

Supplementary Materials

Electronic Supplementary Information for An Iron(III) Complex with Pincer Ligand – Catalytic Water Oxidation through Controllable Ligand Exchange'

Sahir M. Al-Zuraiji ^{1,2}, Dávid Lukács ¹, Miklós Németh ¹, Krisztina Frey ¹, Tímea Benkó ¹, Levente Illés ³ and József S. Pap ^{1,*}

- ¹ Surface Chemistry and Catalysis Department, Centre for Energy Research, H-1121, Konkoly-Thege street 29-33, Budapest, Hungary; sahir.aziz@energia.mta.hu (S.M.A.); lukacs.david@energia.mta.hu (D.L.); nemeth.miklos@energia.mta.hu (M.N.); frey.krisztina@energia.mta.hu (K.F.); benko.timea@energia.mta.hu (T.B.)
- ² Doctoral School on Materials Sciences and Technologies, Óbuda University, H-1034 Bécsi street 96/b Budapest, Hungary
- ³ Institute of Technical Physics and Materials Science, Centre for Energy Research, H-1121, Konkoly-Thege street 29-33, Budapest, Hungary; illes.levente@energia.mta.hu (L.I.)
- * Correspondence: pap.jozsef@energia.mta.hu; Tel.: +36-1-392-3284 (J.S.P.)

Contents

Figure S1

Figure S2

Table S1

Figure S3

Figure 1. SWVs of the tia-BAIH ligand and the [Fe^{III}Cl₂(tia-BAI)] complex (c = 0.2 mM) dissolved in acetone (BDD working electrode, under Ar, 0.1 M TBAP, 25 °C).

Figure 2. Comparison of CV scans for [Fe^{III}Cl₂(tia-BAI)] dissolved in acetone when 2 M of H₂O (black line) or D₂O (red line) is added, inset: CV scans of freshly prepared [Fe^{III}Cl₂(tia-BAI)] solutions used in the corresponding experiments (solid lines, c = 0.2 mM) and CVs recorded after the addition of H₂O or D₂O (dashed lines, magnified view of the main figure).Cell setup: BDD working el., non-aqueous Ag⁺/Ag ref. el., Pt counter-el., Ar atm., 25°C, 0.1 M TBAP.

Elements / Component Peak	Binding Energy (eV)	Chemical State
1/ITO		
Fe 2p 1	709.0 (709.6)	Fe ^{III}
Fe 2p 2	711.0 (711.3)	
Fe 2p 3	713.2 (713.0)	
Fe 2p 4	716.4 (716.2)	
Fe 3p	55.6 (55.6)	
N 1s 1	398.9 (399.5)	C=N-C and Fe-N _{hc}
N 1s 2	400.9 (401.1)	C–NH–C
C 1s 1	284.8 (285.4)	
Cl 2p 1	198.5 (198.7)	Cl⁻
Cl 2p 2	200.1 (200.3)	Cl⁻
S 2p 1	164.4 (164.9)	S _{tia}
S 2p 2	165.6 (166.1)	Stia

Table S1. Selected binding energy values from the fitting of XP spectra of a freshly drop-casted complex/ITO sample, and of those collected after 4.5 h of CPE at +1.4 V *vs.* Ag/AgCl in borate buffer at pH 8.3 (in parenthesis). The associated chemical states of the elements are provided.^{a.}

^athe same complex/ITO sample has been analyzed by SEM-EDX, then applied in CPE (Fig. 9), and re-analyzed.

Figure 3. (a) The S 2p and (b) the N 1s binding energy region of XP spectra of the as-prepared complex/ITO with the fitted components; (c) and (d) the corresponding spectra after CPE (Fig. 8). For discussion see the text, for data see Tables 1 and S1.