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Abstract: This study underscores the critical importance of accurate crop yield information for
national food security and export considerations, with a specific focus on wheat yield estimation at
the Gram Panchayat (GP) level in Bareilly district, Uttar Pradesh, using technologies such as machine
learning algorithms (ML), the Decision Support System for Agrotechnology Transfer (DSSAT) crop
model and semi-physical models (SPMs). The research integrates Sentinel-2 time-series data and
ground data to generate comprehensive crop type maps. These maps offer insights into spatial
variations in crop extent, growth stages and the leaf area index (LAI), serving as essential components
for precise yield assessment. The classification of crops employed spectral matching techniques (SMTs)
on Sentinel-2 time-series data, complemented by field surveys and ground data on crop management.
The strategic identification of crop-cutting experiment (CCE) locations, based on a combination of
crop type maps, soil data and weather parameters, further enhanced the precision of the study. A
systematic comparison of three major crop yield estimation models revealed distinctive gaps in each
approach. Machine learning models exhibit effectiveness in homogenous areas with similar cultivars,
while the accuracy of a semi-physical model depends upon the resolution of the utilized data. The
DSSAT model is effective in predicting yields at specific locations but faces difficulties when trying
to extend these predictions to cover a larger study area. This research provides valuable insights
for policymakers by providing near-real-time, high-resolution crop yield estimates at the local level,
facilitating informed decision making in attaining food security.

Keywords: crop yield; DSSAT; ML algorithms

1. Introduction

Accurate information regarding the productivity of staple crops at their scale is highly
essential for successful national planning as well as for ensuring food security at the country
level. The application of satellite-based remote sensing emerges as a practical and cost-
effective strategy for thorough crop monitoring, both at regional and national levels [1].
The agricultural sector plays an important role in India’s economy, contributing almost
19.9% to the nation’s GDP and employing almost half of the country’s workforce [2]. Wheat
is one of the major staple crops grown during the post-rainy season in India, especially in
Eastern India. It is cultivated with broad adaptability from temperate to cold environments
in Northern India. The major wheat-producing states in India are Uttar Pradesh, Madhya
Pradesh, Punjab, Haryana and Bihar [3].
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Accurate wheat crop yield predictions are essential for farmers to better plan their
production as well as their participation in the international wheat trade [4]. Advance esti-
mations of crop productions are crucial for policymakers, as they enable them to prepare for
crop procurement, distribution, determining price structure and strategizing import/export
decisions [5]. For farmers, this helps to determine their optimum area allocation under
different crops and ensure they can maximize their production and income [6]. Recent
advancements in technology, data collection and computational efficiency have facilitated
the design and implementation of big-data analytical approaches, which involve the use of
historical crop data, satellite imagery, climate data and other relevant information to build
a model that can forecast crop production at a given point in time.

Geospatial technology has good potential for sustainable agricultural development, en-
vironmental assessment, assessing crop suitability, monitoring cropland changes,
etc. [7–11]. Numerous studies have focused on monitoring land use and land cover (LULC)
using a variety of satellite imagery resolutions and techniques, spanning from local to global
scales [12,13]. Remote sensing has proven to be a highly effective method for tracking the
spatial distribution of agricultural croplands and LULC classes [14,15]. The use of satellite-
based spatial–temporal imagery enables the rapid, extensive, cost-effective and continuous
monitoring of crop fields [16]. Several studies have mapped LULC and crop types using
machine learning (ML) algorithms to classify satellite data, such as Sentinel-2 imagery [17–19]
and semi-automated techniques for crop types [20]. While ML techniques have proven
valuable in categorizing croplands, they necessitate a substantial quantity of high-quality
training data [21–23]. Unsupervised methods like spectral matching techniques (SMT) can
perform well with good accuracy with minimal ground data [24].

Remote sensing has widespread applications globally in estimating crop yields. Re-
mote sensing applications were initially focused on classification themes, which involved
identifying and mapping objects [18]. The estimations derived from remote sensing com-
monly rely on vegetation indices (VIs), employing a simple regression against the leaf
area index (LAI) or the fraction of Photosynthetically Active Radiation (fAPAR) [25–27].
These estimates have demonstrated a high level of reliability and concordance with actual
harvest data. However, it is crucial to emphasize the need for local calibration to ensure the
precision of the data.

The crop growth model has been successful in simulating the growth and behavior
of real crops since the 1960s [28]. Several crop models have been developed to study the
relationship between soil, plants and the atmosphere and to estimate biomass and grain
yield [29]. These mathematical equations have undergone pre-training using a diverse
range of experimental data gathered from various environments. Subsequently, they
are fine-tuned or calibrated to enhance precision in predicting outcomes within specific
studies [30]. While these mathematical models exhibit reasonable prediction accuracy,
their practical applicability is hindered by the need for extensive calibration, prolonged
runtimes and constraints related to data storage [31,32]. Since they are typically built on
a regional scale, they often overlook significant spatial and temporal variations in soil
characteristics, crop parameters and meteorological data, leading to uncertainties that affect
the model’s accuracy [33]. The integration of remote sensing data addresses these issues by
offering real-time acquisition and spatial continuity, enhancing the applicability of a crop
growth model at a regional scale. Integrating the advantages of both remote sensing and a
crop growth model helps mitigate uncertainties and improve accuracy in representing the
physiological growth process, supporting better agricultural planning. Many studies have
attempted to utilize this strategy of combining crop modelling and remote sensing [34,35].
Past research studies on wheat yield estimation have combined remote sensing with various
crop models [36], including WOFOST [37,38], CERES-Wheat [39–41], Decision Support
System for Agrotechnology Transfer (DSSAT) [42], APSIM, INFOCROP [43], STICS [44],
SAFY [45], Wheat-Grow [46], etc.

The DSSAT is known for its standardized input format, which permits consistent
data entry. It has undergone extensive validation studies, contributing to its credibility.
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The DSSAT is versatile, covering a wide range of crops with a common shell to manage
input data and the crop model. The DSSAT-CERES-Wheat model is part of the DSSAT-
CSM [47,48]. The model simulates the growth and development of cereal crops, such as
wheat, incorporating weather and management variables. Demonstrating its effectiveness,
the model serves as a valuable tool for identifying agricultural production management
practices that effectively mitigate economic uncertainties. The CERES-Wheat model has
successfully simulated wheat growth and yield in response to various conditions, such as
soil and climate conditions, in multiple studies [49–51].

The integration of remote sensing and a semi-physical model (SPM) for yield estima-
tion has been the subject of numerous studies [52,53]. An SPM incorporates factors such
as Photosynthetically Active Radiation (PAR) and the fraction of PAR absorbed by a crop,
providing real-time insights into a crop’s growing conditions throughout a season. While
this approach has shown satisfactory results for estimating potential crop yields for various
crops, it provides a potential yield rather than an actual one. The model operates under
the assumption of constant radiation conversion efficiency and harvest index, overlooking
factors such as nitrogen deficiency influenced by water stress and temperature stress dur-
ing reproductive and grain-filling stages. While nitrogen deficiency is addressed through
fAPAR, the primary challenges affecting the accuracy of yield estimations are water and
temperature stress [54].

This present study aimed to compare the effectiveness of using remote sensing in
conjunction with ML, DSSAT and SPM in estimating crop yields. The major goal of this
study is to map wheat growth areas in the study area, followed by location-specific yield
estimation using ML, DSSAT and SPM, and compare their findings.

2. Materials and Methods
2.1. Study Area

Bareilly district in Uttar Pradesh, situated on the Ganges River plain between 28◦8′

and 28◦58′ north latitude and 78◦58′ and 79◦47′ east longitude, experiences a monsoon-
influenced climate with an average annual precipitation of 800–900 mm [55]. The district’s
temperature variations, ranging from hot summers exceeding 40 ◦C to cool winters between
4 and 20 ◦C, contribute to the cultivation of a diverse range of crops. The region’s fertile
alluvial soils support its thriving agricultural sector, with wheat, rice, sugarcane, pulses,
oilseeds and vegetables being the primary crops. With the adoption of modern agricultural
practices and irrigation facilities, including canals and tube wells, Bareilly district plays a
crucial role in Uttar Pradesh’s agricultural landscape and agricultural production.

Ground data were gathered throughout the study area in January 2021, as shown
in the figure, encompassing all significant crops. These ground data serve the purpose
of crop classification and provide insights into the cropping patterns in the study area.
Our proprietary mobile application, “iCrops”, is employed for collecting this ground data,
which includes information such as geographical location, LULC and more. Additionally,
Crop Cutting Experiments (CCEs) are conducted across the study area, as illustrated in
Figure 1, to obtain details such as geographical location, i.e., latitude and longitude, biomass
and weight, for the identification of the harvest index.

2.2. Methodology
Mapping Wheat-Growing Areas in the Study Area by Integrating Sentinel-2 Imagery and
Ground Data

Sentinel-2 satellite imagery from the Copernicus Program is used in this study for
precise crop classification and monitoring. Sentinel-2 data have a high spatial resolution
ranging from 10 to 60 m and the availability of 13 spectral bands. This enables us to capture
complex details about various crops, enhancing our ability to distinguish and analyze
agricultural fields. Additionally, the satellite’s notable 5-day revisit time at the equator
proves helpful for closely monitoring the growth cycles of crops.
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The study combines Sentinel-2 data with ground survey data to create a detailed and
accurate crop type map for the rabi season (Figure 2). The methodology correlates the
ground signatures obtained from ground data with class signatures [23].
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In the collection of ground signatures, we conducted thorough ground surveys to
gather precise information about croplands, taking into account essential factors like crop
type, the availability of irrigation facilities, soil type, etc. To ensure optimal identification ca-
pabilities, we carefully chose homogenous areas, each covering a minimum of 100 × 100 m.
This selection process enhanced our ability to accurately characterize and understand the
composition of these areas. Subsequently, we organized the collected reference samples
into similar classes based on critical factors such as cropping intensity, specific crop types
and the systems used for cropping.

For the generation of class signatures, we employed an unsupervised classification
approach on Sentinel-2 time-series data from the rabi season 2020–2021, i.e., November
2020 to March 2021, utilizing the K-means cluster algorithm. This method enabled us to
automatically categorize the data into 100 distinct classes based on their spectral character-
istics. Subsequently, we created detailed spectral profiles for each of these identified classes.
These profiles provide in-depth information about the unique spectral properties of each
class, contributing to a more nuanced and precise understanding of crop categorization.

In the process of matching ground signatures with class signatures, we first grouped
the 100 classes into sub-groups based on their spectral profile similarity. This grouping
helped us organize and compare the spectral characteristics of different classes efficiently.
Later, we established matches between the class signatures and the ground reference
samples obtained during the ground surveys, ensuring similarity with factors such as crop
type, irrigation facilities, soil type, etc. To enhance the accuracy of the matching process,
we set criteria for spectral correlation similarity. If a match meets the established criteria,
the class is considered and aligned with the ground truth; otherwise, it retains its assigned
name. In cases of mismatches, we masked out those classes for further reclassification.
This iterative approach ensures the reliability of the classification results and refines the
accuracy of our crop type map.

2.3. Crop Yield Estimation Using Different Approaches

(a) Using Machine Learning Algorithms

Using the Sentinel-2-based Normalized Difference Vegetation Index (NDVI) as a
proxy to estimate yield by correlating it with pixel-level CCEs is a common practice in
agriculture [53]. The NDVI is a reliable proxy for crop yield as it reflects the health
and growth of vegetation. Derived from remote sensing data, it correlates with factors
like chlorophyll content and leaf area index, providing insights into crop development.
Its non-destructive and cost-effective nature, along with its high spatial and temporal
resolution, makes the NDVI a valuable tool for monitoring large agricultural areas. It helps
identify stressors and diseases, enabling timely interventions. However, for more accurate
predictions, it is essential to integrate NDVI data with other contextual information, such as
weather and soil conditions. This process typically involves the NDVI, which is calculated
using the near-infrared and red bands of the electromagnetic spectrum.

NDVI = (NIR − RED/NIR + RED)

CCEs involve physical measurements of crop yield in specific areas of a field. These
experimental results are correlated with NDVI values extracted from satellite imagery at the
same locations. A random forest machine learning algorithm was employed in this study,
utilizing a stack of NDVI layers as input features and a CCE as the training dataset. This
approach uses the random forest algorithm to effectively analyze the complex relationships
within the stacked NDVI layers, enabling accurate predictions based on the provided CCE
training data.

(b) DSSAT Crop Simulation Model

In this study, the CERES-Wheat model, embedded in the DSSAT v4.7.5 framework,
was employed to simulate daily crop growth and development for wheat. Input data,
encompassing weather, soil, cultivar/genotype and crop management parameters, were
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collected from diverse sources to ensure the model’s accuracy (Figure 3). The calibration
of the model was executed using data acquired during the rabi 2020–21 wheat growing
season, and a spatial analysis mode was employed to determine genetic coefficients. The
calibrated model underwent validation by comparing its simulated yield with observed
field data, ensuring its reliability for future predictions.
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To enhance the integration of model outcomes with real-world conditions, leaf area
index (LAI) values were extracted from NDVI images.

(c) Semi-Physical Approach

In this study, a comprehensive semi-physical method was employed to assess wheat
growth and estimate yield, leveraging multi-temporal datasets from diverse sources
(Figure 4) [56]. Sentinel-2 crop classification data, INSAT 3D-supplied daily insolation
data at a 1 km spatial resolution, MODIS-contributed information on various parameters
and NASA POWER-furnished meteorological data, including temperature extremes, were
used. The growing season, spanning December 2020 to May 2021, was the focus of the
analysis. Daily insolation data from INSAT 3D, accounting for half of the total insolation,
were crucial. Additionally, 8-day composites of the fAPAR from MODIS at a 500 m spatial
resolution were utilized. The Net Primary Product (NPP) was then computed at an 8-day
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interval using factors like PAR, fAPAR, stress and maximum radiation use efficiency at a
500 m spatial resolution.

NPP (g m2day1) = PAR × fAPAR × RUE × stress
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The radiation use efficiency (RUE) of wheat varies from 1.2 to 2.93 g MJ−1, so we have
taken the common mean RUE value as 2.06 g MJ−1.

The total NPP for the entire wheat growing season was derived from these composite
datasets. Wheat yield was subsequently calculated by combining the total NPP with the
harvest index obtained from CCEs.

3. Results and Discussion
3.1. Crop Classification

The classification map of Bareilly reveals a diverse landscape with distinct LULC
classes (Figure 5). Among these, wheat cultivation dominates a significant portion of
croplands, covering an area of 183,930 ha, whereas other crops contribute nearly 85,939 ha
(Table 1).
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Table 1. The labelled classes and their respective areas across the study area.

S.no Class Area (ha)

1 Wheat 183,930

2 Other Crops 85,939

3 Water bodies 3195

4 Built-up 13,795

5 Other LULCs 91,523
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Water bodies, crucial for ecological balance, occupy 3195 ha in the study region.
The built-up area, comprising infrastructure and urban spaces, was noted at 13,795 ha.
Additionally, the category of “Other LULCs” contains varied land uses, with nearly
91,523 ha. This comprehensive classification provides valuable insights into the spatial
distribution of different land cover types, facilitating a complete understanding of Bareilly’s
diverse and dynamic environment.

A total of 200 ground truth points were randomly collected throughout the crop-
growing season in the study area to facilitate validation processes. The accuracy of the
wheat area map was evaluated using a confusion matrix, employing ground truth points to
distinguish between wheat and non-wheat pixels. The classification accuracy for wheat
points was estimated at 95.3%, whereas non-wheat points were classified with an accuracy
of 92.0%.
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3.2. Yield Estimation Using ML Algorithms

Using ML algorithms, the CCE points were utilized as training data against NDVI
images to differentiate and predict crop yields across the entire district (Figure 6). The anal-
ysis uncovered a notably positive correlation between the NDVI and crop yield, indicating
the potential of the NDVI as a reliable indicator for agricultural productivity. Subsequently,
pixel-level yields were aggregated to GP levels, offering a more comprehensive understand-
ing of crop performance across different regions/ecosystems.
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In the southern part of Bareilly district, a consistent crop yield was observed, suggest-
ing homogeneity in crop health in that area. The predicted yield of the majority of the Gram
Panchayats in this region varies from 3500 to 3700 kg/ha. Conversely, the northern part of
Bareilly exhibited signs of stress in crop yields, indicating potential challenges or variations
in agricultural conditions. The majority of GPs located in this region showed a yield of
less than 3300 kg/ha. The GP-level yields displayed noteworthy diversity, fluctuating
from 2358 kg/ha to 4180 kg/ha, highlighting the high spatial variability in wheat crop
productivity within the district.

3.3. Yield Estimation Using DSSAT Crop Simulation Model

The crop simulation model employed in this study serves as a simplified representation
of crop growth, considering various influencing factors such as variety, soil, weather and
management. Specifically, the CERES-Wheat model was calibrated, tested and validated to
simulate wheat yields, taking into account the spatial influence of these input factors.

To generate a spatial leaf area index (LAI) for the corresponding wheat pixels, the
classified map was utilized. Initially, NDVI values were extracted from wheat pixels,
and considering the noise in the wheat pixels, NDVI thresholds greater than 0.5 were
considered. The determination of the remote sensing (RS) LAI involved using the linear
equation derived from the correlation between the model’s LAI and NDVI. Subsequently,
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a spatial wheat yield map was created using the spatial LAI map, establishing a linear
relationship between the model’s LAI and the model’s yield.

The GP-level yield in Bareilly district exhibited a range from 2111 kg/ha to 4628 kg/ha,
a variation that was determined through the implementation of the DSSAT model (Figure 7).
The model was executed by stratifying areas based on similarities in soil type, weather
conditions and cultivation practices. This strategic approach allows for a more precise and
localized assessment of agricultural productivity.
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These yield calculations are particularly sensitive to the spatial leaf area index (LAI)
values, indicating the importance of vegetation density in influencing crop yields. The
DSSAT model, by factoring in these spatial variations in the LAI, provides a refined
understanding of the relationships between soil, weather and cultivation practices in
different regions. The observed range in the GP-level yields underscores the significance
of modifying agricultural strategies to specific local conditions, enabling more effective
management and optimization of crop production in diverse areas of the district.
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3.4. Yield Estimation Using Semi-Physical Approach

Employing a semi-physical approach, the GP-level yields in Bareilly district exhibited
variability ranging from 2546 kg/ha to 3845 kg/ha (Figure 8). This methodology involves
calculating yields based on the conversion of PAR into biomass, taking into account the
RUE of the wheat crop, along with the fAPAR.
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In the present context, the wheat yield calculation is primarily influenced by PAR and
the crop’s RUE. PAR serves as a crucial factor in driving photosynthesis, and the RUE of
the crop determines how efficiently this radiation is converted into biomass. As a result,
variations in these parameters contribute to the observed variation in Gram Panchayat-level
yields. This semi-physical approach provides a mechanistic understanding of the factors
influencing crop productivity, offering valuable insights into the intricate relationships
between radiation, crop physiology and ultimately, yield outcomes.
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3.5. Comparison between Different Models

The average crop yield estimates for five taluks of Bareilly district, namely Aonla,
Baheri, Bareilly, Faridpur and Nawabganj, across three distinct methodologies, namely the
SPM, the NDVI and the DSSAT, are presented in the chart below (Figure 9).
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The highest average yield is noticed in Faridpur, followed by Aonla, Bareilly and
Baheri, and the lowest in Nawabganj. The gap between the yields calculated through these
three models is well observed in the above chart.

The performance evaluation of the three distinct crop yield estimation models involves
the Root Mean Square Error (RMSE), which provides a measure of prediction accuracy. The
striking similarity in their R-squared (R2) values, around 0.82, underscored their compa-
rable explanatory capabilities. For the SPM, an RMSE of 1776 kg/ha was accompanied
by an R2 value of nearly 0.82, highlighting its moderate prediction errors and robust cor-
relation with the observed values. Similarly, the NDVI exhibited a slightly higher RMSE
at 1907 kg/ha yet maintained a consistent R2 value of approximately 0.82, indicating its
effective capacity to explain variations in crop yields. Notably, the DSSAT outperformed
the other model with the lowest RMSE of 1605 kg/ha, coupled with a steady R2 value of
around 0.82, affirming its superior accuracy and explanatory power (Figure 10). The conver-
gence of the R2 values across all the models suggests a collective strength in capturing the
underlying patterns in wheat yield data. While differences in the RMSE highlight varying
levels of precision, the model consistently demonstrated a strong correlation between the
predicted and observed values.

The study differentiated that the DSSAT model consistently produced the highest av-
erage crop yields among the examined methodologies. This performance can be attributed
to the model’s detailing of input data at the point level. In contrast, both the SPM and
the NDVI demonstrated lower average yields. This difference can be attributed to their
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dependence on remote sensing data, which, while offering broad coverage, may introduce
noise into the analysis, potentially compromising precision.

SPMs exhibit advantages in yield estimation. By incorporating physical principles,
these models establish a robust foundation for accurate predictions. Additionally, SPMs
prove advantageous in regions with limited data availability, making them applicable in
diverse agricultural settings. However, their limitations become apparent through their
heavy dependence on accurate input parameters, making predictions susceptible to dis-
crepancies in the data. Furthermore, SPMs may struggle to adapt to dynamic and rapidly
changing environmental conditions, potentially impacting their overall adaptability. Simi-
larly, the NDVI leverages satellite-derived vegetation indices, offering a non-invasive and
efficient means of estimating crop yields. The NDVI’s suitability for large-scale monitoring
allows for insights into overall vegetation health. Nonetheless, limitations arise, such as
its constraints in assessing vegetation health, potentially overlooking critical factors influ-
encing crop yields. Additionally, the NDVI exhibits sensitivity to atmospheric conditions
and susceptibility to interference from non-crop vegetation, impacting the accuracy of
its predictions.
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In the case of the DSSAT, its advantages lie in its comprehensive approach to yield
estimation. The DSSAT accounts for complex interactions between soil, weather and
crop management, resulting in detailed and comprehensive yield estimates. The model’s
adaptability is showcased by its suitability for diverse agro-ecological zones, providing
flexibility in applications across varying agricultural landscapes. However, the DSSAT
comes with a set of limitations, including the requirement for extensive input data, which
poses challenges in obtaining accurate and comprehensive information. Moreover, the
model is sensitive to inaccuracies in input parameters, potentially affecting the reliability of
its yield predictions.

All three models require CCEs to be conducted. However, when compared with the
SPM and ML, the DSSAT model demands a more extensive set of parameters, encompassing
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soil characteristics, weather variables and crop management practices. This requirement
adds a significant level of effort to the implementation of the DSSAT model.

The study underscores the critical role of detailed input data and model calibration in
achieving accurate crop yield estimates in near real time. The advantages and limitations
associated with each methodology highlight the importance of considering the specific
characteristics of the study area when selecting an appropriate modeling approach for crop
yield estimation.

4. Conclusions

The assessment of wheat crop yields in Bareilly district through the application of
diverse methodologies has provided a comprehensive understanding of the agricultural
landscape in the target ecosystem. ML algorithms using CCE points and the NDVI revealed
a positive correlation between the NDVI and crop yield, explaining the spatial variations
across the district.

The research findings clearly articulate how the application of high-end science tools
such as remote sensing and data-driven techniques can help in advancing the estimation
of wheat crop yields. The calibrated and validated DSSAT model played a crucial role
in simulating wheat yields, providing valuable insights into local variations based on
factors like soil, weather, cultivation practices, etc. In addition, a semi-physical method,
considering factors like PAR, RUE and fAPAR, delved into the detailed aspects influencing
crop yields. This approach gave a unique perspective on how environmental factors and
crop physiology interact, leading to observed variations in yields at the Gram Panchayat
level. Machine learning models demonstrated their effectiveness in homogenous areas
with similar cultivars. However, the accuracy of a semi-physical model relies basically
on the resolution of the utilized data. The application of the DSSAT model is proficient
in predicting yields at specific locations. However, challenges arise when attempting
to extrapolate these predictions to encompass a broader study area. The present study
contributes valuable insights for policymakers by offering near-real-time, high-resolution
crop yield estimates at the local level, thereby facilitating informed decision making to
enhance food security at the national level.

By closely comparing machine learning, simulation modeling and semi-physical ap-
proaches, this research study offers a comprehensive understanding of the agricultural
diversity in wheat cultivation in Bareilly district. The research findings provide a strong
foundation for well-informed or evidence-based decision making in wheat crop man-
agement, allocating resources, strategizing international trade and finally protecting the
interests of small and marginal wheat farmers in the state. The integration of these method-
ologies signifies the importance of employing diverse tools to capture the complexity of
wheat agricultural systems and paves the way for the development of sustainable agricul-
tural strategies in the state.
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