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Abstract: In the context of plant factories relying on artificial light sources, energy consumption stands
out as a significant cost factor. Implementing early seedling removal and replacement operations
has the potential to enhance the yield per unit area and the per-energy consumption. Nevertheless,
conventional transplanting machines are limited to handling older seedlings with well-established
roots. This study addresses these constraints by introducing a transplanting workstation based on
the UR5 industrial robot tailored to early plug tray seedlings in plant factories. A diagonal oblique
insertion end effector was employed, ensuring stable grasping even in loose substrate conditions.
Robotic vision technology was utilized for the recognition of nongerminating holes and inferior
seedlings. The integrated robotic system seamlessly managed the entire process of removing and
replanting the plug tray seedlings. The experimental findings revealed that the diagonal oblique-
insertion end effector achieved a cleaning rate exceeding 65% for substrates with a moisture content
exceeding 70%. Moreover, the threshold-segmentation-based method for identifying empty holes
and inferior seedlings demonstrated a recognition accuracy surpassing 97.68%. The success rate for
removal and replanting in transplanting process reached an impressive 95%. This transplanting robot
system serves as a reference for the transplantation of early seedlings with loose substrate in plant
factories, holding significant implications for improving yield in plant factory settings.

Keywords: plant factory; end effector; transplanting robot; robotic vision

1. Introduction

The plant factory is an advanced form of protected agriculture [1] that allows for
control over climatic factors such as light, carbon dioxide levels, temperature, and hu-
midity, creating optimal conditions for plant growth [2,3]. This form of agriculture offers
advantages such as high yield, superior quality, continuous production, efficient resource
utilization, and reduced susceptibility to environmental fluctuations [4–6], allowing it to
produce more products in less space [7]. Plug tray seedling technology is extensively
employed in plant factories, primarily due to its high germination rates, uniform growth,
seed-saving benefits, and compatibility with mechanized operations [8]. However, the
development of plant factories is constrained by drawbacks such as high energy consump-
tion [9,10], high per-unit area costs [11], and limited space, which is not conducive to the
installation of large-scale automated equipment [10]. Moreover, the suboptimal quality of
the seeds, imprecise seeding within the plug trays, unfavorable temperature and humidity
conditions, and insufficient nutritional provision, along with the presence of plant diseases
and pests, collectively contribute to a suboptimal germination rate ranging between 80%
and 95% [12,13] for seedlings cultivated in plug trays [14] and subsequently lead to yield
losses in both the per-unit energy consumption and per-unit area. This, in turn, exacerbates
the operational costs of plant factories.

AgriEngineering 2024, 6, 678–697. https://doi.org/10.3390/agriengineering6010040 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering6010040
https://doi.org/10.3390/agriengineering6010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0002-6814-7477
https://doi.org/10.3390/agriengineering6010040
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering6010040?type=check_update&version=1


AgriEngineering 2024, 6 679

To achieve the operations of removing and replanting seedlings, researchers have
developed various forms of end effectors, mainly including the plug-in and clamping
type [15–17], oblique insertion type [18–21], and deformed sliding needle type [22,23].
The current end effectors have found wide applications in transplanting seedlings at
relatively advanced growth stages. This is due to the fact that mature seedlings pos-
sess well-established root systems, ensuring effective substrate cohesion [24]. However,
early-stage seedlings, characterized by underdeveloped root systems and loose substrate,
especially for nongerminating holes, have no root system to consolidate the substrate,
presenting challenges in effective grasping. The existing end effectors used in transplanting
machines are primarily designed for well-developed root systems and compacted sub-
strate blocks [21,25–27] in greenhouses, so they may not be suitable for handling younger
seedlings grown in loose substrate in plant factories.

In the domain of inferior seedling identification, researchers have undertaken extensive
investigations. Tong [28,29] employed the watershed segmentation algorithm to partition
leaves and subsequently computed the area and perimeter of individual leaves within tray
seedlings. Xu [13] designed a visual system for the early differentiation of underdeveloped
watermelon seedlings, utilizing phenotype detection and machine learning. This system
relied on two early characteristics, seedling height and leaf area, to evaluate their growth
status, resulting in an 84% discrimination accuracy. Wen [30] proposed a combination of
threshold segmentation and morphology algorithms for image segmentation. These studies
only introduce the recognition methods but fail to provide detailed information on how to
convert recognition results into robot motion control coordinates.

In plant factories, unfit seedlings consume expensive LED light sources and occupy
limited planting space, which is a great waste. The removal and replanting of unfit seedlings
at the early stage represent a pivotal opportunity to optimize the utilization of energy and
planting space. This approach translates into a noteworthy increase in the production
per unit area and per-unit energy consumption, ranging from 5% to 20%. Moreover, the
large size of automated equipment, exemplified by the transplanters commonly utilized in
greenhouses, poses a challenge in terms of the limited space within plant factories. Given
the scarcity of planting space in plant factories and the resultant spatial constraints on
the installation of large automated equipment, there arises a need for the development
of transplanters tailored to plant factory environments. Such smart transplanters would
not only enhance the automation rates but also serve to replace manual labor, thereby
contributing to a reduction in labor costs.

As mentioned above, the existing end effectors, the identification and positioning
of underdeveloped seedlings, and the overall dimensions of the transplanting machines
used in greenhouses are not well suited to plant factory environments. This article aims to
solve the above problems and develop a prototype of an entire transplanting robot system
suitable for a plant factory.

In this article, a diagonal oblique insertion type end effector was designed to achieve a
stable grasp on loose substrate. At the same time, a prototype transplant robot containing
the end effector was also designed. Robotic vision technology was utilized for the recogni-
tion of empty holes and inferior seedlings. This method was also integrated into the robot
system. The performance and efficiency of the proposed robotic transplanting system for
plug tray seedlings were evaluated using extensive experiments.

The remainder of this paper is organized as follows: Section 2 introduces the materials
we used and the method we proposed in detail. The experimental results are reported in
Section 3. In Section 4, we provide a detailed discussion of this transplanting robot and
point out the problems to be solved in further study. Finally, Section 5 concludes the paper.
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2. Materials and Methods
2.1. Materials
2.1.1. Robot System Setup

1. Structural composition

The robot transplanting system consists of a UR5 robot, end effector, camera, computer,
air compressor, and other components, as shown in Figure 1e. The camera model is Logi-
C270 (Logitech Corporation, Taiwan, China). The 6 DoF (degree of freedom) cooperative
robotic arm UR5 (Universal Robots, Odense, Denmark) with a diagonal oblique-insertion
end effector is applied for grasping and replanting the plug tray seedlings. The partial
parameters of the primary devices adopted in this research are listed in Table 1 in detail,
including the camera and the robot.
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Figure 1. The robotic plug tray seedling transplanting system developed in this study: (a) The safe
region of the UR5 robot workspace (areas marked by the red arrows indicate high forces region of
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the robot), (b) relative installation positions of the robot, camera, end effector, and plug trays, (c) the
cylinder control circuit diagram, (d) pneumatic control schematic diagram, (e) structure design, and
(f) prototype, including RGB camera, robot manipulator, gripper, control system, and so on.

Table 1. The partial parameters of the main devices (camera and robot manipulator) adopted in
this research.

Camera Robot Manipulator

Feature Parameter Unit Feature Parameter Unit

Model Logi-C270 - Model UR5 -
Type RGB camera - DoF 6 -

Resolution 720 P/30 fps - Work range 850 mm
FoV 60 ◦ Weight 18.4 kg

Sensor CMOS - Load (kg) 5 kg
Interface USB2.0 - Pose Repeatability ±0.1 mm

2. Analysis of robot workspace

The workspace of the robot extends 850 mm from the base joint. However, as the
robot stretches out, the knee-joint effect can give high forces in the radial direction (away
from the base) but also low speeds. Similarly, the short leverage arm, when the tool is close
to the base and moving tangentially (around) the base, can cause high forces, but also at
low speeds. Therefore, when robots move in these areas of the workspace, as shown in
Figure 1a, there is a risk of pinch injuries. To ensure personnel safety, these two areas should
be avoided when setting up the plug trays. In the production of protected agriculture,
72-hole plug trays are widely used [30–33], and research has shown that the 72-hole plug
tray is more conducive to cultivating high-quality tomato seedlings while reducing seedling
cultivation energy consumption [34]. Therefore, the 72-hole plug tray was chosen as the
seedling cultivation tray. The plug tray consists of 12 rows and 6 columns, with an external
size of 540 mm × 280 mm, made of PVC. The distance between the plug trays and the
robot base was 205 mm so that the end effector could reach all positions of the supply and
target plug trays in a more suitable posture, and the robot was always in the safe working
area (the green region shown in Figure 1a) during movement. The “Eye on Arm” method
for camera installation was adopted, which ensures that the camera position is always
unaffected when the system position changes. We set the shooting position to 650 mm
directly above the target plug tray so that the camera could capture the complete plug tray.
The positions of the plug tray and the camera for image acquisition are shown in Figure 1b.

3. End effector control

The gripper lifting cylinder and the seedling grabbing cylinder are actuated by two
single-acting solenoid valves. These solenoid valves are connected to the digital output
points 1 and 2 of the UR5 robot controller. This configuration eliminates the need for an
additional controller to regulate the movements of the cylinders, as shown in Figure 1c.
The two cylinders of the end effector are controlled by the solenoid valves KA1 and KA2.
The air circuit connection diagram of the end effector is shown in Figure 1d, by sending the
“set_digital_out (1 or 2, True)” command to the robot to activate the solenoid valves KA1
and KA2. Conversely, we reset the solenoid valves by sending the “set_ digital_out (1 or 2,
False)” command. Using a wireless router, we established a wireless connection between
the robot and the computer.

4. Control system

All the framework for robotic control was run and tested on the MECHREVO X8Ti-A
computer (MECHREVO Corporation, Beijing, China) with AMD R7 4800 CPU, NVIDIA
GeForce RTX 2060 GPU, 16 GB memory (DDR4-3200 MHz), and 512 GB hard disk. All the
control software was run on a Windows 10 64-bit operating system. The RGB camera was
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connected to the computer. The wireless data transmission between the robot and the com-
puter was achieved through socket technology based on the TCP/IP protocol. This wireless
control of the robot facilitated convenient debugging and experimentation processes.

Based on the devices and parameters mentioned above, a robotic plug tray seedling
transplanting system was set up for image acquisition and system integration. The system
model is shown in Figure 1e. Moreover, we also made a prototype of the transplanting
robot, as shown in Figure 1f.

2.1.2. Design of End Effector

In order to ensure that the end effector can grasp as much substrate as possible, a
diagonal oblique-insertion-type end effector was designed. Moreover, this gripper structure
enables seedlings to grasp from diagonal corners of square holes, keeping the gripper
furthest away from the seedling positioned at the center of the hole during planting. This
design effectively minimizes the risk of damaging the seedling leaves with the gripper. The
external contour of the gripper matches the inner wall of the tray’s hole, and the dimensions
of the hole are shown in Figure 2a, with a height of 40 mm. When designing the gripper, a
portion of 10 mm was cut from the diagonal of the hole using the hole model without the
bottom, dividing the hole into two parts, which served as the initial contours of the two
grippers. Then, the upper mounting components were designed to complete the design of
the shovel-shaped gripper, as shown in Figure 2b. By appropriately trimming the contour
of the shovel-shaped gripper, a fork-shaped gripper can be obtained, as shown in Figure 2c.
In subsequent studies, the grasping performance of these two structural grippers will be
compared. The end effector consists mainly of a vertical lifting cylinder, gripper cylinder,
lifting guide rail, chute plate, mounting plate, ripper guide rail, gripper, push rod, etc., as
shown in Figure 2d. By combining a guide groove plate with a guide rail slider mechanism
at a certain angle, the lifting motion of the cylinder was converted into a diagonal insertion
motion of the gripper, and the substrate was clamped diagonally from the hole.
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Figure 2. (a) The dimensions of the hole, two types of gripper: (b) shovel-type, (c) fork-type, and
(d) structure of diagonal oblique-insertion-type end effector.

The end effector transplanting the plug seedlings is as follows: First, the end effector
moves to a position above the target hole of the supply tray, as shown in Figure 3a. Second,
the lifting cylinder pushes the gripper down, making the lower end of the gripper close to
the surface of the substrate, as shown in Figure 3b. Again, the piston rod of the gripper
cylinder extends, pushing the gripper to tilt downwards along the diagonal edge of the
hole to insert into the plug seedling substrate at a certain depth, as shown in Figure 3c.
Then, the lifting cylinder retracts and drives the gripper to rise, removing the seedling with
substrate from the hole, as shown in Figure 3d. In this way, the end effector completes the
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task of grasping the seedling, and the process of planting the seedling is opposite to the
grasping process, as shown in Figure 3e–h.
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Figure 3. Working principle diagram of end-effector, grasping: (a) approaching, (b) lowering,
(c) insertion, (d) lifting, planting: (e) approaching, (f) lowering, (g) releasing, (h) lifting.

The hole shape of the plug tray is an inverted pyramid. To achieve the insertion of
the gripper along the hole wall of the plug tray, the angle of the guide rail is required to
be consistent with the angle of the hole wall, and when the gripper cylinder moves from
the top dead center to the bottom dead center, the gripper should move just above the
hole to the bottom of the hole, as shown in Figure 4a. To achieve such a motion effect, it is
necessary to calculate the inclination angle of the guide groove plate. The motion analysis
of the gripper is shown in Figure 4b. When the piston rod of the gripper cylinder moves
from A1 to A2, the gripper moves from B1 to B2, and there is the following relationship:

h1 + h4 = h0 + h2
L3 = L1 − L2
h1 = L1tan α
h2 = L2tan β
L3 = h4cot β

(1)

By solving the system of equation group 1, we can determine that

α = tan−1(((h0 − h4)tan β)/h4) (2)

In these formulas, h0 = 60, represents the cylinder stroke, h4 = 40, represents the
lifting distance of the gripper, and β = 70.71◦, which is the inclination angle of the hole
wall (guide rail inclination angle). Substituting h0, h4, and β into the above equation
yields α = 55◦. A statistical analysis of the seedlings’ height with the age under 15 days
determined that the plant height was less than 80 mm. Therefore, the stroke of the lifting
cylinder was set to 100 mm to ensure that the gripper would not damage the seedlings
during its movement.
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2.1.3. Seedlings for Experiment

In this study, the target crop for the transplanting operation is the Big Red Cooperation
903 tomato (Shanghai Hongqiao Tianlong Seed Industry Co., Ltd., Shanghai, China, variety
registration number: GPD Tomato (2018) 310450) seedlings. The substrate was prepared by
mixing mud carbon and perlite in a volume ratio 3:1, and then a tiny amount of water was
sprayed to moisten the substrate. After the substrate was loaded, we used a hole-pressing
template to press circular sowing holes with a diameter of 1.0 cm to 1.5 cm and a depth of
about 1.0 cm to 1.5 cm on each plug, then planted tomato seeds in the hole. The seeds were
covered with vermiculite on the surface.

By recording the daily growth of tomato seedlings, it can be observed that when the
seedlings reached the 8th day of growth, the cotyledons had flattened, allowing for the
identification of inferior seedlings based on leaf size. On the 8th day, the true leaves began
to emerge, and the seedling leaves had reached the edge of the cells. On the 9th day, true
leaves had visibly grown, and there was minimal leaf overlap between adjacent seedlings,
which does not significantly affect the recognition of inferior seedlings. On the 11th day,
most seedling leaves had extended beyond the cell boundaries, causing mutual overlap
and instances where leaves obstructed inferior seedlings or empty cells, leading to potential
recognition errors. Additionally, older seedlings have larger leaves, making them more
susceptible to damage when grasped by the transplanting machine, potentially affecting
their growth. Therefore, it is determined that seedlings aged 8–10 days are the most suitable
for transplanting. Subsequent transplanting experiments in this study exclusively used
seedlings within this age range.

2.2. Methods
2.2.1. Grasping Test Method

The gripping action on the substrate is a process involving the interaction between
the gripper and the substrate. Within this process, the gripper’s structural form and the
substrate’s moisture content emerge as pivotal factors influencing the gripping effectiveness.
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The design of the gripper structure determines how it engages with the substrate, while the
moisture content of the substrate impacts the intermolecular forces within the substrate.
Therefore, this study aims to assess the influence of these two variables, gripper structure
and substrate moisture content, on the gripping performance.

According to the designed 3D model, we manufactured a prototype of the end effector.
The shovel-type and fork-type grippers were fabricated using metal 3D printing technology,
and the material was 316 L stainless steel. The temperature in the testing environment
was maintained at 20–26 ◦C, with a humidity range of 800–1200 ppm. The air pressure of
the cylinders was set at 0.45 MPa. Two types of grippers, shovel-type and fork-type, were
used in the experiment. The grasping speed was set at 0.4 m/s, and the lifting speed was
0.2 m/s. The experimental parameters are shown in Table 2.

Table 2. Experimental parameters.

Feature Parameter Unit

Nursery temperature 20–26 ◦C
Nursery humidity 800–1200 ppm

Air pressure of cylinders 0.45 MPa
Grasping speed 0.4 m/s

Lifting speed 0.2 m/s
Drying temperature 80 ◦C

The process of the grasping test is shown in Figure 5, including seedlings planting,
substrate grasping test, wet substrate weighing, substrate drying, and dry substrate weigh-
ing. The plug tray and container were numbered. We measured the weight of the cup, the
weight of the substrate grabbed by the gripper, the sum of the weights of the gripper and
residual substrate, and the total weight of the substrate (including the grabbed substrate,
residual substrate, and scattered substrate), and denoted them as m0, m1 m2, and m3, re-
spectively. Then, we placed the substrate into an oven to dry. After drying the substrate,
we measured its dry weight m4. The moisture content was calculated according to the
following formula:

mc = (m3 − m0)/(m4 − m0)× 100% (3)
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We used Mg to represent the percentage of the substrate grabbing, and then the
substrate capture percentage could be calculated based on this formula:

Mg = (m1 − m0)/(m3 − m0)× 100% (4)
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2.2.2. Visual Recognition Method

Our study focuses on the early-stage tray seedlings planted in plant factories, where
the seedlings typically have 2–3 leaves, the leaf area is relatively small, and there is minimal
leaf overlap during this stage. This characteristic makes leaf segmentation achievable
through conventional computer vision methods. The traditional computer vision approach
is effective in achieving good recognition results and cost-effective, making it conducive to
the widespread adoption and application of the equipment. Hence, we opted for traditional
computer vision methods to recognize the undesirable seedlings in this study.

The complete process of inferior seedling identification includes image preprocessing,
grayscale processing, threshold segmentation, pixel value analysis, and result output. The
complete image processing algorithm flowchart is shown in Figure 6.

• Image preprocessing: Firstly, the rembg algorithm, an open-source tool available on
GitHub, was employed for background removal in the seedling tray images. This
algorithm, built upon the u2net deep learning model, exhibits rapid and precise back-
ground elimination capabilities. Compared to the original image in Figure 7a, the
image without background using the rembg algorithm has less noise, as shown in
Figure 7b. Due to discrepancies in the camera’s installation position and angle, image
skewness was observed. To mitigate the impact of image skewness on recognition
accuracy, a perspective transformation was applied to rectify the images. We superim-
posed a grid on both the original and the corrected images, with grid cells matching
the size of the holes, as shown in Figure 7c,d. It became evident that the corrected
image aligned better with the grid, indicating improved alignment and accuracy.

• Grayscale processing: Two grayscale algorithms were compared for image process-
ing. The first one utilizes the grayscale algorithm provided by OpenCV with the
formula 0.114 ×b + 0.587 × g + 0.299 × r. The second one is the Excess green (ExG)
algorithm with the formula: 2 ×g − b − r. The processed images and grayscale
histogram images are shown in Figure 8a–d. By comparing the results of these two
methods (Figure 8a and 8b), it is evident that the ExG algorithm effectively reduces
the prominence of the tray and substrate in the image and provides better extraction
of green leaves. The pixel-value histograms of the images processed by the ExG
algorithm (Figure 8c) show more significant differentiation than the grayscale algo-
rithm provided by OpenCV (Figure 8d), which is more favorable for subsequent leaf
segmentation processes.

• Threshold segmentation: Gaussian filtering was applied to the grayscale image to
reduce noise. Subsequently, we used both adaptive threshold and Otsu’s method [35]
to binarize the denoised grayscale image. As shown in the results, the image pro-
cessed using the adaptive threshold method (Figure 9a) still contains a significant
amount of substrate that was not effectively removed, resulting in considerable noise.
Otsu’s method (Figure 9b) produced better segmentation results than the adaptive
threshold method. Therefore, we chose to use Otsu’s method for threshold in our
further analysis.

• Pixel value analysis and result output: Following the previously mentioned method, a
grid matching the size of the tray’s holes was overlaid on the binarized image. Then,
the pixel values in each grid were counted. The qualification of seedlings was deter-
mined by setting an appropriate pixel threshold. These pixel values were visualized
using Matplotlib, as shown in Figure 10a, where more giant bubbles represented higher
pixel values. Green bubbles represented healthy seedlings, red bubbles represented
inferior ones, and red hollow circles indicated pixel values of 0, signifying the absence
of seedlings in those regions. Finally, the processing results were displayed, as shown
in Figure 10b, and the row and column data for unhealthy seedlings were output as
arrays for robot control.
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By following this comprehensive workflow, the identification of inferior seedlings can
be carried out effectively, providing valuable insights for quality control and optimization
of seedling production.

2.2.3. Robot Positioning Method

The UR5 robotic arm, chosen for its widespread industrial application, is a 6-degree-of-
freedom robot capable of reaching any position within its reachable space. Given that the
transplantation task in this study essentially corresponds to a planar grasping problem for
the robot, the robot’s degrees of freedom are sufficient to meet the operational requirements.

In existing research, it is common practice to employ threshold segmentation to
extract the contour of the plug tray from the image. Subsequently, statistical analysis
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is conducted on the pixel intensity peaks along the horizontal and vertical directions to
determine the plug tray boundary. This boundary information is then utilized to calculate
the centroid, which aids in precise positioning of the individual cell within the plug
tray [13,36]. This method’s positioning accuracy depends on the contour’s extraction effect.
However, the process of boundary extraction can be affected by factors such as camera
internal parameters, noise, lighting variations, and background conditions, which may
lead to incomplete boundary extraction. Consequently, this could result in inaccuracies
in positioning. Simultaneously, their research lacks pertinent data regarding positioning
accuracy, and reported experiments involving grasp tests using positional information
are absent. This paper introduces a three-point teach-in positioning method, assesses the
positioning accuracy of this approach, and conducts seedling thinning and supplementation
experiments utilizing the acquired positioning information. The robotic arm achieves
precise positioning of the cell cavities. The specific methodology is outlined as follows.

• Use the plug tray positioning block to limit the target tray and the seedling supply
tray to fixed positions, ensuring that the positions of the two trays relative to the UR5
robot base remain unchanged during removing and replanting operations.

• Number the hole positions of the tray in row M and column N, and manually teach
the robot to move to the three corner positions of the tray (as shown in Figure 11)
at P1,1(x1,1, y1,1) , P1, N(x1,N , y1,N), and PM,1(xM,1, yM,1), and record the coordinate
values of the robot at these three points in the world coordinate system of the robot.

• Due to installation errors causing misalignment between the coordinate axes of the
robot system and the edges of the plug tray in the robot’s coordinate system, vector
methods can be employed to calculate the position coordinates of target points. The
visual system identifies the inferior seedling according to the method in Section 2.2.2
after the image of the plug tray seedlings is obtained. If the position of the inferior
seedling is in row i and column j, as shown in Figure 11a, the vectors satisfy the
following relationships:

→
P1,1Pi,j =

→
P1,1P1,j +

→
P1,jPi,j

→
P1,1P1,j = (j − 1)

→
P1,1Pi,N / (N − 1)

→
P1,jPi,j = (i − 1)

→
P1,1PM,1 / (M − 1)

(5)

By substituting the coordinates of each point into Equation (5), we can derive the
calculation formula Equation (6) for the coordinates of the inferior seedling’s position.{

xi,j = x1,1 + (j − 1)(x1,N − x1,1)/(N − 1) + (i − 1)(xM,1 − x1,1)/(M − 1)
yi,j = y1,1 + (i − 1)(yM,1 − y1,1)/(M − 1) + (j − 1)(y1,N − y1,1)/(N − 1)

(6)

• After calculating the coordinate data of the hole position, the computer sends the
position data to the UR5 robot controller through wireless communication, thereby
controlling the robot to eliminate inferior seedlings sequentially according to the
planned path.

A scaled plan view of the plug tray was created using CAD, incorporating a central
crosshair at the center of each hole. The drawing was printed, affixed to the surface of the
plug tray, and placed on the positioning block. A positioning pointer tool was designed,
3D-printed, and mounted on the end effector, as shown in Figure 11b. Following the TCP
positioning method outlined in Section 2.2.3, the coordinates of other holes were calculated
based on the coordinates of three corner points. The robot was then directed to move
the end effector to other holes, and the positioning error was recorded by observing the
pointer’s scale line position. Accounting for the softness of the plug tray and potential
errors in each placement, we tested five different trays, measuring the positioning error
for ten holes after each tray. The results indicate that the maximum positioning error in
the x-direction is 1.00 mm and in the y-direction it is 1.50 mm, with average positioning
errors of 0.44 mm in the x-direction and 0.59 mm in the y-direction. Hence, we adjusted the
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gripper spacing to ensure insertion into the substrate from a position 2 mm away from the
edge of the hole, guaranteeing no interference with the plug tray.
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This method effectively mitigates the errors arising from seed positioning discrepan-
cies during sowing, the incline of the plug tray, and potential camera distortions during
image recognition. The localization error is primarily contingent upon the extent of defor-
mation incurred during the tray placement and the dimensional variations across diverse
plug trays. Considering that plug trays conform to standard industrial specifications,
resulting in a high level of consistency in dimensions, this approach inherently guaran-
tees increased localization accuracy. Consequently, the method effectively satisfies the
positioning requirements for transplantation procedures.

3. Results
3.1. Grasping Effect

After the experiment, we plotted the data of the percentage of grasping weight for the
two types of grippers at different moisture levels on a scatter plot, as shown in Figure 12.
Based on the results, we can draw the following conclusions.

With the increase in moisture content, the grasping percentage also increases. When
the moisture content is 70% to 75%, both types of grippers achieve their maximum grasping
percentages of about 65%. This is attributed to the fact that the cohesion within the substrate
becomes stronger as the moisture content increases. However, as the moisture content
rises, the grasping percentage decreases. This decrease can be attributed to the excessive
moisture in the substrate, which results in a higher substrate weight and makes it more
prone to scattering during the grasping process.

When the moisture content is below 65%, the shovel-type gripper has a higher grasping
percentage than the fork-type gripper. This is because the shovel-type gripper has a closed
contact surface with the substrate, preventing substrate scattering. In contrast, the fork-type
gripper has gaps between its fork teeth, which can lead to substrate scattering. However,
when the moisture content exceeds 65%, the increased cohesion among the substrate
particles causes them to stick together, making it less likely for them to scatter from the
fork-type gripper’s teeth. Additionally, the fork-type gripper’s smaller contact area with
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the substrate during insertion makes it smoother to penetrate the substrate, resulting in a
slightly higher grasping percentage than the shovel-type gripper.
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Based on the analysis, it is recommended to choose a time shortly after tidal irrigation
when the substrate has a higher moisture content for transplanting operations. This is
because higher moisture levels facilitate better grip and handling of the seedlings dur-
ing transplantation. Additionally, considering that the fork-type gripper has a smaller
contact area with the substrate, it is more suitable for inserting into the soil. Therefore,
selecting the fork-type gripper for the transplanting process would be advantageous. By
following these recommendations, it is expected that the transplanting efficiency and
success rate can be optimized, leading to improved overall performance in the seedling
transplantation process.

3.2. Test of Inferior Seedling Recognition

According to the method described in Section 2.2.2, we tested the visual system’s
recognition accuracy on 432 seedlings, with two trays each for seedlings aged 8 to 10 days.
We counted the number of misidentified seedlings and recorded the experimental data in
Table 3. By incorporating a timer into the recognition algorithm program, recognition time
is recorded, and the average recognition time can be calculated. We can calculate that the
average recognition accuracy of this algorithm is 97.68%, with an average recognition time
of 1.22 s. This performance meets the requirements for robot transplanting operations.

Table 3. Data of recognition accuracy test.

Seedling Age/(Day) NO. of Trays Number of
Seedlings

Number of
Recognition Errors

Recognition
Accuracy Time Cost/(s/Tray)

8
1 72 3 95.83% 1.19
2 72 1 98.61% 1.27

9
3 72 1 98.61% 1.20
4 72 2 97.22% 1.20

10
5 72 2 97.22% 1.24
6 72 1 98.61% 1.23

The main reasons leading to recognition errors can be categorized into two situations.
Firstly, when the leaves extend beyond the boundaries of the hole in the image, their pixel
values tend to be relatively low due to being outside the bounding box. This may result in
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healthy seedlings being mistakenly identified as inferior ones. Secondly, the skewed growth
of leaves can cause them to protrude into adjacent empty holes or holes containing inferior
seedlings, increasing in pixel values within the adjacent hole’s bounding box. Consequently,
empty holes or inferior seedlings may be incorrectly recognized as healthy seedlings.

Regarding the issue of leaves not being positioned at the center of the holes in the
images, there are primarily two contributing factors. Firstly, during the manual seeding
process, it may be the case that seeds were not accurately placed in the central position of
the holes. Secondly, during the growth of seedlings, factors such as lighting conditions,
temperature, and humidity in the growth environment can influence stem tilting, causing
the leaves to deviate from the central position of the holes.

3.3. Removal and Replanting Test
3.3.1. Automatic Removal Test

Based on the result of the end effector test in Section 3.1, it is evident that the highest
grasping percentage occurs at around 70–75% moisture content. Therefore, we conducted
the experiments approximately 2 h after watering, when the moisture content was around
70%, to achieve the best grasping performance. Unlike the end effector test, where only
the grasping performance of the end effector was tested during the actuation of the two
cylinders, the removing test required the UR5 robotic arm to operate the end effector in
coordination with the vision system, encompassing the entire process from recognition to
substrate grasping and dropping.

An automatic removal test was conducted with four trays of tomato seedlings aged
8–10 days. During the test, the mass of the removed substrate and the total mass of the
substrate were measured. The removal was considered successful when the percentage of
removed substrate mass exceeded 60%, and there was no substrate dispersion during the
motion of the UR5 robotic arm. The complete process of seedling removal was captured
on video to determine the time needed to accomplish the task. The test data for the four
trays of seedlings are presented in Table 4. According to the test result, the removal success
rate of the transplanting robot was 100%, with a removal efficiency of 12.69 seedlings
per minute.

Table 4. Data of removal test.

NO. of Trays Number of Inferior
Seedlings

Number of Successfully
Removed Seedlings Success Rate Time Cost/(s)

1 14 14 100% 64.01
2 7 7 100% 38.81
3 13 13 100% 61.18
4 21 21 100% 96.04

3.3.2. Automatic Replanting Test

The replanting experiment involved seedlings of the same age and substrate moisture
content as the thinning experiment. During the experiment, the UR5 robotic arm controlled
the end effector to complete the process, including grasping seedlings from the seedling
supply tray, transporting them, and replanting them into the target tray. Throughout the
replanting operation, if any of the following issues occurred, such as seedling grasping
failure, seedling dropping during transportation, seedling misalignment during replanting,
or damage to seedling leaves, the replanting was considered unsuccessful.

We conducted replanting experiments on five trays, each with 20 unqualified seedlings
already removed. The entire process of replanting was recorded on video to determine
the time needed to accomplish the seedling replanting task. The experimental data are
presented in Table 5. According to the results, the replanting success rate was 67.06%, with
a replanting efficiency of 10.75 seedlings per minute.
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Table 5. Data of replanting test.

NO. of Tests Number of Inferior
Seedlings

Number of Successfully
Replanting Seedlings Success Rate Time Cost/(s)

1 6 6 100% 30.55
2 30 20 66.67% 152.28
3 22 15 68.18% 132.83
4 27 16 59.26% 158.62

By observing the experimental video, it was found that there was a suspended area
due to incomplete support below the seedling supply tray. During grasping, the plug
tray would bend downward and deform, resulting in insufficient insertion depth of the
grippers, which led to the failure of seedling grasping. There are two main reasons for the
aslant of seedlings replanting. One reason is that there is friction between the plug tray and
the grippers, which causes the grippers to fail to return promptly. At this time, the lifting
cylinder retracts and drives the grippers to rise, lifting the seedlings and causing them to tilt.
This problem can be solved by changing the gripper cylinder to a double-acting cylinder
and adding a magnetic switch to detect whether the gripper cylinder returns to its original
position. The second reason is that the height of the seedling pushing rod is too high, which
does not play a role in pushing and pressing the substrate during seedling release, resulting
in the grippers lifting the seedling during the retraction process and causing it to tilt. This
problem can be solved by increasing the length of the seedling pushing rod.

Based on the analysis of the reasons for failure, we optimized the transplanting system
by adding bottom support, adjusting the length of the seedling push rod, and replacing
the gripper cylinder with a double-acting cylinder. We retested 100 seedlings with the
optimized system, and the test results are shown in Table 6. After optimization, the success
rate of seedling replanting increased to 95%, and the seedling replanting efficiency reached
9.34 seedlings per minute, meeting the requirements of the transplanting operation.

Table 6. Data of replanting test of the optimized system.

NO. of Trays Number of Inferior
Seedlings

Number of Successfully
Replanting Seedlings Success Rate Time Cost/(s)

1 20 20 100% 127.96
2 20 18 90% 128.22
3 20 19 95% 128.23
4 20 18 90% 129.90
5 20 20 100% 128.16

3.3.3. Effect Analysis of Transplanting Operation

To assess the potential effects of the transplanting operation on seedling growth, we
conducted a comparative growth experiment involving two groups of seedlings: one
group was subjected to transplantation, while the other served as the control group. Each
group consisted of 30 seedlings planted on opposite sides of a tray to ensure they were
exposed to the same growth environment. We measured the height of the transplanted and
control group seedlings every 3 days, continuously recording data up to the 12th day after
transplantation, as shown in Figure 13a,b. Based on the information provided in Figure 13c,
it is evident that both groups of seedlings exhibit a consistent growth trend, and at a
significance level of 0.05, there is no significant difference in average plant height between
the two groups of seedlings with the same growth days. Therefore, it can be concluded
that the impact of transplantation operations on seedling growth is not significant.
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Figure 13. Growth status of transplanted group and control group: (a) the day of transplant,
(b) 12 days after transplant, (c) box plot of two groups of seedling heights.

4. Discussion

In this study, we developed a robotic transplanting system based on computer vision
and met the basic needs of the plug tray seedlings transplanting process. However, some
problems were exposed from the experiment, which still need to be solved within further
study to optimize this prototype continuously. In this section, we will give a detailed
discussion of these problems.

The influence of substrate moisture content and gripper design on the substrate grasp-
ing percentage was investigated in this article. However, it is important to acknowledge
that additional factors may impact the grasping performance, such as gripper spacing,
grasping force applied to the substrate, and the size of gripper teeth gaps. In subsequent
research, a comprehensive approach could employ orthogonal experiments to analyze
the combined effects of various influencing factors systematically. This would aid in
identifying the optimal combination of gripper design parameters for achieving the best
grasping performance.

Our experiments revealed that seedlings might exhibit stem tilting or be planted
off-center within the cell, leading to instances where leaves protrude from the hole, thereby
increasing the likelihood of misidentification and missing removal. To mitigate this, sowing
machines could enhance the uniformity of seed placement within the tray plugs. A blade
separation mechanical device can also be installed to separate the blades of adjacent
seedlings in the hole from each other in order to eliminate the problem of mutual obstruction
of the blades. Moreover, exploring deep learning techniques for recognizing and detecting
inferior seedlings could provide more accurate results. Challenges may arise in determining
target annotation and model construction to achieve improved recognition outcomes.

Experimental investigations have revealed two predominant failure scenarios within
the transplantation process: unsuccessful seedling grasping and seedling tilting during
replanting. Insufficient support strength beneath the supply tray was identified as a
cause of seedling grasping failure, leading to plate deformation during grasping and
inadequate insertion depth of the gripper into the tray plug. Adding support at the bottom
of the tray has improved the success rate of seedling grasping. In the future, we can
also consider optimizing the gripper structure to reduce the resistance when inserting it
into the substrate. Seedling tilting was attributed to friction between the plug tray and
the gripper, resulting in delayed retraction and subsequent upward movement of the
gripper due to frictional resistance. By replacing the single-acting pneumatic cylinder
with a double-acting one, we observed an improvement in the replanting performance.
In the future, another enhancement could be achieved by replacing the push rods with
substrate-pressing pneumatic cylinders. This modification would ensure that the substrate
remains firmly pressed during the gripper’s seedling release, preventing any tilting when
the gripper retracts.

In the experiments, there were no instances of seedling damage, which demonstrates
that the diagonal insertion approach, employed by the diagonal oblique-insertion-type
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end effector, enables seedlings to grasp from diagonal corners of square holes, keeping the
gripper furthest away from the seedling positioned at the center of the hole during planting.
This design effectively minimizes the risk of damaging the seedling leaves with the gripper.
Additionally, during the rapid movement of the robot after grasping the seedlings, there
were no instances of substrate or seedling dislodgment. This indicates that the gripper
structure provides excellent containment for the substrate, preventing any scattering.

Currently, commercially available transplanters are widely used in greenhouses. These
transplanters exhibit high efficiency and stable operation. However, they are generally
only suitable for transplanting seedlings with older age, well-developed root systems, and
tightly wrapped substrates by roots. They are not suitable for transplanting early-stage
seedlings in plant factories. Moreover, these transplanters are expensive, occupy a large
space, and are difficult to install and deploy in the limited space of plant factories. We
compared our research with existing commercial transplanters, as shown in Table 7.

Table 7. Comparison with commercial transplanters.

Manufacturer/Model Advantage Disadvantage

TTA/FlexPlanter Highly efficient and operationally reliable.

Unable to be used for the transplantation of early
seedlings in loose substrate. Expensive and
space-consuming, it cannot be used in plant

factory environments.

Flier Systems/Plug Fixer Highly efficient and operationally reliable.
Dedicated air-assisted seedling removal equipment

is required. Expensive and space-consuming, it
cannot be used in plant factory environments.

Viscon/Fix-O-Mat TIFS-IV Highly efficient and operationally reliable.

Unable to be used for the transplantation of early
seedlings in loose substrate. Expensive and
space-consuming, it cannot be used in plant

factory environments.

Ours
The end effector can grasp loose substrates,

is cost-effective, occupies minimal space,
and is suitable for use in plant factories.

Single end effector operation is employed, and
there is room for further improvement in efficiency.

5. Conclusions

In the practical production process of plant factories, the efficient utilization of energy
and planting area directly impacts operational benefit. Early removal and replanting
operations for plug tray seedlings in plant factories significantly enhance yield per unit
energy consumption and per unit area. However, existing transplanting machines cannot
grasp the loose substrate of early seedlings. Addressing the challenge of grasping loose
substrate, this study introduced a diagonal oblique-insertion end effector and developed a
transplanting robot system for early-stage seedlings in plant factories.

Experimental results indicate that the optimal substrate moisture content for trans-
planting was 70% to 75%, and the fork-type gripper demonstrated the best substrate
gripping performance. Additionally, the study explored visual recognition algorithms for
identifying inferior seedlings and robot positioning algorithms. The end effector, visual
recognition algorithms, and robot motion control were systematically integrated to en-
able the robot to autonomously recognize and remove unqualified seedlings and replant
with healthy seedlings. Automatic transplanting tests revealed a recognition accuracy of
97.68% for inferior seedlings, a 100% success rate in seedling removal, an efficiency of
12.69 seedlings per minute for removal, a 95% success rate in seedling replanting, and an
efficiency of 9.34 seedlings per minute for replanting.

In this study, a single end effector was employed for the transplanting operation, limit-
ing the efficiency of the transplanting machine. In future research, enhancing transplanting
efficiency could be achieved by either increasing the number of end effectors or optimizing
the transplanting path.
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In general, this research provides a novel approach for the early replacement of
seedlings in plant factories, facilitating the removal of inferior seedlings and replanting
healthy ones during the early growth stages. This method contributes to more efficient
utilization of electric energy consumed by LED lighting and planting areas in plant factories,
thereby enhancing the operational benefit of plant factory production.
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