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Abstract: Crop yield forecasting is becoming more essential in the current scenario when food
security must be assured, despite the problems posed by an increasingly globalized community
and other environmental challenges such as climate change and natural disasters. Several factors
influence crop yield prediction, which has complex non-linear relationships. Hence, to study these
relationships, machine learning methodologies have been increasingly adopted from conventional
statistical methods. With wheat being a primary and staple food crop in the Indian community,
ensuring the country’s food security is crucial. In this paper, we study the prediction of wheat
yield for India overall and the top wheat-producing states with a comparison. To accomplish this,
we use Multivariate Adaptive Regression Splines (MARS) after extracting the main features by
Principal Component Analysis (PCA) considering the parameters such as area under cultivation
and production for the years 1962–2018. The performance is evaluated by error analyses such as
RMSE, MAE, and R2. The best-fitted MARS model is chosen using cross-validation and user-defined
parameter optimization. We find that the MARS model is well suited to India as a whole and other top
wheat-producing states. A comparative result is obtained on yield prediction between India overall
and other states, wherein the state of Rajasthan has a better model than other major wheat-producing
states. This research will emphasize the importance of improved government decision-making as
well as increased knowledge and robust forecasting among Indian farmers in various states.

Keywords: MARS; principal component analysis; regression; wheat prediction

1. Introduction

Comprising 82% of farmers and their economic contributions, agribusiness is the
primary source of income for 70% of rural households in India [1] As the world’s population
has grown in subsequent years, so has the world’s demand for food. Among the major
crops, wheat has a prominent role in consumption in Indian households. However, it is
struggling to meet the needs of the growing population in India. Therefore, though an
imperative task, crop yield prediction plays a paramount role in the country’s food security,
which must be ensured despite the various challenges involved in the growing population
demand [2]. Wheat yield prediction is influenced by a number of elements, including the
area under cultivation, production, rainfall, and climatic conditions, among others, and the
effective relationship between these variables will aid in accurate forecasts.

In light of that, researchers widely use machine learning approaches to ameliorate the
prediction yield [3]. These algorithms improve by distinguishing and describing the consis-
tency of patterns of training information, which can be applicable for complex non-linear
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datasets between the yield and parameters. In the literature on agricultural prediction
modelling, many machine learning approaches have been employed. Sungha Ju et al. [4]
used four types of machine learning techniques to estimate corn and soybean yields in
Illinois and Iowa, including deep learning algorithms such as ANN (Artificial Neural
Network), CNN (Convolutional Neural Network), SSAE (Stacked-Sparse AutoEncoder),
and LSTM (Linear Support Vector Machine-Long-Short Term Memory). Crop yield predic-
tion has been studied using a modular and reusable machine learning process, tested on
thirteen case studies in the European Commission’s MARS Crop Yield Forecasting System
(MCYFS) [5]. Rashid et al. [6] investigated crop yield prediction using machine learning
approaches, focusing on palm oil yield prediction. Data mining methods such as neural
networks [7] are being used to forecast wheat in Pakistan based on a variety of factors.
The suggested method was compared to various interpolation methods to evaluate the
prediction accuracy. Stas et al. [8] compared two machine learning algorithms. Boosted
regression trees (BRT) and support vector machines (SVM) were used for winter wheat
yield prediction in China’s Henan region, using three types of the NDVI-related predictors:
single NDVI, incremental NDVI, and targeted NDVI. A similar study was conducted by
Heremans et al. [9] with two regression tree approaches: BRT and random forest (RF) were
utilized to assess the accuracy of winter wheat yield in North China, using NDVI data from
the SPOT-VEGETATION sensor as well as climatic factors and fertilization levels. Using
hybrid geostatistical methods and multiple regression methodologies such as Partial Least
Squares Regression (PLSR), ANNs, RFs, Regression Kriging (RK), and Random Forests
Residuals Kriging (RFRK), the researchers [10] intended to create reliable and timely esti-
mates of grassland LAI for the meadow steppes of northern China. Han et al. [11] used
eight machine learning algorithms and compared their efficiency in predicting winter wheat
yield. Paidipati et al. [12] studied the rice yield prediction with a comparison of India as a
whole and the major rice-producing states in India using Support Vector Regression (SVR)
models (linear, polynomial, and radial basis functions) for extensive data. Joshua et al. [13]
used general regression neural networks (GRNNs), radial basis functional neural networks
(RBFNNs), and back-propagation neural networks (BPNNs) to accurately estimate paddy
yield in Tamil Nadu, South India.

Multivariate adaptive regression splines (MARS) have lately gained a lot of momen-
tum for finding predictive models for complex data mining applications, i.e., where the
predictor variables do not have monotone correlations with the dependent variable of
interest [14–16]. The automated regression data mining method of MARS was used to find
the primary factors such as soil water content and cone penetration affecting both crop es-
tablishment and yield [17]. MARS was applied in agricultural practices using R software by
Eyduran et al. [18] and Ferrieria et al. [19] and used to simulate daily reference evapotran-
spiration with sparse meteorological data. To describe the relationships between different
plant characteristics in soybean, the MARS algorithm was studied by Celik and Bodyak [20].
Multiple linear regression (MLR), random forest (RF), and multivariate adaptive regression
spline (MARS) models were investigated to predict Cu, Zn, and Cd concentrations in
soil using portable X-ray fluorescence measurements [21]. Multi-response models were
fitted with MARS, which was used to predict species distributions from museum and
herbarium records [22]. Body weight prediction of the Hy-Line Silver Brown Commercial
Layer chicken breed was conducted using MARS [16]. MARS was also used for regional
frequency analysis at ungauged sites [23]. The carcass weight of cattle of various breeds
was determined using a MARS Data Mining Algorithm based on training and test sets [24],
and MARS models were used to predict NO2 gas emissions from vehicle emissions [25].

The increased predictive performance of machine learning models results in the capa-
bility to obtain better results. Here, we consider the data of wheat yield subjected to factors
such as area under cultivation and production for the 12 major wheat-producing states
in India. We use principal component analysis (PCA) based dimension reduction for the
states with the parameters, and the best-fit model is evaluated by MARS to determine the
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prediction of wheat yield. The paper elaborates on the robust prediction, thus contributing
to a decent result for future studies for agronomists and governmental organizations.

2. Methodology
2.1. Data Collection

All the datasets were collected by the Directorate of Economics and Statistics, Ministry
of Agriculture, India from 1965 to 2018. They consist of parameters such as Area Under
Cultivation (thousand hectares), Production (thousand kg), and Yield (kg/hectare). We
have selected top wheat-producing states, i.e., Bihar, Gujarat, Haryana, Himachal Pradesh,
Jammu and Kashmir, Karnataka, Madhya Pradesh, Maharashtra, Punjab, Rajasthan, Uttar
Pradesh, and overall India. Using Principal Component Analysis (PCA), an approach of
dimensionality reduction is executed on each state and India overall with their parame-
ters, i.e., yield, production, and area, to determine the relevant features. The study was
conducted to build and train to find the best-fit model by MARS. Comparative research
was conducted in order to estimate the impact of these states on India as a whole.

2.2. Principal Component Analysis (PCA): Feature Extraction

PCA aims to find and display the trends of maximum variance in high-dimensional
data on a new subspace with dimensions equal to or less than the original area. While
working with high-dimensional data, it often helps to reduce dimensions by projecting the
data onto a low-dimensional subspace that captures the “core” of the data. The basic idea
behind the PCA is compression, which is given as follows:

Consider a sample {x}n
n=1 RD in with mean

−
x = 1

n

n
∑

i=1
xi and covariance matrix

∑= E{(x− −x)
T
} with spectral decomposition ∑= UΛUT , where U is the orthogonal

and Λ is the diagonal. The principal component transformation y = UT(x− −x)) capitulates
the sample mean 0 and the diagonal covariance matrix Λ that contains the eigenvalues ∑;
the variables are uncorrelated now. Once the variables with small variance are discarded,
the projection on the subspace is spanned by the first L principal components to obtain
the best linear approximation to the original sample. The prime property of PCA is that it
attains the best linear map x ∈ RD → x∗ ∈ RL , evidently the least squared sum of errors
of the new reconstructed data (as linear combinations of the initial variables) and, with
the assumption that the data vectors are normally distributed, the mutual information
gain is between the original vectors x and their projections x*, which gives the maximum
information about the data [26,27].

In our study, a feature extraction was executed from 12 different states and overall
India after doing the PCA. We obtained maximum output from states such as Bihar, Punjab,
Rajasthan, Uttar Pradesh, and overall India, and the relationship was examined.

2.3. Multivariate Adaptive Regression Spline (MARS)

MARS is an algorithm that effectively generates a piecewise linear model that offers
an intuitive stepping stone into nonlinearity. A weighted total basis function is the model
that emerges as Bi (x). The formula is given by

y =
k

∑
i=1

ciBi(x) (1)

A constant (for the intercept), a hinge function of the form max (0, x − c) or max
(0, c − x) products of two or more hinge functions are the basis functions (for interactions).
MARS chooses which predictors to use and what predictor values to use as the hinge
function knots automatically. The way the basis functions are chosen is crucial to the
MARS algorithm. There are two stages to this: the forward-pass, which is the growing or
generation phase, and the backward-pass, which is the pruning or refining phase.

MARS begins with a model consisting solely of the intercept term, which equals the
mean of the response value. It then evaluates each predictor to find a basis function pair
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made up of opposite sides of a mirrored hinge function that improves the model error the
most. MARS repeats the procedure until either the number of terms or the change in error
rate exceeds a predetermined maximum. According to the generalized cross-validation
(GCV) criterion, MARS generalizes the model by eliminating terms. GCV is a form of
regularization that balances model complexity and goodness of fit [28,29]. The formula is
given by

GCV =
N

∑
i=1

(yi − f (xi))
2

(1 + C
N )2

(2)

where C = 1 + cd, N is the number of items in the dataset, d is the degree of freedom, c
is the penalty for adding a basic function. yi is the independent variable, and f (xi) is the
predicted value of yi.

2.3.1. Fitting a MARS Model

In this study, the package earth ( ) is used to fit the MARS model. This will evaluate
all possible knots across all provided features before pruning to the optimal number of
knots based on an estimated change in R2 for the training dataset. The GCV method,
which is a computational solution for linear models that gives an estimated leave-one-out
cross-validation error metric, is used to make this estimate.

2.3.2. Parameter Tuning

The maximum degree of interactions and the number of terms retained in the final
model are two important tuning parameters for the MARS model. The two parameters
are tuned by the caret implementation: nprune and degree. The pruned model’s maximum
number of terms is nprune. The actual degree of interaction is degree. The nprune can be
calculated automatically using the default pruning protocol using GCV, by the user, or by
an external resampling technique. In addition, the function earth ( ) helps one to evaluate
possible interactions between various hinge functions, reducing the number of knots. To
find the best hyperparameter combination, we use cross-validation (for k = 10 folds) by
performing a grid search using the function caret ( ). Grid search lets us concentrate on
areas where we can improve our model tuning. The MARS algorithm has the advantage of
only using input variables that improve the model’s accuracy and achieve an automated
type of feature selection. This will be set up with the required parameters and run on each
dataset, using all features and the Spline model as the classifier. Each dataset yields an
optimal feature subset that was rated according to its relative importance. Based on the
highest overall accuracy, the smallest number of features collected, and the lowest false
alarm error, the best optimal feature subset was selected [30].

2.3.3. Model Validation

The predictive accuracy was evaluated by training the model on the training dataset
and testing the test dataset. The most common measures of model fit are R-squared, RMSE,
and MAE, which are recalled below.

(a) Coefficient of determination (R2)

The coefficient of determination (R2) is the percent of the total variation in the response
variable that is explained by the regression line. The formula is given by

R2 = 1− SSE
SST

(3)

where SSE =
n
∑

i=1
(yi −

∧
y

i
)2 is the sum of squared differences between the predicted and

observed value, and SST =
n
∑

i=1
(yi −

−
y

i
)2 is the sum of squared differences between the

observed and overall mean value.
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(b) Root mean squared error (RMSE)

The root mean squared error (RMSE) is the average prediction error (square root of
mean squared error). The formula is indicated as

RMSE =

√
n

∑
i=1

(yi −
∧
y

i

)2 (4)

(c) Mean absolute error (MAE)

The mean absolute error (MAE) is the average absolute prediction error. It is less
sensitive to outliers. The formula is given by

MAE =
1
n

n

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣ (5)

3. Results and Discussions

In PCA, the primary components are orthogonal linear combinations of the origi-
nal variables. The first principal component is responsible for much of the variation in
the original data. The second principal component tries to capture as much variance as
possible in the data. The eigenvalues indicate how much variance can be explained by
the eigenvector. As a result, the highest eigenvalue implies that the data have the most
variance in the direction of their eigenvector. Tables 1–3 show the two principal compo-
nents with dimension 1 and dimension 2 for the area, production, and yield, respectively,
for the top wheat-producing states in India. Similarly, Tables 4–6 show the eigenvalues
and the percentage of variance of the principal components of the area, production, and
yield, respectively. This extracts the best features from the large wheat dataset, keeps
the most essential relationships, and quantifies them so they can be further processed for
MARS modelling.

Table 1. Area principal components.

States Dimension 1 Dimension 2

Bihar 9.62 1.3

Gujarat 4.91 26.09

Haryana 13.25 0.015

Himachal Pradesh 6.26 11.63

Jammu and Kashmir 12.03 0.009

Karnataka 6.83 6.24

Madhya Pradesh 9.91 2.57

Maharashtra 0.009 46.98

Punjab 12.79 0.76

Rajasthan 11.31 3.82

Uttar Pradesh 13.04 0.55
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Table 2. Production principal components.

States Dimension 1 Dimension 2

Bihar 10.10 0.61

Gujarat 8.20 4.35

Haryana 11.45 0.38

Himachal Pradesh 7.98 7.15

Jammu and Kashmir 9.96 2.53

Karnataka 1.50 63.31

Madhya Pradesh 9.02 1.56

Maharashtra 8.0 18.59

Punjab 11.18 0.54

Rajasthan 11.37 0.3

Uttar Pradesh 11.22 0.65

Table 3. Yield principal components.

States Dimension 1 Dimension 2

Bihar 9.23 0.15

Gujarat 9.78 0.53

Haryana 10.53 0.93

Himachal Pradesh 7.06 18.87

Jammu and Kashmir 7.30 22.05

Karnataka 7.16 24.60

Madhya Pradesh 7.44 25.93

Maharashtra 9.93 4.58

Punjab 10.64 0.19

Rajasthan 10.38 1.77

Uttar Pradesh 10.50 0.35

Table 4. Eigen values of percentage of variance of the principal components of area parameter.

PC Eigen Value Percentage of Variance

PC1 7.23 65.81

PC2 1.75 15.91

Table 5. Eigen values of percentage of variance of the principal components of production parameter.

PC Eigen Value Percentage of Variance

PC1 8.30 75.48

PC2 1.22 11.12

Table 6. Eigen values of percentage of variance of the principal components of yield parameter.

PC Eigen Value Percentage of Variance

PC1 8.95 81.39

PC2 0.77 7.07
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3.1. Summary Statistics: An Assessment of the Data

The summary statistics of the area under cultivation (thousand hectares) of wheat are
shown in Table 7. Among the states, Uttar Pradesh has the largest area with mean and SD
(8164.88 ± 560.97), with the smallest area being in Haryana (1850.97 ± 552.09). In addition,
for states such as Haryana, Punjab, and Uttar Pradesh, the data are negatively skewed,
which underlines the decline in the area under cultivation in consecutive years. Rajasthan
has a significant positive skewness compared to other states. In addition, the states of
Punjab and Uttar Pradesh have a leptokurtic curve, whereas Haryana and Rajasthan
have a platykurtic curve. Comparing the area for overall India, the mean and SD are
(24,023.58 ± 4580.51), with negatively skewed data and a leptokurtic curve.

Table 7. Summary statistics of area under cultivation of the wheat (thousand hectares).

Area

States Minimum Maximum Mean Standard
Deviation Skewness Kurtosis

Haryana 678 2601 1850.97 552.09 −0.43 −0.91

Punjab 1549 3528 3026.94 543.40 −1.19 0.46

Rajasthan 961.3 3318.24 2059.53 560.97 0.17 −0.51

Uttar Pradesh 4114.8 9846 8164.88 560.97 −1.07 0.017

Overall India 12,570 31,470 24,023.58 4580.51 −0.61 0.03

Table 8 summarizes wheat production statistics for the states and India as a whole.
Again, Uttar Pradesh has a paramount production of wheat with a mean and SD
(18,386.88 ± 8309.90), and the minimum production is for the state Rajasthan of
(4745.29 ± 2644.22). Furthermore, for the states of Haryana and Rajasthan, a significant
positive skewness is noted, as is a negative skewness for the states of Punjab and Rajasthan.
Besides that, all the states have a platykurtic curve for the data, which reinforces that
the production of wheat had a narrower fluctuation in the significant years. Similarly,
for India, the overall production is (55,171.89 ± 25,470.92) with a positive skewness and
platykurtic distribution.

Table 8. Summary statistics of production of wheat (thousand kg).

Production

States Minimum Maximum Mean Standard
Deviation Skewness Kurtosis

Haryana 869 12,685.66 6486.63 3529.57 0.01 −1.37

Punjab 1916 17,830.42 11,207.31 4521.29 −0.41 −1.09

Rajasthan 784.7 9870.99 4745.29 2644.22 0.37 −0.98

Uttar Pradesh 3754.7 31,879.14 18,386.88 8309.90 −0.23 −1.20

Overall India 10,400 99,870 55,171.89 25,470.92 0.004 −1.09

The summary statistics for the yield of the wheat are represented in Table 9. As seen,
Punjab has the largest yield with a mean and SD (3535.85 ± 1003.83) and the smallest
is in Uttar Pradesh (2130.94 ± 693.80). Moreover, it is clearly evident that all the states
have negatively skewed data and platykurtic curves, which highlights that the yield
received has declined largely and has had narrow growth in significant years. Furthermore,
with negative skewness and platykurtic data, India has a maximum with mean and SD
(2172.21 ± 700.26), showing a bigger fall in wheat yield than in previous years.
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Table 9. Summary statistics of yield of wheat (kg/hectare).

Yield

States Minimum Maximum Mean Standard
Deviation Skewness Kurtosis

Haryana 1281.71 5030 3208.77 1045.89 −0.23 −1.31

Punjab 1236.93 5077 3535.85 1003.83 −0.41 −0.95

Rajasthan 811.81 3334 2135.49 755.70 −0.14 −1.37

Uttar Pradesh 912.49 3268.65 2130.94 693.80 −0.20 −1.23

Overall India 827 3368.21 2172.21 700.26 −0.22 −1.18

3.2. MARS Model

The MARS model randomly divides 80% of the data into training samples and 20% of
the data into test samples at random. Attributes having numerous classes in multi-label
data are converted to single-label classes. MARS takes each target variable class and its
properties as input, builds the model, and visualizes the collision of each prediction aspect
on the output.

Table 10 shows the cross-validated RMSE, MAE, and results for both the training
and testing datasets of tuned MARS and regression models. The maximum degree of
interactions (degree) and the number of terms maintained (nprune) in the final model are
two crucial tuning parameters related to the MARS model. A grid search was performed
to find the best combination of these hyperparameters that minimizes prediction error.
A grid search was conducted to ensure that the above pruning process was based only
on an approximation of cross-validation model performance on the training data. The
degree of the model is chosen from 1 to 5, and the n-prune values range from 1 to 10.
It is clearly observed from the table that the best model for overall India of the optimal
combination includes first-degree interaction effects and retains five terms holding values
for both training and testing datasets with (20.68 and 25.32), MAE (16.24 and 21.61), and R2

(0.9991 and 0.9994). Compared with all other states, Uttar Pradesh has a better fit model
with a parameter combination of second-degree interaction effects and retains five terms.
Additionally, there is error validation for both training and testing datasets with RMSE
(23.91 and 28.52), MAE (18.21 and 21.98), and R2 (0.9991 and 0.9994). In fact, Uttar Pradesh
continues to be the country’s greatest producer, accounting for over 28 million tons, or
roughly 30% of national production [31].

Table 10. Error validation and parameter values of training and testing datasets by using MARS for
the wheat yield prediction.

States Train RMSE Test RMSE Train MAE Test MAE Train R2 Test R2 Degree nprune

Haryana 45.83 48.49 32.10 40.42 0.9981 0.9982 2 5

Punjab 25.86 18.16 17.45 15.03 0.9993 0.9995 2 5

Rajasthan 24.03 28.52 18.21 21.98 0.999 0.9983 2 6

Uttar Pradesh 23.91 20.57 21.11 15.48 0.9993 0.9989 1 5

Overall India 20.68 25.32 16.24 21.61 0.9991 0.9994 1 5

MARS is effective for complex nonlinear relationships in data by examining cut points
(knots), which are analogous to step functions. Each data point for each predictor is
analyzed as a knot, and a linear regression model with the proposed feature is created [16].
For y = f (x), which is adapted for non-linear and non-monotonic data, the MARS process
will scan for a single point within a range of X values where two different linear connections
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between Y and Y result in the minimum inaccuracy, i.e., the smallest error sum of squares
(SSE). Hence, a hinge function h (x − c) is given as

Hinge function = max = (0, x− c) =

{
x− c; x > 0

0; x ≤ c
(6)

where c is the cut point value.
Consider the model, which includes the dependent variable, yield (kg/hectare), and

the independent variables such as the area under cultivation (hectare) and production (kg).
To obtain the minimum error, the MARS algorithm will search for a single point over a
range of area under cultivation (hectare) and production (kg) values where different linear
relationships between the independent and dependent variables exist. As a result, a hinge
function is created with independent variables. Hence, the MARS model with the training
data for overall India and each state is given by:

YieldRajashan =


3242.034 + 0.41(production− 5493.3)− 1.242(area− 1635)

production < 5493.3 kg, area < 1635 kg/heactare
3242.034− 0.824(5493.3− production) + 1.16(1635− area)

production > 5493.3 kg, area > 1635 kg/heactare
(7)

YieldHaryana =


4419.26 + 0.038(production− 6502)− 1.35(area− 1226.1)

production < 6502 kg, area < 1226.1 kg/hectare
4419.26− 0.583(6502− production) + 0.451(1226.1− area)

production > 6502 kg, area > 1226.1 kg/hectare

(8)

YieldUttarProdesh =


1308.51 + 0.034(production− 11457.8)− 0.094(area− 3229);

production < 11457.8 kg, area < 3229 kg/hectare
1308.51− 0.042(11457.8− production) + 0.033(3229− area);

production > 11457.8 kg, area > 3229 kg/heactare
(9)

YieldOverall India =


2897 + 0.034(production− 65760)− 0.094(area− 2280_

production < 65760 kg, area < 2250 kg/hectare
2897.75− 0.042(65760− production) + 0.033(2280− area)

production > 65760 kg, area > 22250 kg/hectare
(10)

YieldPunjab =


1866.65 + 0.3(production− 5788)− 1.346(area− 3229)

production < 5788 kg, area < 3229 kg/hectare
1866.65− 0.45(5788− production) + 0.708(3229− area)

production > 5788 kg, area > 3229 kg/hectare

(11)

MARS optimizes all phases of model design and implementation, including variable
selection, transformation of predictor variables with a nonlinear relationship, identifying
predictor variables’ interactions, and creating new nested variable strategies for dealing
with missing values and avoiding overfitting with comprehensive self-tests.

3.3. Graphical Representation of MARS Model with Testing Data

Figures 1–5 represent the testing data vs. the predicted graph obtained from training
data using the MARS model.
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4. Conclusions 
Machine learning methods have gained popularity across a broad spectrum of appli-

cations, and they have been proven to be effective in agrarian research. Crop yield predic-
tion is significant in many parts of the country’s economy since it provides data for deci-
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