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Abstract: Detecting objects in digital images is challenging in computer vision, traditionally requiring
manual threshold selection. However, object detection has improved significantly with convolu-
tional neural networks (CNNs), and other advanced algorithms, like region-based convolutional
neural networks (R-CNNs) and you only look once (YOLO). Deep learning methods have various
applications in agriculture, including detecting pests, diseases, and fruit quality. We propose a
lightweight YOLOv4-Tiny-based object detection system with a circular bounding box to accurately
determine chrysanthemum flower harvest time. The proposed network in this study uses a circular
bounding box to accurately classify the degree of chrysanthemums blooming and detect circular
objects effectively, showing better results than the network with the traditional rectangular bounding
box. The proposed network has excellent scalability and can be applied to recognize general objects
in a circular form.

Keywords: you only look once (YOLO); circular bounding box; chrysanthemum; circular objects

1. Introduction

Finding or classifying the desired object in a digital image, such as a person, object, or
scene, is a fundamental but challenging part of computer vision. The traditional approach
to detecting objects in images is to manually select thresholds for features, such as the
color, shape, and texture unique to the object, which an expert then catches. However, this
approach needs more scalability and accuracy. The thresholds need to be redefined when
the shooting conditions or the surrounding environment change, such as camera settings,
brightness around the object, or shadows. However, since the advent of the convolutional
neural network (CNN) developed by LeCun in the late 1990s, the accuracy and scalability of
object detection have improved, which has had a major impact on modern object detection
methods [1]. Afterward, region-based convolutional networks (R-CNNs) for accurate
object detection and segmentation, which have further improved accuracy, find all expected
objects by grouping them into image pixel units, dividing them into bounding boxes, and
digitizing them to determine the exact location of objects, enabling more accurate object
detection [2]. In addition, you only look once (YOLO), a unified, real-time object detection,
which dramatically improves detection time by performing all object detection processes in
a single network, predicts objects by dividing the input image into a minimum grid, and
simultaneously detecting all objects. It is used in many fields to ensure faster processing
time and accuracy [3]. Both algorithms use bounding boxes to increase the accuracy of
object detection. The bounding box of an object is usually a rectangle, and a rectangular
bounding box (rBBox) is convenient for detecting moving objects that cannot be stereotyped
in an image. But a different bounding box type is needed for the fixed-shaped object.

Deep learning methods in agriculture can help solve many problems related to agri-
cultural production. They can be usefully applied to places where pests, plant diseases,
etc., are identified on farms, or where fruits are harvested or sorted [4–9], and they can
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also be applied to methods where varieties are identified by recognizing seeds or leaves
of the crop [10,11]. Chrysanthemum, along with rose, is one of the four most popular cut
flowers in the world. It is mainly used as an ornament for decoration, or as a raw material
for functional food, such as tea and medicine, in Southeast Asian countries, represented
by Korea, Japan, and China, as well as in European countries. It is cultivated in flower
farms [12,13]. In harvesting chrysanthemums, it is essential to determine the appropriate
degree of flowering, the appropriate size, and the presence of pests and diseases, and pro-
ductivity is greatly affected by the expertise and skill of workers. If the product standards
are not satisfied, it is often discarded, so it is essential to accurately determine the flowering
degree of chrysanthemums. Still, few studies are related to this [14–16]. Recently, Chao [17]
proposed a lightweight convolutional neural network called MC-LCNN to detect medicinal
chrysanthemums in the bud stage, and confirmed that real-time detection is possible, even
in an embedded environment. However, it is difficult to predict the flowering degree of the
whole chrysanthemum by applying only the bud stage of medicinal chrysanthemums to
the YOLO network. In addition, the rBBox is not optimized for detecting fruits or flowers
in farming and flower farms. In agriculture, objects, such as a fruit or a flower, have a
generalized circular shape. Therefore, in recognizing a generalized circular object, it is
advantageous to use a circular bounding box (cBBox). Realistic images can be obtained
from all angles, unlike general objects for most fruits or flowers. Therefore, the existing
rBBox includes an unnecessary background image in a place where a circular object is
recognized. These extraneous background image contents interfere with learning. Thus,
when only a circular object is to be detected, detection performance can be improved by
using a cBBox suitable for the object. In addition, when using a cBBox, the number of
learning parameters is reduced compared to a rBBox, which is effective for network training
time and optimization performance.

Experimental results indicate that a network with a cBBox is >2% better in mean
average precision (mAP) than that with the conventional rBBox. In addition, compared
with the latest research results, the proposed method confirmed a slight performance
advantage, even though it is a more difficult classification problem. Therefore, a network
with cBBox is highly effective and superior to a network with rBBox.

In flower farmers, the timing of cut flowers must be determined based on flowering
status and other parameters, such as storage period and remaining post-harvest condi-
tions [18]. In this study, we propose an object detection system based on a YOLOv4-Tiny
with cBBox that classifies the flowering degree of chrysanthemums into three categories
to accurately determine the harvest time of chrysanthemums. The proposed network can
classify the degree of flowering of chrysanthemums into three categories: full bloom, early
bloom, and budding, and it can provide primary data for predicting the harvest time, aiding
flower farmers. The proposed network with cBBox showed higher results in the average
precision (AP) analysis than the general YOLO network with rBBox. The proposed network
has excellent scalability that can be applied both to classifying the degree of blooming of
chrysanthemums, and to recognizing general objects of circular form.

2. Related Work

In modern object detection systems, with the development of hardware technology
capable of parallel computing, such as graphics processing units (GPUs) and tensor pro-
cessing units (TPUs), the number of calculations that can be processed at one time has
increased, and the processing time has also reduced. Therefore, high accuracy and real-time
performances are shown, even in machine learning and deep learning-based systems that
require much computation [19–21]. A general object detection system proceeds with select-
ing object candidate regions, extracting features from each candidate region, and applying
a class to the candidate region through a classifier. Depending on the detection method,
post-processing, such as bounding box regression, may be used to improve localization
performance. Early object detection systems were designed by configuring the process of
selecting object candidate regions as a separate network. But recently, some studies have
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improved detection performance by using a method of simultaneous detection by combin-
ing object feature extraction and classification networks. In particular, YOLO proposed
by Redmon, is a regression method with a simple structure that estimates the bounding
box coordinates of object candidates and object class probability values compared to the
classifier-based CNN method. The network configuration is relatively simple, and the
loss significantly affects detection performance. This is the most famous object detection
deep learning algorithm, as real-time detection is possible by drastically reducing the
detection time by directly learning the function [22–25]. Various YOLO network models
have been developed in many studies. Among them, YOLOv4 became faster by applying
optimization methods, such as weighted residual connections (WRCs), cross-stage partial
connections (CSPs), and complete intersection over union (cIoU) loss in many CNN-related
studies. YOLOv4 shows the accurate recognition rate [26]. Nevertheless, using a real-time
object detection system is challenging due to network complexity in a low-cost embed-
ded environment. YOLOv4-Tiny, introduced by Wang, is a more simplified model of the
YOLOv4 network, and the network size is 10% of YOLOv4. While it has a slightly lower
detection accuracy, it is used in many studies for real-time object detection due to its fast
network learning and detection speed [27–31]. As the performance of this deep learning
technique has been verified in various fields, it is also used in agriculture to diagnose
and predict diseases and pests, detect fruit and determine ripeness, and predict yield,
showing good performance [32–36]. Ramar [37] trained the Plantvillage dataset with a
network modified from LeNet [1] to classify three diseases in maize leaves, achieving a
high accuracy of over 97%. Inspired by the YOLO series, Koirala proposed the MangoY-
OLO [38] network to detect mangoes, which showed excellent real-time performance with
an F1 score of 0.97. Fu [39] achieved high accuracy by applying the YOLOv4 network to
accurately detect bananas of various sizes and shapes, even in poor surroundings, such as
orchards. Zhang [32] proposed RTSD-Net by modifying the YOLOv4-Tiny network model
with fewer convolutional layers to be applied to strawberry harvest, and achieved faster
detection speed. Chao [17] proposed a lightweight convolutional neural network called
MC-LCNN to detect medicinal chrysanthemums in real time, and used it to enable real-time
detection, even in an embedded environment. Most of the deep learning algorithms applied
in the agricultural field have focused on research to improve detection performance using
existing known network structures, or to improve network structures for real-time processing.
Even though fruits and flowers in general present a circular shape, the existing rBBox was used
in object detection. Using a rBBox includes much unnecessary background content content
that is not part of the objects, and learning this alongside the flowers negatively impacts both
the learning time and accuracy.

3. Network and Data Acquisition
3.1. YOLOv4-Tiny Detector

Figure 1 shows the schematic structure of YOLOv4-Tiny. The basic configuration of the
network consists of a CNN-based neural network module as the backbone, an FPN module,
and a YOLO-head module. The backbone extracts the main features of an object from the
input image, and the FPN module improves feature extraction performance by merging
functions of various layers. The YOLO-head module outputs object prediction results
of multiple sizes. The CNN-based backbone is designed by repeating convolution-batch
normalization-LeakyReLU (CBL) block and cross-stage partial (CSP) block. Still, compared
to YOLOv4, the overall network is lightweight by reducing the number of iterations and
compressing in block units. YOLOv4-Tiny simplifies the YOLOv4 network and greatly
reduces the network size, resulting in slightly lower detection accuracy, but speedy learning
and detection speed [25–29]. Therefore, if object detection accuracy can be improved, it can
be used as a beneficial network.
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Figure 1. YOLOv4-Tiny.

Figure 2 shows a schematic of the YOLOv4-Tiny detector detecting the degree of flowering
of chrysanthemum flowers. When an image is an input to the YOLOv4-Tiny network, the
location information of the chrysanthemum petal predicted through YOLOv4-Tiny is output,
and the object overlap test and final class is output. The YOLOv4-Tiny network extracts object
features through the backbone network and FPN (feature pyramid network). The predicted
chrysanthemum flower information is output through the YOLO head. In this study, the
input image size is (608 × 608) pxl, and the CSPdarnet53-Tiny model and FPN structure
are applied as a network for feature extraction. The output structure of the YOLO head
consists of the coordinates of the center point of the bounding box (A, B) representing
the location and size of the cBBox, the circle radius (r), the confidence score, and the class
probability. Non-maximum suppression (NMS) is applied to the same class to remove
redundant detection among the values output by the YOLO head. If different classes are
predicted, the class with the more significant confidence score is selected and determined
as the final output.

Figure 2. YOLOv4-Tiny detection.

3.2. Circle Bounding Box

In most object detection systems, it is common to designate an object area with an
rBBox to detect various objects. rBBoxes are very reasonable for recognizing moving
objects that cannot be stereotyped in an image. However, for objects whose shapes do
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not change, a bounding box that is similar to the object’s shape is more beneficial. The
cBBox is advantageous for learning to recognize circular objects, such as fruit or flowers.
In the case of rBBox, it is not easy to train accurate object features because an unnecessary
background image other than the object is included. In particular, more background image
components are included in an object rotated at a certain angle, significantly affecting
the learning efficiency and detection performance. However, if only a circular object
needs to be detected, detection performance can be improved using cBBox suitable for the
object. In addition, the number of learning parameters is small, which is advantageous
in terms of learning time [40,41]. Therefore, in this study, the surrounding background
image other than chrysanthemum flowers was minimized by applying cBBox suitable for
detecting chrysanthemum flowers. To evaluate multiple bounding boxes in the YOLOv4-
Tiny network, the circle intersection over union (cIoU) evaluation index is defined and
applied as follows [40]:

Figure 3 shows two cBBoxes, A and B, of different sizes, where rA and rB are the radii
of A and B, respectively. If the distance (d) between the center points of the two circles is
|rA − rB| ≤ d ≤ |rA + rB|, the two circles overlap. The overlapping area of the two cBBoxes
is given by Equation (1):

Area(A ∩ B) = θr2
A + φr2

B −
1
2

r2
Asin2θ − 1

2
r2

Bsin2φ (1)

θ and φ can be obtained as Equations (2) and (3).

θ = cos−1 r2
A + d2 − r2

B
2rAd

(2)

φ = cos−1 r2
B + d2 − r2

A
2rBd

(3)

The total area of the two cBBoxes equals Equation (4), and cIoU of the two cBBoxes is
equivalent to Equation (5).

Area(A ∪ B) = πr2
A + πr2

B − Area(A ∩ B) (4)

cIoU =
Area(A ∩ B)
Area(A ∪ B)

(5)

Figure 3. Overlap of two cBBoxes.

3.3. Image Data Collection

There is no open dataset for chrysanthemum petals, so images obtained by direct
filming were used. The images of chrysanthemums used in this study were extracted
from videos taken with a tablet (Samsung S8 Ultra: Samsung Electronics in Korea) with
a built-in camera at the Jinju Chrysanthemum Exhibition in November 2022. The video
was filmed at FHD (1920 × 1080 pixels) at 30 fps under natural light conditions, the same



AgriEngineering 2023, 5 1535

chrysanthemum species were selected, and images were extracted considering different
brightness and environmental conditions. Training and test images were collected. The
extracted images were cut at a resolution suitable for learning (608 × 608 pixels) to create
117 training and test images. We randomly selected 82 images for learning and 35 as test
data for the performance evaluation. Figure 4 shows a part of the extracted image. For
the fairness of network performance evaluation, the images were composed of images
with different brightness and sharpness. Figure 4a,b are images taken under natural light
conditions, but Figure 4b is a very defocused image. Figure 4c is a very dark image taken
in the shade, and Figure 4d–f are images taken under backlight conditions.

(a) (b) (c)

(d) (e) (f)

Figure 4. Examples of training and test images. (a) Focused image under natural light conditions;
(b) defocused image under natural light conditions; (c) dark image under natural light conditions;
(d) focused image under backlight conditions; (e) defocused image under backlight conditions;
(f) dark image under backlight conditions.

To classify the degree of flowering of chrysanthemums required for this study, the
state of chrysanthemum petals is divided into ChrysanF, ChrysanE, and ChrysanB, with
the naked eye, and labeled. ChrysanF is a fully bloomed state in which the petals are wide
open, and the pistil in the center of the flower is visible. ChrysanB is a state in which petals
are not visible, compared to ChrysanF, and buds start sprouting in lumps. Other flowers
in the progress of flowering whose petals were not completely unfolded were labeled as
ChrysanE. The number of ChrysanF, ChrysanE, and ChrysanB objects in the training image
are 581, 675, and 117, respectively. Table 1 shows the definition of the flowering stage of
chrysanthemum and the labeling results for sample images. In the sample image, when the
chrysanthemum petal is located at the edge, only when the center of the chrysanthemum
petal exists in the image is it recognized as an object and labeled. The three flowering states
are beneficial flowering classifications that can inform the exact harvest time of cut flowers



AgriEngineering 2023, 5 1536

and differentiation in flower farmers. The labeled cBBox is defined in Equation (6), and it is
one less than the parameter of the rBBox.

cBBoxij = (Bxij, Byij, Brij) (6)

where i is the cBBox number, j is the label index, (Bxij, Byij) is the center coordinate of the
cBBox, and Brij is the radius of the cBBox.

Table 1. Data label.

Label Label Index Color Chrysanthemum Description Sample

ChrysanF 0 Blue Full-bloom stage

ChrysanE 1 Green Early flowering stage

ChrysanB 2 Yellow Budding stage

3.4. Data Augmentation

Eighty-two training images for YOLO network learning are insufficient for training
data, and overfitting may occur during network learning. Therefore, data augmentation is
required for improved detection performance and practical training. Most flower objects in
the image are circular and have a consistent object image with a change in angle. There-
fore, the images of the prepared data were applied to increase the number of data while
maintaining the object characteristics in the image through inversion and rotation. In the
case of rotation transformation, the data augmentation effect was maximized by converting
only the object’s size and position while maintaining the object’s characteristics by setting
it to not deviate from the 608 × 608 input image size using a scale factor. In other words,
rotation alone has the effect of changing the sizes and characteristics of an object. For image
rotation, 82 image data were expanded to 11,808 by rotating and converting the original
image and the inverted image to 355◦ degrees at intervals of 5◦ degrees. Figure 5 shows the
data augmentation process.

Figure 5. Data augmentation.

Table 2 shows the number of original training data and augmented training data. The
82 original training images contain 581, 675, and 117 data labeled A, B, and C, respectively.
These were increased to 83,664, 97,200, and 16,848, respectively, through data augmentation.
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for the performance evaluation, 35 test images were not used for training, and there were
271, 295, and 53 labeled data in the test images, respectively.

Table 2. The original training and augmented data numbers.

Data Type Image ChrysanF ChrysanE ChrysanB

No. of original
training images 82 581 675 117

No. of augmented
training images 11,808 83,664 97,200 16,848

No. of test images 35 271 295 53

4. Experiments
4.1. Experiment Environment and Setup

The YOLOv4-Tiny network model provided by Matlab® [42] was used for network
training. The image input layer and YOLO head output layer were changed to match the
dataset and output structure, and the SGDM (stochastic gradient descent with momentum)
optimization algorithm was used. Learning was performed by applying an initial learning
rate of 0.0001, a maximum epoch of 200, and a mini-batch size of 16. The hardware used in
the experiment was an Intel i9-9900K CPU and NVIDIA RTX2090 GPU. The YOLOv4-Tiny
network can quickly and accurately detect objects with various aspect ratios and scales
using predefined anchor boxes of a specific size. Since this study uses a cBBox, a circular
anchor box is also required. A circular anchor box has an aspect ratio of 1, so anchor
boxes with different aspect ratios are unnecessary; only size considerations are needed. In
this study, the average cIoU of the circular anchor boxes was confirmed through K-means
clustering, and the number of circular anchor boxes with an average cIoU of 0.8083 was
selected as 4. The loss function used in training the YOLOv4-Tiny network was calculated
on the object classification loss (clssloss), the object reliability loss (objloss) using the binary
cross entropy function, and the position error (boxloss) of the bounding box using the root
mean square error (RMSE). The overall loss function reflecting these settings is shown in
Equation (7).

TotalLoss = a× clssloss + b× objloss + c× boxloss (7)

where [a, b, c] are the scale factors set to [1, 1, 1] in this study.

4.2. Evaluating the Effectiveness of Circular Bounding Box

The average mask detection ratio (MDT) [40] for object detection results was measured
to evaluate the efficiency of the cBBox applied in this study. A high mask detection rate
means that many object elements to be detected are included in the bounding box. The
mask detection ratio was compared by calculating the ratio occupied by each bounding
box of chrysanthemum petals in pixel units when the bounding box was selected as a
circle or a rectangle from 30 randomly selected object images. Figure 6 shows the MDT
calculation and results for rBBox and cBBox. The cBBox has an average MDT of 74.93%,
and the rectangular bounding box has an average MDT of 65.62%, about 9.31% higher
than the cBBox. This result is expected because the shapes of the chrysanthemum petals
are close to circular. The cBBox is more useful in learning because it contains more object
characteristics than the rBBox.
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Figure 6. Average MDT according to the bounding box shapes.

4.3. Object Detection Performance Evaluation

After training the network for 200 epochs, the final overall loss is 0.1832. The test
dataset uses 35 images that have not been used for network training. For the performance
evaluation, 35 images included 271 objects for ChrysanF, 295 objects for ChrysanE, and
53 objects for ChrysanB, depending on the flowering degree of the chrysanthemum. For
the performance evaluation of detection results, we define average precision (AP) as in
Equation (8) and introduce a series of evaluation indicators based on AP, including AP50,
AP70, APS, APM, and APL for a detailed evaluation. AP50 indicates that the cIoU of the
classification truth value and prediction result is 0.5 or more, and AP70 is 0.7 or more.
When the cIoU is 0.5 or 0.7 or more, to detect the overall classification performance, mAP is
evaluated, as shown in Equation (9).

AP =
N

∑
k=1

precision(k)∆recall(k) (8)

where N is the total number of test images, precision = TP/(TP + FP), and δrecall(k) is
the change value between the (k− 1)th and kth image and recall = TP/(TP + FN).

mAP =
1
n

n

∑
i=1

APi (9)

where APi is the AP of class i, and n is the number of classes.
Table 3 shows the results of learning YOLOv4-Tiny networks with cBBox and rBBox

by applying the same data and learning rules. Regarding the object class classification
results, both networks’ ChrysanF and ChrysanE object detection performances are relatively
high compared to ChrysanB. Objects ChrysanF and ChrysanE have large bounding boxes
characterized by petals. However, in the case of small objects, such as ChrysanB, the object
detection performance is slightly degraded. This includes the difficulty in detecting small
objects, which is a drawback of YOLO networks. In addition, the learning images of objects
ChrysanF and ChrysanE are more than five times larger than the learning images of object
ChrysanB, so it is judged that authentic learning has been achieved. In addition, it is difficult
for humans to distinguish ChrysanE and ChrysanB objects accurately, so incorrect data
labeling for building training data is also judged to cause the error. Then, AP50 and AP70
are compared and analyzed for the performance analysis of the two networks. In the case of
AP50, the network to which the cBBox is applied has 4.28% and 3.83% higher ChrysanF and
ChrysanE object detection performances, respectively. The cBBox has a relatively high MDT
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compared to the rBBox and contains fewer images of the surrounding environment, except
for petals. This is advantageous for accurately learning the characteristics of an object.
But for ChrysanB, a rBBox is marginally better at 1.35%. Overall, for mAP50, the network
with a cBBox is 2.26% better. Also, in the case of AP70, the network to which the cBBox
was applied showed 1.12% and 7.66% higher performances in detecting ChrysanF and
ChrysanB objects, respectively, but lower results by 0.83% in detecting ChrysanE objects.
For a small-sized object, such as ChrysanE, regardless of the shape of the bounding box,
the effect of the background around the object appears small. Overall, mAP70 also shows
a 2.55% higher performance in the network to which the cBBox is applied. Therefore, in
terms of network performance, a network with cBBox is very effective and superior to a
network with rBBox.

Table 3. Comparison of APs according to the IoU.

Box Type ChrysanF ChrysanE ChrysanB mAP50 mAP70AP50 AP70 AP50 AP70 AP50 AP70

Rectangle 94.51 89.39 89.92 81.64 86.66 67.62 90.36 79.55

Circle 98.79 90.51 93.75 80.78 85.31 75.02 92.62 82.10

Next, the object’s size was set to three ranges, and the AP(APS, APM, APL) for the
fixed ranges was evaluated. The IoU of the classification truth value and prediction result is
selected as 0.5 or more. In the case of a cBBox, APS indicates an object with a size less than
1134(π × 192) pixels, APM greater than 1134(π × 192) pixels and less than 4536(π × 382)
pixels, and APL greater than 4536(π × 382) pixels. For an rBBox, it is defined as the square
of the pixel length equal to the pixel area of the cBBox. We set APS to less than 1156(34× 34)
pixels, APM to more than 1156(34× 34) pixels and less than 4489(67× 67) pixels, and APL
to more than 4489(67× 67) pixels. The difference in the reference areas of APS, APM, and
APL is due to pixel unit calculation errors. Table 4 shows the performance evaluation
results according to the bounding box size of the two networks. The network with a cBBox
offers more than 91% performance regardless of the size of the bounding box, and the
performance is superior to the network with a rBBox. In Table 3, the AP50 for the ChrysanB
object is 85.31%, but in the case of APS, the performance is improved by including ChrysanE
and small ChrysanB. A series of AP test results confirm that a network with a cBBox is
advantageous for learning and excellent in performance evaluation because it includes
fewer background images than a network with a rBBox.

Table 4. Comparison of APs according to the bounding box size.

Box Type APS APM APL

Rectangle 87.93 90.85 94.95
Circle 91.24 95.52 98.84

So far, there are few research results regarding detecting chrysanthemum petals.
Recently, Chao [15] reported several research results on chrysanthemum petal detection.
In this study, we compare Chao’s performance evaluation results. Chao’s study achieved
excellent detection performance by applying the YOLO network to detect young shoots
with high medicinal value for the harvest of medicinal chrysanthemums. In this study, it
is different from the chrysanthemum species used by Chao, and it is not easy to directly
compare the performance because the degree of flowering of chrysanthemum petals is
detected in three states. However, since this study recently detected chrysanthemum objects
using a similar YOLO network, it is selected for comparison.

Table 5 shows the results of Chao’s YOLO networks and the proposed network
(TC-YOLO) among several network experiments. The detection result of Chao repre-
sents AP for one type of young shoot state and mAP in this study. It was confirmed that the
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method proposed in this study is slightly better than TC-YOLO. The proposed method de-
tects the flowering degree of chrysanthemum petals in three states, so it is a more complex
problem than the TC-YOLO classification. Nevertheless, a slight performance advantage
was confirmed.

Table 5. Performance comparison with other models.

Method Backbone Size AP or mAP

YOLOv3 [15] Darknet53 608 × 608 87.44 (AP)
YOLOv4 [15] CSPDarknet53 608 × 608 87.62 (AP)
TC-YOLO [15] CSPD+R 416 × 416 92.49 (AP)
Ours-Circle CSPDarknet53-Tiny 608 × 608 92.62 (mAP)

Figure 7 is the test detection result of the proposed network. The cBBox is displayed
by classifying colors by class and overlapping them on the image. From the results in
Figure 7a–c, flowers with different flowering degrees were detected at the correct location
and size, even when the flowers overlap. In the case of Figure 7d, it was confirmed that
ChrysanF was well detected, even when leaves covered it among the overlapping flowers
at the top of the image. In Figure 7e,f, the part marked with a pink box is the result of over-
predicting an object that does not even exist in the truth value of the test data. In the case of
Figure 7e, the object is out of the center of the image, and it is difficult to distinguish it from
the naked eye under difficult conditions, such as backlighting. In the case of Figure 7f, it is
difficult for humans to judge, because the flowers are unclear. Nevertheless, the proposed
network can accurately detect objects. Figure 7g,h show the result of not detecting the
flowers correctly, and the truth value of the test data is displayed in a red box. Both objects
do not have a clear boundary between blooming flowers, and the object is difficult to see
because chrysanthemum leaves cover it. Figure 7h is a case where the direction of the flower
is distorted and covered by the chrysanthemum leaf, and it is an object shape that does not
exist in the training data. Figure 7i shows an example of incorrectly detecting ChrysanE
as ChrysanF. The detected object is a case where an error occurs because some flowers
are similar to the characteristics of ChrysanF. From the above results, the lack of training
data and inaccurate labeling are identified as problems when an object is not detected or
detected incorrectly. Therefore, performance improvement is expected if extensive training
data and accurate class classification are preceded.

The proposed network can classify the degree of flowering of chrysanthemums into
three categories: full bloom, early bloom, and budding, and it can provide flower farmers
with data to predict harvest time. From the consumer’s point of view, the blooming state
of the chrysanthemum differs according to the time and place of purchase. Therefore, in
flower farmers, the timing of cut flowers must be determined based on the flowering status
and other parameters, such as the storage period and remaining post-harvest conditions.
Therefore, the proposed network provides primary data for predicting the harvest time,
aiding flower farmers. In addition, the proposed network is faster than other deep learning
networks and it uses little memory, so the system device design is easy. These advantages
can be easily applied to large-scale flower farms or small-scale farms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Test results (blue: ChrysanF, Green: ChrysanE, yellow: ChrysanB). (a) Example 1 of accurate
detection; (b) Example 2 of accurate detection; (c) Example 3 of accurate detection; (d) Example 4
of accurate detection; (e) Example 5 of accurate over-predicting detection; (f) Example 6 of accurate
over-predicting detection; (g) Example 7 of missing detection; (h) Example 8 of missing detection;
(i) Example 9 of inaccurate detection.

5. Conclusions

In this study, we propose a lightweight YOLOv4-Tiny-based object detection system
with cBBox that classifies the flowering degree of chrysanthemums into three categories to
determine the harvest time of chrysanthemums accurately. Object recognition in agriculture
exploits a circular shape, such as a fruit or flower, and it is advantageous to recognize a
circular object in cBBox. The existing rBBox includes unnecessary background content in
addition to circular objects. This unnecessary background content interferes with training.
Therefore, when only a specific circular object needs to be detected, detection performance
is improved by using the cBBox suitable for the object. In addition, the number of learning
parameters is reduced, which is effective for the network learning time and optimization
performance. The proposed network showed high performance in the AP analysis com-
pared to general YOLO networks with rectangular bounding boxes. It can classify the



AgriEngineering 2023, 5 1542

degree of flowering of chrysanthemums into three categories: full bloom, early bloom, and
budding, and provide flower farmers with data to predict harvest time. In addition, the
proposed network has excellent scalability that can be applied to classify the degree of
blooming of chrysanthemum flowers and the field of recognizing circular objects.
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