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Abstract: A series of benzylidene-3-pyrrolines were prepared from chalcone derivatives,
arylacetylene and sulfonamide via a three-step sequence without the isolation of intermediates.
Typically, the reaction of 1,3-di-p-tolylprop-2-en-1-one with lithium phenylacetylide was
followed by substitution with tosylamide and then silver-catalyzed 5-exo-dig cyclization to
give N-tosyl-2-benzylidene-3,5-di-p-tolyl-2,5-dihydro-1H-pyrrole with a 86% yield. Furthermore,
transformation to the corresponding substituted 3-pyrrolin-2-one and pyrrole by m-chloroperbenzoic
acid (mcpba)-oxidation and acid-catalyzed aromatization, respectively, was investigated.
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1. Introduction

Both pyrrole and pyrroline are five-membered nitrogen-containing heterocycles, representing an
important class of the privileged scaffolds occurring in nature [1–3] and pharmaceuticals [4–8]. A few
examples of their biological activity are shown in Figure 1. Although the synthetic methods leading
to pyrrole and/or pyrroline rings are well-documented, there is still a demand for developing new
approaches for highly substituted and functionalized compounds.
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In this context, 3-ylidene-1-pyrrolines (I) have received much attention, because of the presence
of an exocyclic double bond, a reactive imine bond and a nucleophilic nitrogen site on the ring [9].
Thus, various transformations of these compounds leading to pyrrole derivatives have been disclosed.
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On the other hand, 2-ylidene-3-pyrrolines (II), isomeric structures of I (when R” = H), are less
explored [10–12]. Quite a few reports show that 2-ylidene-3-pyrrolines are reactive intermediates
and undergo aromatization upon heating to render the corresponding pyrroles [13]. In this work,
we would like to investigate the possibility of the cyclization of (Z)-2-en-4-yn-1-amines (III) to give
2-ylidene-3-pyrroline and then their further transformation.

2. Materials and Methods

2.1. Materials and Instrumentation

All chemicals were purchased and used without any further purification. Flash chromatography
was performed using a silica gel 230–400 mesh. Nuclear magnetic resonance spectra were recorded
in CDCl3 or acetone-d6 on either a Bruker AM-300 or AVANCE 400 spectrometer (Bruker BioSpin
Corporation, Billerica, MA, USA). Chemical shifts are given in parts per million relative to Me4Si for 1H
and 13C{1H} NMR. Infrared spectra were measured on a Nicolet Magna-IR 550 spectrometer (Series-II)
(Spectralab, ON, Canada) as KBr pellets, unless otherwise noted.

2.2. Synthesis

A solution of 2.5 M n-butyllithium (0.4 mL, 1.0 mmol) was added to a solution of phenylacetylene
(1.0 mmol) in tetrahydrofuran (THF, 4 mL) at the temperature of a dry-ice/acetone bath. Chalcone
(0.4 mmol) in pre-dried THF (2 mL) was slowly added to the above solution. After addition, the
reaction mixture was heated to reflux for 4 h. Upon cooling, ether (10 mL) was added and the mixture
was washed with saturated ammonium chloride solution and water. The organic portion was dried
over magnesium sulfate and concentrated under reduced pressure. The crude product 2 was subjected
to the next step.

A solution of toluenesulfonamide (1.2 mmol) and sulfuric acid (60 µL, 1.2 mmol) in THF (2 mL)
was warmed to 50 ◦C. The crude 2 from the last step in THF (0.5 mL) was slowly added to the above
solution and kept at 50 ◦C for several hours. Ether (10 mL) was then added, and the mixture was
washed with saturated sodium hydrogen carbonate solution and water. The organic portion was dried
over magnesium sulfate and concentrated under reduced pressure to give crude product 3.

Compound 3 from the last step was dissolved in dichloromethane (2 mL), and Ag(CH3COO)
(6.7 mg, 0.04 mmol) and triphenylphosphine (10.5 mg, 0.04 mmol) in methanol (2 mL) were then added
to the above solution slowly. After addition, the mixture was heated at 60 ◦C for several hours. Upon
cooling, the solution was concentrated to give the crude products, which were chromatographed on
silica gel with the elution of dichloromethane/hexane to give the final pure product.

2.3. Spectroscopic Characterization

Compound 4a was obtained as a yellow powder (168.9 mg, 86%): mp 92–94 ◦C; 1H NMR (400
MHz, CD3COCD3): δ 7.87 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 7.7 Hz, 2H), 7.43–7.39 (m, 4H), 7.25–7.14 (m,
9H), 6.40 (s, 1H), 6.00 (d, J = 1.7 Hz, 1H), 5.76 (d, J = 1.8 Hz, 1H), 2.38 (s, 3H), 2.35 (s, 3H), 2.34 (s, 3H);
13C NMR (100 MHz, CD3COCD3): δ 145.1, 143.7, 142.7, 139.2, 138.4, 137.7, 137.2, 134.7, 130.8, 130.4,
130.3, 130.2, 130.2, 130.1, 129.3, 128.9, 128.4, 127.9, 119.4, 71.1, 21.5, 21.3, 21.2; HRMS (ESI) m/z: [M + H]+

calcd. for C32H30NO2S: 492.1992, found 492.1991.
All spectral data of other compounds are deposited in the Supplementary Materials.

3. Results and Discussion

3.1. Synthetic Design

The synthetic scheme leading to the target molecule 4 is illustrated in Scheme 1. In order to have
2-en-4-ynilamine (3) for the cyclization study, we envision that the SN2’ substitution of 1-en-4-yn-3-ol
(2) with a nitrogen nucleophile would be a good approach, because 2 is readily available from the
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addition of acetylide with a chalcone molecule 1 (Scheme 2). Another important advantage of this
approach is that the starting chalcone compounds are commercially available or prepared by aldol
condensation reactions.
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3.2. Optimization of Each Step

Our ultimate goal is to carry out this three-step reaction sequentially without the isolation and
purification of products in each step. However, it is necessary to have optimized reaction conditions for
each step. Accordingly, the first step in preparing compound 2a (R = C6H5; Ar = Ar’ = p-CH3C6H4-)
is achieved by the addition of an equal molar amount of acetylide anion to a solution of 1a
(Ar = Ar’ = p-CH3C6H4-) in THF at the temperature of a dry-ice/acetone bath. A simple workup by
extraction gave 2a with a quantitative yield.

The substitution of 2a with various nitrogen nucleophiles was then investigated, and it appears
to be a challenge (Scheme 3). When p-toluidine was used as the nucleophile, the substrate was
consumed within a few hours in the presence of 30 mol% of H2SO4, but the desired product 5 was
obtained in trace amounts. Interestingly, the use of N-methylaniline as the reagent gave an electrophilic
aromatic substitution product, 6. Obviously, the carbocation intermediate int-1 produced via the
acid-promoted dissociation of 2a follows the electrophilic substitution with the aromatic ring instead of
a combination with the nitrogen donor of N-methylaniline. Finally, the treatment of 2a in a THF solution
with p-toluenesulfonamide in the presence of sulfuric acid at 50 ◦C gave the desired substitution
product 7, quantitatively.

With compound 7 in hand, the cyclization reaction leading to the desired product under various
catalytic conditions was examined (Table 1). As shown in the table, it was revealed that silver ion is
a suitable catalyst for promoting the cyclization, and the best reaction condition is carrying out the
reaction in the presence of triphenylphosphine ligand in a mixed solvent at 60 ◦C (Table 1, entry 6). It
is observable that the use of phosphine ligand readily assists the catalytic cyclization. Presumably, the
triphenylphosphine ligand is able to stabilize the intermediate and diminish the decomposition of
the metal complex. The reaction proceeds via a 5-exo-dig cyclization, instead of a 6-endo-dig pathway,
to yield the five-membered ring product.
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Entry Catalyst (eq.) Solvent 2 Temp. Time (h) Yield of 4a 2

1 Pd(OAc)2 (0.1) DCM rt 24 0%
2 PdCl2 (0.1)/tBuOK (1.0) toluene 50 ◦C 24 0%
3 AgOAc (0.1)/PPh3 (0.1) DCM/MeOH rt 24 23%
4 AgOAc (0.1) DCE/MeOH 60 ◦C 2 26%
5 AgOAc (0.1)/PPh3 (0.1) DCE/MeOH 60 ◦C 2 65%
6 AgOAc (0.1)/PPh3 (0.1) DCE/MeOH 60 ◦C 3 100% (86%) 3

7 AgOAc (0.1)/P(oTol)3 (0.1) DCE/MeOH 60 ◦C 2 57%
8 AgOAc (0.1)/P(OPh)3 (0.1) DCE/MeOH 60 ◦C 2 0%
9 AgOAc (0.1)/dppe (0.05) DCE/MeOH 60 ◦C 2 44%

1 Reaction conditions: 7 (0.2 mmol) and catalyst in solvent. dppe = PPh2CH2CH2PPH2; DCM = dichloromethane;
DCE = 1,2-dichloroethane. eq. = equivalent; rt = room temperature. 2 NMR yields. 3 Isolated yield given
in parentheses.

3.3. Reaction Scope

With the understanding of the reaction conditions of each step, a sequential process without the
purification of the product of each step was attempted, and compound 4a was chosen as the target. As
described in detail in Section 2.2, compound 4a was obtained with an 86% isolated yield. Thus, various
substituted chalcones were subjected to this reaction sequence accordingly, to render the expected
products with good-to-excellent yields (Table 2). All the compounds obtained were characterized
by NMR and mass analyses, and the structure of 4a was further confirmed by X-ray crystallography
(Figure S1).
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1 Reaction conditions: (1) A mixture of PhC≡CH (1 mmol) and n-BuLi (1 mmol) was added to 1 (0.4 mmol) in THF
at −78 ◦C. After 4 h, water extraction gave the crude product 2. (2) TsNH2 (1.2 mmol) and H2SO4 (1.2 mmol) were
added to a solution of crude product 2 in THF for 4 h. An aqueous NH4Cl solution workup gave the crude product
3. (3) To crude 3 in DCE were added AgOAc (0.04 mmol) and PPh3 (0.04 mmol) in methanol. The mixture was
heated at 60 ◦C. Workup and purification by chromatography yielded the desired product.

Instead of p-toluenesulfonamide, methanesulfonamide is also a good nitrogen nucleophile for
the reaction. Two examples of the mesylated products 8a–b are illustrated in Scheme 4. In addition,
trimethylsilylacetylene is also suitable for this sequential reaction to give 9 as the single product. It is
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3.4. Further Synthetic Transformation

Next, we studied the synthetic application of the obtained 2-ylidene-3-pyrrolines (Scheme 5). As
expected, in the presence of acid, compound 4a readily underwent C=C double migration to give
the corresponding pyrrole compound 10 at room temperature. Presumably, the driving force for this
double bond migration comes from the aromaticity of the pyrrole ring. When the reaction was carried
out with the use of BF3 as the acid catalyst at 60 ◦C, the pyrrole compound 11 was still formed with
a 96% yield according to NMR determination. However, it is observable that the migration of the
tosyl group to the 3-position of the ring occurred to yield the tosyl-substituted pyrrole 11 [14,15].
Compound 11 was treated with Boc2O in the presence of a base to give N-Boc-protected pyrrole 11’,
which crystallized to give a single crystal form for X-ray analysis. Thus, crystallographic determination
confirmed the structure of 11, i.e., the 3-position of the tosyl group in the ring. The oxidation of 4a with
mcpba (m-chloroperbenzoic acid) produced the α,β-unsaturated γ-lactam 12 with a reasonable yield.
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