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Abstract: Understanding the impact of climate on peanut growth is crucial, given the importance
of temperature in peanut to accumulate Growing Degree Days (GDD). Therefore, our study aimed
to compare data sourced from the NASA POWER platform with information from surface weather
stations to identify underlying climate variables associated with peanut maturity (PMI). Second, we
sought to devise alternative methods for calculating GDD in peanut fields without nearby weather
stations. We utilized four peanut production fields in the state of Georgia, USA, using the cultivar
Georgia-06G. Weather data from surface stations located near peanut fields were obtained from the
University of Georgia’s weather stations. Corresponding data from the NASA POWER platform
were downloaded by inputting the geographic coordinates of the weather stations. The climate
variables included maximum and minimum temperatures, average temperature, solar radiation,
surface pressure, relative humidity, and wind speed. We evaluated the platforms using Pearson
correlation (r) analysis (p < 0.05), linear regression analysis, assessing coefficient of determination
(R2), root mean square error (RMSE), and Willmott index (d), as well as principal component analysis.
Among the climate variables, maximum and minimum temperatures, average temperature, and
solar radiation showed the highest R2 values, along with low RMSE values. Conversely, wind speed
and relative humidity exhibited lower correlation values with errors higher than those of the other
variables. The grid size from the NASA POWER platform contributed to low model adjustments
since the grid’s extension is kilometric and can overlap areas. Despite this limitation, NASA POWER
proves to be a potential tool for PMI monitoring. It should be especially helpful for growers who do
not have surface weather stations near their farms.

Keywords: Arachis hypogaea L.; climate; weather data; peanut maturity (PMI); growing degree days

1. Introduction

Climate is extremely important in agricultural production, as a significant portion
of production depends on specific climate conditions. In addition to water, temperature,
relative humidity, solar radiation, and wind speed are factors that can affect production,
along with the incidence of pests and diseases and soil microbiology [1]. Investigating
climate change is necessary to adapt agricultural crop management, especially for plants in
which growth, development, grain quality, and yield respond more sensitively to climatic
variations [2].

Peanut (Arachis hypogaea L.) is among many crops that are affected by climate varia-
tions. Monitoring the climate has become of great importance to achieve gains in production.
Peanut is produced worldwide, particularly in China (36%), India (13%), Nigeria (9%),
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and the United States (USA; 5%), with the state of Georgia accounting for 44% of the USA
production [3].

Given the significance of peanut production, producers have increasingly utilized
technologies to aid in monitoring and decision-making for peanut cultivation. In the
USA, producers have employed the PeanutFarm (http://peanutfarm.org/ accessed on 2
February 2024) system to monitor peanut plant development. This system calculates the
accumulation of degree days from meteorological stations distributed in various regions [4].

Despite the system’s efficiency, a network of surface meteorological stations is nec-
essary to supply climate data. An alternative approach involves the use of surface me-
teorological stations in a national network [5], data series obtained from mathematical
models [6,7], and the use of orbital platforms.

Installing and monitoring meteorological stations is not easy, but it is necessary to
understand the climatic conditions. Nevertheless, to monitor these climatic conditions
and obtain accurate and precise values, an adequate number of meteorological stations
is needed. In most of the countries, the number of weather stations is adequate. The
World Meteorological Organization (WMO) recommends 6.3 stations per 100 km2 [5,8]. An
alternative for these countries is to use data from orbital platforms (satellites) with accurate
models to monitor climatic changes. For instance, the use of temperature, precipitation, and
relative humidity from the orbital platform is an alternative to creating evapotranspiration
models to improve irrigation management and agricultural practices [9–11].

Several countries have adopted NASA POWER for climate monitoring, providing
essential climatic information. The authors in [9] used the platform to estimate evapo-
transpiration in Lagunera, Mexico. In the semi-arid Mediterranean, the platform showed
satisfactory adjustments to estimate daily evapotranspiration and improve irrigation meth-
ods [10]. The authors in [11] evaluated the accuracy and precision of NASA POWER
climatic data in different climatic zones in Egypt, comparing it with surface weather sta-
tions. In Sicily, Italy, NASA POWER was used to estimate the reference evapotranspiration
and apply it in regions that did not have weather stations to understand the impact of
climate changes and improve agriculture [12].

One of the main orbital platforms for climate monitoring is NASA POWER, which
collects information on a 1◦ × 1◦ grid for solar radiation sources and a ½◦ × 5/8◦ grid for
climate data, enabling global climate monitoring. This tool has been applied to estimate
corn productivity [5], leaf area, and productivity in soybeans [13] and develop models for
identifying thermal stress [14].

Despite the use of grid data in various crops and for different purposes, there are no
reports using these data to estimate peanut pod maturity, a crucial factor in determining
grain productivity and quality. The maturation process of peanut pods depends on the
accumulation of degree days by plants, with high temperatures accelerating growth and
development, leading to faster maturation, while low temperatures can slow growth and
delay maturity and, consequently, harvest time [15]. Monitoring pod maturity is crucial
for farmers to improve their production and identify the optimum timing for inverting
the peanut plants. This monitoring can be done using an orbital platform, such as NASA
POWER, since the platform is online and publicly available.

However, there are limitations in using grid data. The data are collected using grids,
and the grids have low spatial resolution, thus resulting in a loss of quality and detail
richness. Errors in climate variable measurements can be encountered, such as precipitation
and wind speed [5,16], affecting data quality and leading to erroneous analyses. Neverthe-
less, working with orbital data-collection tools that are publicly accessible can improve the
understanding of climate changes and their effects on peanut cultivation and maturation,
eliminating the need for meteorological stations near production areas.

Based on this, studies are required to investigate the reliability of data obtained from
orbital platforms, as well as describe which variables are reliable for use in agriculture.
Therefore, the objective of this work was to verify the applicability of remotely obtained

http://peanutfarm.org/
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NASA POWER data to estimate peanut pod maturity and compare the data provided by
NASA POWER with data obtained from surface meteorological stations.

2. Materials and Methods
2.1. Study Location

The fields used to assess the relation between pod maturity and climate data are in
Georgia, USA. The region is classified as a subtropical humid climate (Cfa: temperate,
without dry season and hot summer) with annual precipitation of 1346 mm [17]. Four fields
were used (Figure 1) to evaluate the peanut maturity, with two fields being irrigated
(Magnolia 2018 and Docia 2019) with center pivot and the other two fields being rainfed
(Blaelock 2018 and Grand Canyon 2019). At each field, georeferenced points distanced
100 m apart were inserted, with 24 points (1 point/hectare) for Blaelock, Docia, and
Magnolia and 12 points (1 point/hectare) for Grand Canyon to collect maturity samples.
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Figure 1. Peanut field production across various counties in Georgia, USA. (A) Magnolia (Ducker);
(B) Blaelock (Coffee); (C) Docia (Tift); (D) Grand Canyon (Berrien). The red dots represent the location
of each field in Georgia, and the color in each field represents the buffer delimiting the regions
(polygons) of the collection of peanut to evaluate peanut pod maturity.

The fields were planted with the cultivar Georgia-06G, known for its dark green
foliage and intermediate growth habit (Runner), with a production cycle of approximately
140 days [18]. Row spacing was 0.90 m. Planting was 5 June 2018 for Magnolia, 9 May
2019 for Docia, 11 June 2018, and 27 April 2019 for Grand Canyon. Each field was in a
specific county: Magnolia in Ducker, Docia in Tift, Grand Canyon in Berrien, and Blaelock
in Coffee.

2.2. Peanut Pod Maturity Evaluation

Peanut pods were collected from each field on different dates (Table 1). A total of 8 to
13 plants were collected around the georeferenced point (2 to 5 m), aiming for 200 pods per
point (Figure 1). The collected plants were placed in a bag, identified, and transferred to
the laboratory to detach the pods from the plants.

Table 1. Plant collection dates in days after sowing (DAS) from the fields for peanut pod maturity
evaluation. Field counties are in parenthesis after each field name.

Fields DAS

Blaelock (Coffee) 96; 104; 109; 116; 128; 135
Grand Canyon (Berrien) 103; 109; 117; 124; 131; 138; 145

Docia (Tift) 115; 122; 129; 139
Magnolia (Ducker) 96; 107; 117; 126; 135
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Subsequently, the pods were pressure-washed, removing the exocarp and exposing the
mesocarp [15], and classified according to peanut board maturity [19], which was adopted
as the standard for evaluating maturity. The Peanut Maturity Index (PMI), ranging from 0
to 1, was obtained by summing up the brown and black columns of the maturation board
and then dividing it by the total number of classified pods. Values close to 1 indicate mature
pods, while values close to 0 indicate immature pods. However, under field conditions,
optimal PMI values ranging from 0.7 to 0.75 were adopted to minimize quantitative and
qualitative losses [15].

2.3. Climate Information

Meteorological stations located in Berrien (Alapaha), Tift (Tyty), Coffee (Douglas), and
Dougherty (Ducker) were selected for collecting climatic data. These stations were the
closest to the production fields described in Table 2.

Table 2. Distance (km) and elevation (m) of a surface weather station (SWS) of the production fields
(PC) used to evaluate peanut pod maturity.

SWS PC Distance (km) Elevation (m)

Berrien Grand Canyon 9.0 82
Tift Docia 10.5 113

Coffee Blaelock 14.0 68
Dougherty Magnolia 8.4 62

SWS—Surface weather stations; PC—production fields.

These stations near the collection fields for maturity assessment were selected to
compose the analyses. Therefore, it was possible to carry out a comparative study between
the climate variables predicted by NASA POWER and those observed by surface weather
stations. The University of Georgia (UGA) Tifton Campus provided spreadsheets with
weather data collected from the weather stations. However, due to the season collection
system, climate variables data from Table 3 were recorded every 15 min. As the NASA
POWER platform only provides daily data on climate variables, the data provided by the
surface weather stations at UGA have been converted into a daily scale by calculating the
average of the values of the climatic variables provided every 15 min. Thus, both stations
were standard on a daily scale. In addition, data from the full years of 2018 and 2019 for
the four weather stations were provided, creating the variables shown in Table 3.

Table 3. Agroclimatology variables obtained by fixed station and platform NASA POWER.

Climate Data Unit of Measurement

Wind speed 1 m/s
UR 2 %

Tmax 3 ◦C
Tmean 4 ◦C
Tmin 5 ◦C

SWN 6 (Qg) MJ m2 dia−1

PS 7 kPa
1 speed of view at 2 m high; 2 humidity relative to 2 m high; 3 maximum temperature at 2 m high; 4 average
temperature at 2 m tall; 5 minimum temperature at 2 m tall; 6 surface radiation incidences (solar radiation);
7 surface pressure.

On the NASA POWER platform (https://power.larc.nasa.gov/data-access-viewer/
accessed on 2 February 2024), the geographic coordinates of each surface weather station
were inserted to collect the weather information described in Table 3. The platform provides
daily information for each climate variable, with information being downloaded in CSV
format for the full years of 2018 and 2019 from the four weather stations (Alapaha, Tyty,
Douglas, and Ducker). The spatial resolution for the platform grid was 1◦ × 1◦, which

https://power.larc.nasa.gov/data-access-viewer/
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is approximately 12,347 km2 for sources of primary solar radiation, whereas for weather
data, regular grids of 0.5◦ × 0.625◦ of latitude/longitude, about 3850 km2, were applied.
The accuracy of the platform is adversely impacted by the use of large grids. For each
variable, the root mean square error (RMSE) varies between 2.10, 3.15, and 3.10 ◦C for
average, minimum, and maximum temperatures, respectively. Similarly, the RMSE values
for wind speed, relative humidity, and surface pressure are 2.17 m/s, 12.06%, 2.87 kPa, and
6–12%, respectively [16,20].

The air temperature estimate was made using the Goddard Earth Observing System
Global version 4 (GEOS-4), with an analysis interval of 3 h. Solar radiation data were
obtained using the NASA International Satellite Cloud Climatology Project (ISCCP), and
surface solar radiation was estimated using the ISCCP model [20,21].

With the collection of climate data from the two platforms, the comparison between
the two forms of collection (terrestrial and orbital) was carried out, which indicated whether
the NASA POWER data were accurate at estimating climate variables and consequently
should be used in the estimation of peanut maturity anywhere around the globe.

2.4. Statistical Analysis of the Two Platforms

Climate data from the two platforms were combined into a general model, which
considered the two years (2018 and 2019) of collection at all locations (Berrien, Coffee,
Dougherty, and Tift). The climatic data from the two collection platforms were combined
into a general model, which accounted for the two years (2018 and 2019). An additional
segmentation was performed based on location, i.e., Berrien, Coffee, Dougherty, and Tift.
This approach allowed for a specific analysis of each surface weather station throughout
the two years of collection.

Initially, the full dataset was inserted into the exploration analysis using the boxplot,
removing the values described as outliers by calculating the limits (inferior and superior).
The weather data were analyzed using Pearson’s correlation analysis (p < 0.05), and the
graphs (heat maps) were plotted using the Jupyter platform with Python language. In
addition to the correlation, linear regression analysis was performed for climate variables
that showed a correlation coefficient above 0.8. Coefficient values between 0.67 and 1.0 [22]
are generally considered to have a high correlation; however, for this study, the value of
0.8 was used to select the variables. For this analysis, the climatic variables of the surface
weather stations were considered to be the dependent variables, whereas the independent
variables were the variables provided by the NASA POWER platform. Exploratory anal-
ysis using boxplot and linear regression analysis was carried out using SAS© JMP pro
14 version 14.0.0 software, and regression graphs were created using Office Excel 2013
version 15.0.45 software. Subsequently, for the evaluation of the metrics of the models, the
accuracy measurement of the RMSE (Equation (1)) and the determination coefficient (R2)
(Equation (3)) were used as a measure of precision.

Additionally, the calculation of (d), the Willmott index of conformity (1981), described
in Equation (2), was carried out. The Willmott performance index (d) is a representation of
the degree of error of the models, ranging from 0.0 to 1.0, with values close to 1.0 indicating
a good match between the observed and predicted values [23].

RMSE =

√
∑n

i=1(yobs − yest)
2

n
(1)

d = 1 − ∑N
i=l

(
Yobsi

− Yesti )
2

∑N
i=l

(∣∣Yesti − Y
∣∣ + ∣∣Yobsi

− Y
∣∣) (2)

R2 =
∑N

i=l
(
Yesti − Y)2(

Yobsi − Y)2
(3)
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where RMSE is the square root of the average error, d is the Willmott concordance coefficient,
and R2 is the determination factor. yobs is the observed value, yest is the estimated value by
the model, and n is the number of data points. Y the average value of the estimated variable.

Following the linear regression analysis, it was possible to show whether the NASA
POWER platform is accurate and precise for estimating the climate variables found in
Table 3. The variables were inserted in the principal component analysis (PCA). Thus, the
dataset used was restricted to the periods of evaluation of maturity in the fields, and the
PCA was carried out for each field (Berrien, Dougherty, Tift, and Coffee) and the Global
model. Ultimately, the relationship between the PMI and climate variables can be identified,
and one can select those variables that show the best results. With the PCA, the variables
that best correlate with PMI can be selected, and the variables not showing a strong
relationship can be excluded. PCA reduces the dimensionality of data while retaining
as much information as possible. By transforming the data into principal components, it
becomes feasible to concentrate on the directions that encompass the highest variability,
therefore eliminating redundancies and emphasizing significant patterns. This technique
is particularly valuable when dealing with datasets featuring numerous variables, aiding
in the simplification of analysis and interpretation. The PCA was carried out using the
software R, version 2023.06.2, and the package “factoextra”, as shown in Figure 2.
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Figure 2. Evaluation steps for maturity classification and comparison between the NASA POWER
platform and surface weather stations.

3. Results and Discussion
3.1. Correlation Analysis

The lowest correlation coefficients between climate data-collection platforms were
found for wind speed (WS) and relative humidity (UR), 0.58 and 0.61 in the Global model,
respectively (Figure 3E). For surface pressure (PS), solar radiation (Qg), maximum tempera-
ture, minimum temperature, and mean temperature, coefficient values were higher than
0.84 for the Global model (Figure 3E). The weak correlations for the UR and WS variables
were due to interference in their localization, topography, and change in land use, which
can cause errors in measurements when using grid data [11,16]. On the other hand, despite
having a correlation value of 0.84, the PS perceived low reliability over weather stations in
other studies [9], which also assessed the efficiency of NASA POWER.
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When the correlation analysis was performed by location for Berrien, Coffee, and Tift
(Figure 3A,B,D), the coefficients for the variables UR, WS, and PS were higher. Among
these variables, WS changed from 0.59 in the global correlation (Figure 3E) to 0.85 and
0.89 for Coffee (Figure 3B) and Tift (Figure 3D), respectively. Although correlation values
for WS had improved for these locations, when these variables (UR, WS, and PS) were
analyzed individually in Dougherty (Figure 3C), the correlation values were lower. For
maximum, minimum, and average temperatures and solar radiation, all locations showed
similar results to the overall model.

The increase in the correlation coefficient can be attributed to the location conditions
of each surface weather station since, in the NASA POWER data collection, there was
no overlap of grids. Despite this, topography is one of the main factors affecting this
relationship. The greater the elevation, the greater the errors described by the NASA
POWER platform [12,24,25].

When the data were collectively analyzed to create a general model, the Pearson corre-
lation values among all climatic variables showed a decrease (Figure 3E), i.e., Dougherty
was the location that presented the lowest values for the Pearson correlation, with the
greatest difference between the two platforms. When the locations were combined (Global),
the correlation coefficient for the Global model decreased.

3.2. Regression Analysis

After conducting the correlation analysis, linear regression was performed using the
climate variables, excluding relative humidity due to its Pearson correlation values being
less than 0.8. The dependent variables (Y) were the surface weather station data, and the
independent variable (X) was the NASA POWER data. Linear regression analysis was used
to analyze the response of the variables and create a model to evaluate the precision (R²)
and accuracy (RMSE).

The linear regression analysis demonstrated that the precision values (R2) for variable
surface pressure (PS) were high for Berrien and Tift (Figure 4d,c), being R2 = 0.99 and
RMSE = 0.04 kPa for both locations. On the other hand, for the general model and the
individual model for Coffee (Figure 4a,b), RMSE values were 0.25 and 0.18 kPa, and R2

were 0.71 and 0.86, respectively. The results for Dougherty (Figure 4e) showed the largest
variations between platforms for PS, which resulted in low R2 (0.30) and high RMSE
(0.36 kPa). In addition, the Willmott performance index (d) showed no variation in any of
the analyses and local data for surface pressure.

Surface pressure was related to the displacement of water in the soil, causing the
process of absorption of water and nutrients by the roots of plants. In addition, surface
pressure is related to site topography, with regions with higher elevations showing lower
PS, while higher PS values were observed for regions with lower elevations [25].

The WS had the highest variations in accuracy and precision levels in different loca-
tions. Dougherty (Figure 5e) was the county that showed the lowest adjustments of R2

(0.09) and high RMSE (0.62 m/s), followed by the overall model (Figure 5a) with R2 and
RMSE values of 0.34 and 0.65 m/s, respectively. When there was separation by counties,
the linear regression models for Berrien, Coffee, and Tift (Figure 5d,b,c) showed a greater
adjustment of R2, ranging from 0.59 to 0.79, and lower RMSE, from 0.36 to 0.42 m s−1.
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Figure 4. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for surface pressure (PS). (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.
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Figure 5. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for Wind speed (WS). (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.

Despite the variations observed in the R2 and RMSE values for the different models,
in comparative studies between the NASA POWER platform and the national network
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stations in Brazil, R2 values ranging from 0.09 to 0.16 and RMSE from 0.93 to 1.82 m s−1

were observed [5]. As reported by [9], models had RMSE values ranging from 0.92 to
1.63 m s−1 and R2 between 0.19 to 0.52, which were close to the variations observed in
this study. In addition, for most locations, the data points shown in Figure 5a–e are more
concentrated around 1.2 to 3.2 m s−1, being more dispersed outside this range.

The variability observed in the measurement of wind speed (WS) is associated with
how these data are captured by the sensor and calculated through mathematical models.
The mathematical models used in the NASA POWER platform are the Modern-Era Retro-
spective Analysis for Research and Applications 2 (MERRA-2), which calculates the speed
and direction of the wind, and the results are compared with NASA’s weather stations,
with RMSE values of up to 2.47 m s−1 [20].

In agriculture, wind speed is an important factor for crop evaporation. In defining
the planting window for peanut crops, plantings occurring in mid-May showed greater
evapotranspiration values that increased leaf area [26]. This fact, which coincides with the
season of the highest wind speed values (Figure S2), was recorded in the spring season at
the beginning of sowing in Georgia, USA.

All models for daily solar radiation (Qg) showed R2 adjustments above 0.94. Higher R2

and lower RMSE values were observed for the general model and Berrien (Figure 6a,d). In
Tift, the best adjustments for Qg were observed with R2 = 0.97 and RMSE = 1.12 MJ m2/day
(Figure 6c). The variation in RMSE values was 0.48 MJ m2/day between the highest
(Figure 6a) and the lowest (Figure 6c) values observed, and there were no variations for any
model in the Willmott performance index values (d = 0.99). The errors found in this study
can be considered to be low since the error values for Qg estimated by NASA POWER
range from 2.73 to 3.41 MJ m2/day [5,9].
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Figure 6. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for Solar radiation (Qg). (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.

Solar radiation is a parameter dependent on weather conditions, and the presence of
clouds makes its analysis process more challenging, leading to errors [5] and, therefore,
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decreasing accuracy and precision. However, the models showed satisfactory values of
accuracy and precision, even when data from all sites from the two years (Global) and when
separated by location were used, demonstrating the platform’s precision in estimating Qg
at any time of the year. For the calculation of solar radiation, the mathematical model
Global Energy and Water Exchanges (GEWEX) used by the NASA POWER platform
features more satellites that capture information about cloud coverage, as well as other
satellites to provide the temperature and gas data in the atmosphere. These satellites
provide information to the radiative transfer models for the correction of the effects of these
constituents on the estimation of solar radiation [20].

Furthermore, Qg is a temperature-dependent parameter that can influence both air
and soil humidity. The seasons with the highest mean temperature and relative humidity
(see Supplementary Materials)—spring and summer—recorded the highest Qg values. This
period of elevated Qg corresponds to the peanut-growing season in Georgia. Therefore, late-
summer seedings outside the optimal planting window may result in reduced productivity
due to changes in climate conditions, particularly in temperature and solar radiation. The
decrease in solar radiation and temperature decreases leaf photosynthetic rates, leading to
a reduction in plant growth, biomass accumulation, and decreased productivity [26].

For maximum temperature, the observed R2 values ranged from 0.95 for the general
model, Coffee and Tift (Figure 7a–c) to 0.96 for Berrien and Dougherty (Figure 7d,e). The
lowest RMSE values were 1.53 ◦C for Berrien (Figure 7d), and the highest of 1.63 ◦C
(Figure 7e) was for Dougherty, with a variation of 0.1 ◦C between maximum and minimum
RMSE observed in these two locations. The Willmott performance index (d) was 0.99,
showing no significant difference for any of the tested models and for maximum, mean,
and minimum temperatures.
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Figure 7. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for maximum temperature. (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.

Both data-collection platforms recorded negative values for the minimum temperature
variable. Despite this, satisfactory adjustments were obtained from the models described by
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the precision values (R2) of 0.96 for the general model, Coffee and Dougherty (Figure 8a,b,e),
0.97 for Tift (Figure 8c), and 0.94 for Berrien (Figure 8d). With regard to accuracy, Tift was
the region with the lowest values of 1.24 ◦C (RMSE), whereas Berrien was the one with the
highest levels of 1.84 ◦C (Figure 8c,d).
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Figure 8. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for minimum temperature. (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.

The linear regression models exhibited the least adjustments for average air tempera-
ture. In the general model, Coffee and Dougherty (Figure 9a,b,e) demonstrated an accuracy
value of R2 = 0.91, while Tift exhibited an R2 = 0.93 (Figure 9c). Conversely, Berrien (Figure 9d)
displayed the lowest R2 = 0.89. The RMSE varied from 2.44 ◦C for Tift (Figure 9c) to 3.43 ◦C
for Berrien (Figure 9d).

For maximum and minimum air temperatures, low variations in the data distribution
in the regression line were recorded, resulting in satisfactory adjustments for the linear re-
gression models. On the other hand, for the average air temperature, data points were more
scattered from the adjustment line of the linear regression model. Such data dispersion can
be attributed to the way data are collected from the two platforms. Although one platform
recorded a positive value, the other platform recorded a negative value for the same date,
affecting the fit of the models and, consequently, the parameters of accuracy (RMSE) and
precision (R2). The dispersion error persists due to the computational approach of the
NASA POWER platform models. Given that the data are presented in grids (0.5◦ × 0.625◦)
by the MERRA-2 model, the substantial extent of the grid, exceeding 50 km, may introduce
errors in calculations. This discrepancy is particularly notable in locations where weather
conditions diverge from those observed by nearby field weather stations. Unlike weather
stations, which gather more precise information from specific locations, the grid-based
approach may aggregate diverse conditions, contributing to inaccuracies.
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Figure 9. Linear regression analysis between NASA POWER (NP) and weather stations (WS) and
metrics to evaluate the performance: determination coefficient (R2), Root Mean Square Error (RMSE),
and Willmott performance index (d) for mean temperature. (a) General model; (b) Model for the
Coffee region; (c) Model for the Tift region; (d) Model for the Berrien region; and (e) Model for the
Dougherty region.

In studies with the NASA POWER platform and surface ground stations, R2 values
ranging from 0.84 to 0.95 and RMSE from 1.29 ◦C to 3.67 ◦C for maximum, minimum, and
average air temperature were observed [9].

In different scenarios, while working with a network of stations in Brazil, the RMSE
can range from 2.64 ◦C to 2.83 ◦C, with corresponding R2 values varying between 0.68 and
0.65 for mean temperature [5]. Similarly, for maximum temperature, the R² values range
from 0.08 to 0.63, and for minimum temperature, they vary from 0.08 to 0.85 [27]. On the
other hand, the NASA POWER program reported that errors (RMSE) of 2.10 ◦C were found
in models (MERRA-2) when estimating average air temperature [20,21]. Conversely, in this
study, great adjustments were observed for the models, described by high values of R2 and
low RMSE for maximum and minimum air temperatures. The topographic conditions and
soil usage are crucial factors for characterizing the climate of a site. In Georgia, varying
temperature ranges have been recorded, influenced by the region within the state. For
northern regions near Tennessee, temperature ranged from 3.0 to 5.9 ◦C in January, while
in the southern regions near Florida, temperature variations were from 8.0 to 14.9 ◦C for
the same month of the year [28,29].

Determining the optimal sowing timing for crops is crucial to securing favorable
climate conditions for cultivation. Depending on the seeding season, temperature signifi-
cantly impacts dry-matter production, leaf growth, and peanut germination. However, the
rapid initial growth, influenced by the elevated temperatures in June (27 and 33 ◦C), plays
a significant role in plant-stand establishment and, consequently, production [30].

The peanut plant is substantially impacted by temperature, which can affect both
the maturing process and the overall quality of harvested pods. This becomes apparent
when employing agrometeorological indices, such as accumulated degrees days (AGD), for
evaluating PMI. This index has already been used in various studies since the responses
observed between maturity and AGD are satisfactory [4,15,31]. For the calculation, in
addition to maximum and minimum air temperatures, the base temperature of 13.5 ◦C for



AgriEngineering 2024, 6 451

peanuts is required [26,30]. Another important aspect is that temperature can also influence
other climate variables, therefore altering how the crop is managed.

Temperature is an important factor from a climate point of view, and climate vari-
ables such as relative humidity and solar radiation are influenced by their changes. In
the management of agricultural crops, these climate variables collaborate to obtain high
productivity. However, for the monitoring of weather conditions, grid platforms such
as NASA POWER are low-cost and feasible tools that can be applied to the analysis of
local weather conditions. Such platforms show similar results when compared to surface
weather stations, mainly for the variables of surface pressure, maximum, minimum, and
average air temperature, and solar radiation (Figures 4–9).

3.3. Principal Component Analysis (PCA)

Climate data are relevant from an agronomic point of view, as they can interfere with
the productivity of agricultural crops. However, to assess the climatological variables that
are most related to maturity in peanut, the principal component analysis (PCA) shown
in Figure 10 was performed. In the PCA analysis, the variables surface pressure, relative
humidity, maximum, minimum, and average temperatures, as well as wind speed and solar
radiation, were included, and the relationship of climate variables with maturity (PMI)
could be observed.
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Figure 10. Principal Component Analysis (PCA) for each region and Global model. (A) represents
the PCA of the general model; (B) represents the Coffee region PCA; (C) represents the Tift region
PCA; (D) represents the Berrien region; and (E) represents the Dougherty region. PS: surface pressure;
WS: wind speed; UR: relative humidity; QG: solar radiation; Tmax: maximum temperature; Tmin:
minimum temperature; Tmean: average temperature.

The general model (Figure 10A), considering the two PCA components, accounted
for 71.8% of the data variability. For the analysis by region, the sum of components
1 and 2 accounted for 82%, 87,1%, 87.7%, and 88.2% of the overall data variability for
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Berrien (Figure 10D), Coffee (Figure 10B), Dougherty (Figure 10E), and Tift (Figure 10C),
respectively. These results demonstrated an increase in PCA’s ability to respond to data
variability. Furthermore, it was observed that Tmin, Tmax, Tmean, and Qg follow an
opposite trend than PMI, demonstrating that such climate variables affect PMI values, i.e.,
as temperature or solar radiation increase, PMI value decreases, consequently decreasing
the productivity and quality of harvested pods.

Thus, the definition of the growing season is an essential factor for the development
of peanut plants. The sowing window for peanuts begins around 10 April and lasts until
the beginning of July. In this seeding season, the ideal climatic conditions for peanut are
found, with the optimal temperature for growth being 27.5 ◦C, which can vary from 29 ◦C
to 33 ◦C [31]. These variables that may interfere with the development of peanut plants can
be estimated (maximum, minimum, average air temperatures, and solar radiation) using
the NASA POWER platform (Figures 6–9) with high accuracy and precision. However, it
should be observed whether peanut-growing areas do not overlap due to the low spatial
resolution of 0.5◦ × 0.625◦ of latitude and longitude (approximately 55.6 × 69.4 km)
for meteorological data and 1◦ × 1◦ of latitude and longitude for solar radiation data
(approximately 111 × 111 km) of grid data.

4. Conclusions

In conclusion, this study has successfully demonstrated the viability of utilizing
NASA POWER data for monitoring climatic conditions, showcasing strong correlations
between maximum, minimum, and average air temperatures, as well as solar radiation
when compared to surface weather stations. Notably, these variables exhibited significant
relationships with peanut pod maturity, as highlighted in the PCA analysis.

Despite the promising results, certain limitations were identified, particularly for wind
speed, which displayed challenges in achieving accurate and precise adjustments in linear
regression models. This discrepancy can be attributed to the difference in measurement
heights between NASA POWER (50 m) and weather stations (2 m), impacting the overall
fit, especially in the Dougherty region.

However, the NASA POWER platform emerges as a valuable tool for climatic monitor-
ing. Farmers can leverage this platform to gain insights into crop behavior across diverse
climates. The broader application extends to areas without surface weather stations, en-
abling accurate monitoring and providing a useful tool for understanding climatic changes.

Although the platform proves instrumental, it is essential to acknowledge its limita-
tions, such as low spatial resolution with grids larger than 50 km for weather data and more
than 100 km for solar radiation. This may introduce restrictions and potential interference
in data analysis. For instance, relative humidity showed a correlation below 0.8 when
compared to surface weather stations, suggesting caution in its interpretation, especially in
regions with monitoring stations reporting errors.

In terms of innovation, this work proposes a groundbreaking approach to monitor-
ing climatic conditions on farms using publicly accessible orbital platforms. The NASA
POWER platform stands out as an excellent resource, empowering farmers in peanut
fields to calculate indices and effectively monitor climate parameters. Moreover, regions
lacking surface weather stations can rely on the orbital platform to access crucial climatic
information, contributing to more informed agricultural practices and climate monitoring
on a broader scale.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agriengineering6010027/s1. Display of boxplot graphs illustrating
the variability throughout the seasons of the year between the NASA POWER platform and surface
weather stations.

https://www.mdpi.com/article/10.3390/agriengineering6010027/s1
https://www.mdpi.com/article/10.3390/agriengineering6010027/s1
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