di − oi) (4)

where di and oi are the desired (target) and actual outputs of ith training image, respectively.
In the backward phase, the error signal ei is propagated through the network in the

backward direction. During this phase, error adjustments are applied to the CNN network’s
weights for minimizing ei.

We used the gradient descent first-order iterative optimization algorithm to calculate
the change of each neuron weight ∆ωi,j, which is defined as follows:

∆ωi,j = −η
δε(n)
δej(n)

yi(n) (5)

where yi(n) is the intermediate output of the previous neuron n, η is the learning rate, and
ε(n) is the error signal in the entire output. ε(n) is calculated as follows:

ε(n) =
1
2 ∑

j
e2

j (n) (6)

The CNN network has two types of layers: convolution and pooling. Each layer has
a group of specialized neurons that perform one of these operations. The convolution oper-
ation means detecting the visual features of objects in the input image such as edges, lines,
color drops, etc. The pooling process helps the CNN network to avoid learning irrelevant
features of objects by focusing only on learning the essential ones. The pooling operation is
applied to the output of the convolutional layers to downsampling the generated feature
maps by summarizing the features into patches. Two common pooling methods are used:
average-pooling and max-pooling. In this paper, we used the max-pooling method, which
calculates the maximum value for each patch of the feature map as the dominant feature.

As shown in Figure 3, the output of every Conv2D and MaxPooling2D layer is a 3D
form tensor (height, width, channels). The width and height dimensions tend to shrink
as we go deeper into the network. The third argument (e.g., 16, 32 or 64) controls the number
of output channels for each Conv2D layer. During the training phase, the CNN model
generated around 4 million trainable parameters.

Before moving the trained CNN model to the mobile device, we converted it into
an optimized IR model based on the trained network topology, weights, and biases values.
We used the Intel OpenVINO toolkit [16] to generate the IR model, which is the only
format that the inference engine on the Android platform accepts and understands. The
conversion process involved removing the convolution and pooling layers that are not
relevant to the mobile device’s inference engine. In particular, OpenVINO splits the trained
model into two types of files: XML and Bin extension. The XML files contain the network
topology, while the BIN files contain the weights and biases binary data.
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Figure 3. The Structure of the CNN model.

3.2. Dataset

Although standard object detection datasets (e.g., Microsoft COCO [17]) exhibit vol-
ume and variety of examples, they are not suitable for plant disease detection as they
annotate a set of object categories not include plant diseases. Therefore, we collected more
than labeled 96k images of healthy and infected plant leaves for training the CNN model
from different sources such as Kaggle [18], Plant Village [19] and Google Web Scraper [20].
Many images in our dataset are in their natural environments because object detection is
highly dependent on contextual information.

Our dataset is divided into three parts: training, validation and testing. Table 1 shows
the number of images used in the three phases across the 38 disease classes in 14 crop
species. The number of images in each phase is determined based on the fine-tuned
hyperparameters and structure of the CNN model.

We conducted a set of controlled experiments to estimate the hyperparameters to
improve the prediction accuracy and performance. In particular, we progressively tested
random combinations of hyperparameter values until we achieved satisfactory results.
Cross-validation optimizers were also used to find the best set of hyperparameters.

To increase the training accuracy and minimize training loss of the CNN model, we ap-
plied a series of image preprocessing transformations to the training dataset. Particularly,
we altered the contrast of image colors, added Gaussian noise, and used image desatura-
tion, which makes pixel colors more muted by adding more black and white colors. The
primary purpose of these transformations is to weaken the influence of the background
factor during the training process. This had a better effect on learning the 38 disease classes
more effectively and increased our CNN model’s stability.
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Table 1. The Number of Images used in the Training, Validation, and Testing Phases Across The
Disease Classes.

Class # Plant Disease Classes Training Validation Testing Total
1 Apple scab 2016 504 209 2819
2 Apple Black rot 1987 497 246 2730
3 Apple Cedar apple rust 1760 440 220 2420
4 Apple healthy 2008 502 187 2697
5 Blueberry healthy 1816 454 232 2502
6 Cherry healthy 1826 456 192 2282
7 Cherry Powdery mildew 1683 421 209 2214
8 Corn Cercospora Gray leaf spot 1642 410 162 2214
9 Corn Common rust 1907 477 234 2618

10 Corn healthy 1859 465 233 2557
11 Corn Northern Leaf Blight 1908 477 209 2594
12 Grape Black rot 1888 472 231 2591
13 Grape Esca Black Measles 1920 480 220 2620
14 Grape healthy 1692 423 198 2313
15 Grape blight Isariopsis 1722 430 220 2372
16 Orange Citrus greening 2010 503 253 2766
17 Peach Bacterial spot 1838 459 220 2517
18 Peach healthy 1728 432 231 2391
19 Pepper bell Bacterial spot 1913 478 220 2611
20 Pepper bell healthy 1988 497 242 2727
21 Potato Early blight 1939 485 231 2655
22 Potato healthy 1824 456 231 2511
23 Potato Late blight 1939 485 231 2655
24 Raspberry healthy 1781 445 209 2435
25 Soybean healthy 2022 505 253 2780
26 Squash Powdery mildew 1736 434 209 2379
27 Strawberry healthy 1824 456 242 2522
28 Strawberry Leaf scorch 1774 444 209 2427
29 Tomato Bacterial spot 1702 425 209 2336
30 Tomato Early blight 1920 480 242 2642
31 Tomato healthy 1926 481 231 2638
32 Tomato Late blight 1851 463 220 2534
33 Tomato Leaf Mold 1882 470 242 2594
34 Tomato Septoria leaf spot 1745 436 220 2401
35 Tomato Two-spotted spider mite 1741 435 143 2319
36 Tomato Target Spot 1827 457 220 2504
37 Tomato mosaic virus 1790 448 209 2447
38 Tomato Yellow Leaf Curl Virus 1961 490 220 2671

Total 70295 17572 8339 96206

We had to normalize the range of pixel intensity values of leaf images in the dataset
before training the CNN model. This step was necessary because all dimensions of feature
vectors extracted from input images should be in the same intensity range. This made
the convergence of our CNN model faster during the training phase. Image normalization
was implemented by subtracting the input image’s mean value µ from each pixel’s value
I(i, j), and then dividing the result by the standard deviation σ of the input image. The dis-
tribution of the output pixel intensity values would resemble a Gaussian curve centered at
zero. We used the following formula to normalize each image in our training set:

O(i, j) =
I(i, j)− µ

σ
(7)

where I and O are the input and output images, respectively; and i and j are the current
pixel indices to be normalized.

To avoid the overfitting issue of the CNN model, we augmented the number of images
for a few disease classes that lack an insufficient training set and have a lot of background
noise, such as tomato target spot, tomato septoria leaf spot, and tomato late blight. We used
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the geometric transformations method to eliminate the positional biases present in the
training data. As shown in Figure 4, the geometric transformations applied to these classes
were horizontal flipping, −45° to 45° rotation, 1.5× scaling, filling with nearest neighbor
regions, zoom with range 0.2, width and height shifts with a relative scale of 0.3, and
cropping some image manually.

Figure 4. Dataset Augmentation.

4. Implementation

This section presents the implementation details of the plant disease detector at
the cloud and mobile sides.

4.1. CNN Implementation

The CNN model is implemented using Keras development environment 2.4 [21].
Keras is an open-source neural network library written in Python, which uses TensorFlow
02 [22] as a back-end engine. Keras libraries running on top of TensorFlow make it relatively
easy for developers to build and test deep learning models written in Python. For instance,
we used the keras.preprocessing.image.ImageDataGenerator library to augment some
images in our dataset via several geometric transformations; therefore, our model would
never see twice the same image. This helps to avoid overfitting and helps the model
generalize better.

The training images must have the same size before feeding them as input to the model.
Our model was trained with colored (RGB) images with resized dimensions of 200 × 200
pixels. We set the batch size and number of epochs to be 150 images and 10 epochs,
respectively. The model training was carried out using a server computer equipped with
a 4.50 GHz Intel Core™ i7-16MB CPU processor, 16 GB of RAM, and RTX-3060 CUDA GPU
3584-cores with a base clock speed of 1320 MHz. The training phase took approximately
2 days to run 10 epochs. We took a snapshot of the trained weights every 2 epochs to
monitor the progress. The training error and loss are calculated using this equation:

M =
1
n

n

∑
i=1

(yi − xi)
2 (8)

where M is the mean square error of the model, y is the predicted class calculated
by the model, and x is the actual class. M represents the error in object detection.

Given our plant disease detector model is considered a multi-class classification problem,
where it classifies the input image as belonging to one or more of the 38 disease classes,
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we used the softmax activation function at the output layer cross-entropy as the loss function.
Figure 5 illustrates the calculated training error and loss graphically. As shown in the figure,
the mean squared error loss decreases over the ten training epochs, while the accuracy
increases consistently. We can see that our model converged after the 8th epoch, which
means that our dataset and the fine-tuned parameters were a good fit for the model.

Figure 5. The Training Accuracy and Loss of the CNN Model.

4.2. Mobile App

The plant disease detector’s user interface is implemented as a self-contained mobile
app developed using Kotlin Multiplatform Mobile [23]. Kotlin is a mobile framework that
allowed us to write a single codebase for the system’s business logic, and then deploy it
as an iOS or Android app. In this paper, we deployed the app as an Android app using
the Android SDK (Software Development Kit) and XML (Extensible Markup Language) to
build the front-end activities. We also built a middleware between the app and the cloud
server using Python 3.9.

The mobile app allows farmers to capture a photo of the infected plants with proper
alignment and orientation. The orientation handler, which runs as a background service
thread in the mobile app, is responsible for correcting the tilt and camera angle of capturing
the plant photo. Figure 6 shows some selective screenshots of the mobile app for detecting
plant leaf diseases. Figure 6a shows a screenshot of the landing screen of the app, which
allows farmers to either capture a photo of the diseased plant or upload an existing image
on the phone (see Figure 6b).

(a) (b) (c)

Figure 6. Screenshots of the Mobile App for Detecting Plant Leaf Diseases. (a) Landing Screen, (b) Image Selection Sceeen,
(c) Inference Result of the CNN Model.
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Once the right image is captured, the app uploads it to a cloud server to detect
the disease class(es) by applying our CNN model. The captured image is transferred to
the cloud side via a REST (Representational State Transfer) service in the form of a JSON
(JavaScript Object Notation) image object. Figure 6b illustrates an example of the inference
result of the CNN model on the mobile app. The CNN model classified the grape black rot
disease correctly with a confidence score of 97%. The operations of class prediction and
displaying results took around 0.88 seconds, including the communication overheads. This
shows that our system can be used as a plant disease detector in real-time at the edge.

5. Experimental Evaluation

We experimentally evaluated our prototype implementation regarding classification
accuracy and performance. We installed instrumentation in the mobile app running on a
smartphone to measure the processor time taken to perform various tasks, including
photo capturing, image preprocessing, and disease recognition processes. Each exper-
iment presented in this section is carried out for ten trials, then we took the average
of these trials’ results.

For classification accuracy, we observed that our system delivers good results in nat-
ural conditions even when the plant images are captures from different distances from
the camera, orientations, and illumination conditions. Figure 7 shows some samples of the
successful recognition of varying plant leaf diseases. Figure 7a through Figure 7d illustrate
that our disease detector achieves a high classification rate for most of the classes in our
testing dataset. However, sometimes the system fails to achieve such high confidence
levels for some classes, such as some tomato diseases. For instance, Figure 7e illustrates
an example of a 70% confidence ratio for detecting the tomato target spot disease. This
may be justified by the lack of an insufficient training set or the existence of background
noise for that particular class.

(a) (b) (c) (d) (e)

Figure 7. Examples of Successful Recognition of Different Plant Leaf Diseases in Natural Conditions. (a) Tomato Leaf Mold,
(b) Corn Common rust, (c) Potato Late Blight, (d) Apple Black Rot, (e) Tomato Target Spot.

Figure 8 shows the confusion matrix for the CNN model that gives a detailed analysis
of how the model performance changes for different disease classes. The matrix rows
represent the actual (true) disease classes, and the columns correspond to the predicted
classes. The diagonal cells show the proportion of the correct predictions of our CNN
model, whereas the off-diagonal cells illustrate the error rate of our model.
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Figure 8. The Confusion matrix for the CNN Model.

The confusion matrix demonstrates that our model, in most cases, can differentiate
between the disease classes and achieve high levels of prediction accuracy. For the three
most common types of crop diseases, blight, scab and rot, the model achieves accuracies
above 96%, 98% and 97% for corn blight, apple scab and grape black rot, respectively.
We also noticed that the disease classes caused by fungi (e.g., rust and rot) appear easier to
identify than the ones caused by bacteria (e.g., blight and scab) and viruses (e.g., mosaic
and leaf curl). This seems to make sense as fungal diseases cause pronounced symptoms
on the plant leaves that appear easier to identify than those with mild symptoms caused
by bacterial and viral infections.

As shown in the confusion matrix, our model, in some cases, confuses between tomato
and potato diseases because they have similar leaf phenology. A similar situation happens
between the diseases within the same species (e.g., tomato diseases) as they share some
common plant physiognomy attributes such as color, size and canopy structure. Note that
the CNN model can still identify corn diseases quite well because of its discriminative
features compared to the other classes in our dataset. Most notably, although blueberry
and cherry plants are considered non-linearly separable classes because of their similar
physiognomy properties, our model was able to separate them effectively.

The precision, recall and F1-score ratios, shown in Table 2, summarizes the trade-off
between the true-positive rate and the positive predictive value for our CNN model using
different probability thresholds. Precision represents the positive predictive value of our
model, while recall is a measure of how many true positives are identified correctly, and
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F1-score takes into account the number of false positives and false negatives. As shown
in the table, most of the precision vs. recall values tilts towards 1.0, which means that our
CNN model achieves high accuracy while minimizing the number of false negatives.

Table 2. The Precision vs. Recall Values of the CNN Model for All Disease Classes.

Class # Plant Disease Classes Precision Recall F1-score

1 Apple scab 0.95 0.93 0.94
2 Apple Black rot 0.93 0.99 0.96
3 Apple Cedar apple rust 0.98 0.96 0.97
4 Apple healthy 0.97 0.96 0.96
5 Blueberry healthy 0.97 0.98 0.98
6 Cherry healthy 0.98 0.99 0.98
7 Cherry Powdery mildew 0.99 0.97 0.98
8 Corn Cercospora Gray leaf spot 0.96 0.86 0.91
9 Corn Common rust 0.98 1.00 0.99

10 Corn healthy 1.00 1.00 1.00
11 Corn Northern Leaf Blight 0.89 0.95 0.92
12 Grape Black rot 0.98 0.96 0.97
13 Grape Esca Black Measles 0.96 0.99 0.97
14 Grape healthy 1.00 0.99 0.99
15 Grape blight Isariopsis 0.99 1.00 0.99

16 Orange Citrus greening 0.98 1.00 0.99
17 Peach Bacterial spot 0.93 0.98 0.96
18 Peach healthy 0.94 1.00 0.97
19 Pepper bell Bacterial spot 0.90 0.97 0.93
20 Pepper bell healthy 0.96 0.94 0.95
21 Potato Early blight 0.98 0.96 0.97
22 Potato healthy 0.97 0.88 0.93
23 Potato Late blight 0.90 0.94 0.92
24 Raspberry healthy 0.96 0.99 0.97
25 Soybean healthy 0.94 0.97 0.95
26 Squash Powdery mildew 0.99 1.00 0.99
27 Strawberry healthy 0.99 0.93 0.96
28 Strawberry Leaf scorch 1.00 0.99 0.99
29 Tomato Bacterial spot 0.84 0.95 0.89
30 Tomato Early blight 0.90 0.68 0.78
31 Tomato healthy 0.92 0.93 0.92
32 Tomato Late blight 0.85 0.89 0.87
33 Tomato Leaf Mold 0.88 0.91 0.89
34 Tomato Septoria leaf spot 0.80 0.81 0.80
35 Tomato Two-spotted spider mite 0.88 0.81 0.84
36 Tomato Target Spot 0.77 0.76 0.76
37 Tomato mosaic virus 0.88 0.94 0.91
38 Tomato Yellow Leaf Curl Virus 0.99 0.92 0.96

Overall Average Accuracy 0.94
Macro Average 0.94 0.94 0.94

Weighted Average 0.94 0.94 0.94

The precision ratio describes the performance of our model at predicting the positive
class. It is calculated by dividing the number of true positives by the sum of the true
positives and false positives, as follows:

Precision =
TruePositives

TruePositives + FalsePositives
(9)

The recall ratio is calculated as the ratio of the number of true positives divided
by the sum of the true positives and the false negatives, as follows:

Recall =
TruePositives

TruePositives + FalseNegatives
(10)
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F1-score ratio is calculated by a weighted average of both precision and recall, as follows:

Recall = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

Table 3 shows the classification accuracy and prediction time across the 38 disease
classes. The CNN model achieved an overall average classification accuracy of 93.6%.
The average prediction time of the model was measured to be 0.88 s. This is evident that
farmers can diagnose any plant disease in their agricultural fields using a handy mobile
app in less than one second. Furthermore, we noted that the prediction accuracy of many
classes (e.g., squash cherry powdery mildew, powdery mildew, etc.) was 100%. This shows
that our model is robust and can operate in real-time inference in the agricultural fields
with high accuracy.

Table 3. The Average Classification Accuracy and Prediction Time of the CNN Model.

Class # Plant Disease Classes Accuracy Prediction Time (s)

1 Apple scab 92% 0.99
2 Apple Black rot 92% 1.01
3 Apple Cedar apple rust 99% 0.77
4 Apple healthy 95% 1.11
5 Blueberry healthy 96% 0.76
6 Cherry healthy 98% 0.74
7 Cherry Powdery mildew 100% 0.75
8 Corn Cercospora Gray leaf spot 80% 0.79
9 Corn Common rust 99% 0.89

10 Corn healthy 100% 1.02
11 Corn Northern Leaf Blight 88% 1.06
12 Grape Black rot 98% 1.31
13 Grape Esca Black Measles 97% 0.75
14 Grape healthy 99% 0.74
15 Grape blight Isariopsis 100% 1.37
16 Orange Citrus greening 96% 0.75
17 Peach Bacterial spot 99% 0.76
18 Peach healthy 98% 0.93
19 Pepper bell Bacterial spot 81% 0.86
20 Pepper bell healthy 93% 0.95
21 Potato Early blight 100% 0.74
22 Potato healthy 98% 0.88
23 Potato Late blight 87% 0.75
24 Raspberry healthy 99% 1.04
25 Soybean healthy 92% 0.93
26 Squash Powdery mildew 100% 0.84
27 Strawberry healthy 98% 0.87
28 Strawberry Leaf scorch 99% 0.74
29 Tomato Bacterial spot 92% 0.73
30 Tomato Early blight 93% 0.76
31 Tomato healthy 93% 0.89
32 Tomato Late blight 90% 0.75
33 Tomato Leaf Mold 83% 0.77
34 Tomato Septoria leaf spot 83% 1.04
35 Tomato Two-spotted spider mite 78% 0.96
36 Tomato Target Spot 74% 1.04
37 Tomato mosaic virus 92% 0.75
38 Tomato Yellow Leaf Curl Virus 97% 0.73

Average 93.6% 0.88



AgriEngineering 2021, 3 491

6. Conclusions and Future Work

Faced with growing demands, shrinking of natural resources, and more stringent reg-
ulations, the agriculture sector worldwide found refuge in AI through the use of smart and
innovative IoT technologies to optimize production and minimize losses. Crop diseases
are one of the critical factors behind the crop production losses in the United States. There-
fore, correct disease diagnosis is one of the most important aspects of modern agriculture.
Without proper identification of the disease, disease control measures can waste money
and lead to further plant losses.

This paper presented the design and implementation of an ML-powered plant disease
detector that enables farmers to diagnosis the most common 38 diseases in 14 species. We
trained a CNN model using an imagery dataset consisting of 96,206 photos of healthy and
diseased plant leaves, where crowded backgrounds, low contrast, and diverse illumination
condition images are taken into consideration. To increase the system usability, we devel-
oped a mobile app that would create a better opportunity for limited-resources farmers to
detect plant diseases in their early stages and eliminate the use of incorrect fertilizers that
can hurt the health of both the plants and soil.

We carried out several sets of experiments for evaluating the performance and clas-
sification accuracy of our system, paying particular attention to the classification and
processing time. On average, our model could process a plant image in its natural agricul-
tural environment using a handy mobile app in less than one second. This proves that our
system is suitable for real-time inference at the network edge with high prediction accuracy
and response time.

We expect that this research would increase the open-source knowledge base in the
area of computer vision and machine learning on the network edge by publishing the source
code and dataset to the public domain. Both the source code and dataset are available
online: https://github.com/ahmed-pvamu/Agro-Disease-Detector (accessed on June 29,
2021).

In on-going work, we are looking into opportunities for generalizing our approach to
be deployed locally at Unmanned Arial Vehicles (UAV), where farmers can use to monitor
their crops from the sky. This would give them a richer picture of their agricultural fields
and reduce the time and costs associated with crop imagery data collection. Also, this
will transform this system to be generic, making it applicable to different fields requir-
ing real-time processing and using cameras such as in the transportation field. It will
be useful for supporting the sensing needs of a wide range of researches [24–33] and
applications [34–42]. Finally, experiments with more massive datasets are needed to study
the robustness of our system at a large scale, and improve the prediction accuracy of the
less performing disease classes.
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