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Abstract: Fischer–Tropsch synthesis (FTS) produces hundreds of hydrocarbons and oxygenates
by simple reactants (CO + H2) and the detailed chain propagation mechanism is still in dispute.
An industrial iron-based catalyst was used to further clarify the mechanism by adding aldehyde,
alcohol and alkene species into a fixed-bed tubular reactor. The added species were investigated
in H2 and syngas atmospheres, respectively. 1-alkene in the H2 atmosphere presented an obvious
hydrogenolysis, in which the produced C1 species participated in C–C bond formation simultaneously.
Co-feeding Cn alkene with syngas showed remarkable Cn+1 alcohol selectivity compared to the
normal FTS reaction. In addition, the carbonyl group of aldehyde was extremely unstable over the
iron-based catalyst and could easily be hydrogenated to an alcohol hydroxyl group, which could
even undergo dehydration for hydrocarbon species formation. Experimental data confirmed that
both heavier alkenes and alcohols added can be converted to chain growth intermediates and then
undergo monomer insertion for chain propagation. These results provide strong evidence that the
chain propagation in the FTS reaction is simultaneously controlled by the surface carbide mechanism
and the CO insertion mechanism, with surface CHx species and CO as monomers, respectively. The
study is of guiding significance for FTS mechanism understanding and kinetic modeling.

Keywords: Fischer–Tropsch; mechanism; alkene; alcohol; aldehyde; chain propagation factor; prod-
uct distribution

1. Introduction

Fischer–Tropsch synthesis (FTS) has attracted extensive attention because it is a feasible
technology for the conversion of coal, biomass and natural gas (via gasification or steam
reforming to syngas) into liquid fuels [1,2]. However, the fundamental understanding of
the chain growth mechanism is still a developing field. Much work has been devoted to
this aspect in numerous laboratories from almost as early as the 1920s. In general, three
independent chain growth assumptions have been proposed (summarized in Scheme 1):
the surface carbide mechanism [3], the CO insertion mechanism [4] and the surface enol
mechanism [5].

The surface carbide mechanism (Scheme 1a) implies that FTS chain propagation is
performed by oxygen-eliminated monomers (CHx, formed by direct or H-assisted CO
dissociation [6–9]) and the chain terminates for linear alkane and alkene formation by hy-
drogenation or β-hydride elimination of the intermediates. Hydrogen could react either in
a molecular state or by dissociative adsorption, but here we have emphasized the dissocia-
tive adsorption in Scheme 1 because hydrogen dissociation has a low activation barrier [10]
and the related kinetic model could predict experimental data accurately over a wide range
of reaction conditions [11]. Direct evidence to support this mechanism was the CH2N2/H2
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experiment determined by Brady and Pettit [12], in which a remarkable polymerization of
CH2 groups into high carbon-number hydrocarbons was presented over iron, cobalt and
ruthenium metals (CH2N2 could be rapidly decomposed over these metals at 1 atmosphere
and 298–473 K for CH2 species formation and then undergo chain propagation). Other
reasonable evidence includes the addition of CH2 related probes [13,14] and CH2 trap
experiments with reactions of addition to unsaturated compounds such as cyclohexene
and benzene [15,16]. The surface carbide mechanism is widely used in elementary step
assumption, kinetic modeling and the explanation of hydrocarbon formation in the FTS
process [17–21]. The CO insertion mechanism (Scheme 1b) assumes that C–C chain propa-
gation proceeds via the insertion of CO monomers into surface metal-H (the first initiation)
and the metal–carbon bond of surface hydrocarbon intermediates, a well-known reaction in
homogeneous catalysis, and the terminal oxygen is ultimately eliminated by hydrogenation
and/or dehydration. This mechanism has been universally recognized as the main path-
way for the oxygenate formation in FTS. The surface enol mechanism (Scheme 1c) suggests
a scheme of chain growth by self-condensation of hydroxycarbene monomers, generating
oxygenated intermediates that exhibit as precursors for both hydrocarbon and oxygenate
formation. This mechanism is mainly supported by sorption measurements suggesting
enolic complexes M=CH(OH) [22]. However, no experimental results have indicated that
the growing chain was formed by oxygen-involved species through the self-condensation
process. In fact, the C–C bond formation between hydroxycarbene electrophilic species is
not very common.
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The product spectrum of FTS consists of a very broad range of hydrocarbons (mainly
linear paraffin and olefin) and oxygenates (mainly alcohol, small amounts of acids, aldehy-
des, ketones and esters), with carbon numbers from C1 to as high as C120+. An Anderson–
Schulz–Flory (ASF) equation, with one chain propagation factor α, is normally used to
describe this product distribution [23]:

mn = (1 − α) αn−1 (1)

α = Rp/(Rp + Rt) (2)

where α is the chain propagation factor, n is the carbon number, mn is the molar fraction
of the Cn hydrocarbon, and Rp and Rt are the rates of chain propagation and termination,
respectively. However, in most cases the real FTS product selectivity does not obey this ideal
distribution, but shows a two-α distribution [24] with a carbon number. The extent of the
deviation from ASF distribution varies with the operating conditions (temperature, pressure,
space velocity, H2/CO ratio and reaction environment) and catalyst promoters [21,24–29].

In fact, none of the elementary-step-level kinetic models based on a mechanism men-
tioned above can predict the whole product distribution observed in the FTS reaction
independently. Currently, the most prevalent explanation of this deviation is the read-
sorption and secondary chain growth of primary product alkenes. It is proposed that the
residence time of long-chain alkenes is increased because of physical adsorption, diffu-
sion or solubility influences, which enhances their chances of undergoing a secondary
reaction and leads to increased chain growth factor α with increasing chain length of
alkenes [21,25,30,31]. Another explanation for this deviation is the two-mechanism as-
sumption. Gaube and co-workers proposed that the superimposed distributions were the
result of different catalytic sites causing different chain growth mechanisms, especially
over the alkali promoter catalysts [28,32]. This two-site mechanism was also supported by
Huff and Satterfield [24] and Davis et al. [33].

Probe co-feeding studies such as light alkenes (mainly C2–C4 alkenes) [34–42], heavy
alkenes [40,43–45], alcohols [5,40,46–49] and aldehydes [34] were reported to investigate the
chain growth mechanism and the secondary reaction of the components. In all these cases,
hydrogenation of the probe molecule to its corresponding alkane was the main reaction.
Most of the studies concluded that the added alkenes or alcohols can be incorporated
into growing hydrocarbon chains by initiating chain growth. However, the possible chain
propagation routes that simultaneously occur in the real FTS process are still not very clear.
We believe that the FTS reaction mechanism could be further clarified by more co-feeding
experiments in various reaction conditions.

The continuing argument on the subject prompted us to further investigate the FTS
reaction mechanism over a typical iron-based catalyst. In the present work we mainly
focused on the analysis of the reaction behavior of aldehyde, alcohol and alkene (extending
the carbon number to C8) and the discrimination of chain growth mechanisms in FTS. The
experiments were performed in an inert Ar atmosphere, an H2 atmosphere and a syngas
atmosphere, respectively. The results herein provide some interesting information for a
better understanding of FTS chain propagation.

2. Materials and Methods
2.1. Materials

The liquid reactants, oxygenates (C1–C3 alcohols, 99.7%; C5 and C6 alcohols, 98.5%;
propionaldehyde, 98.0%) and 1-alkenes (1-Hexene, 98.0%; 1-Octene, 97%), were measured
and fed by a piston mini-pump, Beijing Xingda Science and Technology Development Co.,
Ltd, Beijing, China. The gas reactants (CO, H2, C2H4 and C3H6, 99.99%) were measured by
Brooks 5850E mass flow controllers, Hatfield, PA, USA. The proprietary, industrial iron-
based catalyst used in this mechanism study was prepared by Synfuels China Technology
Co., Ltd., Beijing, China. [50].
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2.2. Methods

The experiments were carried out in a fixed-bed tubular reactor (Figure 1, steel
tube with 30 cm × 8 mm i.d.), which was loaded with 0.5 g of fresh catalyst (diameter,
0.150–0.180 mm) diluted with 1.0 g SiC. Quartz wool was placed at the bottom of the
reactor to support the catalyst mixture. A thermowell located in the center of the reactor
and a thermocouple were used to monitor the real reaction temperature. An electric heat-
ing device maintained a constant temperature (483 K) for the lines from the outlet of the
reactor to the inlet of the gas chromatograph (GC, Agilent 7890N (Agilent Technologies,
Santa Clara, CA, USA) with four columns: 1 DB-Petro capillary,1 PropakQ, 1 CarbonPLOT
capillary and 1 MoleSieve 5A capillary, oven temperature was 573.15 K), achieving online
GC analysis of the whole product stream within our experimental conditions (TCD: CO,
H2, CO2, Ar, C1–C3 hydrocarbons; FID: hydrocarbons and oxygenates). In each set of
the experiments, the fresh catalyst was reduced by syngas at a specified condition. Next,
the catalyst underwent steady-state transition at a constant condition (T, 533 K; Ptotal,
0.8 MPa; H2/CO, 1.6; space velocity, 10,000 mL g−1 h−1) for about 50 h, then the catalyst
was flushed for 5 h by switching the syngas into inert Ar (high purity, 99.99%). Subse-
quently, the mechanism studies were carried out at 533 K and 0.8–1.0 MPa with a space
velocity of 10,000–11,000 mL g−1 h−1. Ar was added and served as an internal standard
for the purpose of data processing.
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Figure 1. Schematic apparatus of the fixed-bed reactor for FTS mechanism experiments (HV, globe
valves; F, filter; CK, non-return valves; PCV, pressure reducing valves; F’, thermal resistant filter; NJ,
thermal resistant globe valves; R1, fixed-bed reactor; PBV, back-pressure regulator; LJ, cold trap; FI,
flow meter; V, gas–liquid separator).

3. Results and Discussion
3.1. Mechanism Investigation with 1-Alkene as Single Carbon Source

In an inert Ar atmosphere, GC analysis of the reactor effluent did not find any other
response except for the alkene probe itself in single alkene feeding. This indicates that
a single alkene can hardly be activated for any surface reaction at typical FTS reaction
conditions over the reduced iron-based catalyst.

However, the reactivities of alkenes are highly increased in an H2 atmosphere
(Table 1). When the inlet was switched from H2 to mixed C2H4 and H2 (H2/C2H4 = 10.0)
over the reduced catalyst, the production rate of CH4 was increased by nearly 16 times
(single H2 atmosphere: CH4 produced by the hydrogenation of FeCx formed in the catalyst
reduction process). This phenomenon can surely be attributed to the C–C bond cleavage
of the activated C2H4 reactant and the consequent hydrogenation of the C1 species. In
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addition, we observed a part of the chain propagation (C3+ about 1.3%) although the
proportion of direct hydrogenation for C2H6 was extremely high at this H2/C2H4 condi-
tion. The proportion of chain propagation was increased from 1.3 to 6.6% (Table 1) when
continuously decreasing the H2/C2H4 ratio from 10 to 2.

Table 1. C2H4 reaction in H2 atmosphere (T = 533 K, p = 0.8 MPa).

Product Selectivity
(mol%)

H2/C2H4

2 4 5 10

CH4 1.4 2.0 2.0 1.5
C2H4 7.1 - - -
C2H6 84.9 93.8 95.1 97.2
C3+ 6.6 4.2 2.9 1.3

Similar results were obtained in the C3H6 reaction, in which the reactant was fully
converted even at a low H2/C3H6 ratio (Table 2). Except for the main reaction route for
C3H8 formation, the hydrogenolytic cleavage (CH4 and C2 products) and chain growth
(C4+ selectivity) were also observed simultaneously. Both chain propagations obey the ASF
theory, in which a C2H4 reaction is obtained from a C3 hydrocarbon (Figure 2a) and a C3H6
reaction is obtained from a C4 hydrocarbon (Figure 2b), respectively.

Table 2. C3H6 reaction in H2 atmosphere (T = 533 K, p = 0.8 MPa).

Product Selectivity
(mol%)

H2/C3H6

3 7 11

CH4 2.0 3.0 3.6
C2H4 + C2H6 3.0 3.4 3.6

C3H6 - - -
C3H8 89.3 90.3 90.5
C4+ 5.7 3.3 2.3
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(b) C3H6 in H2 atmosphere.

The heavier 1-alkenes, such as C6H12 and C8H16, also showed high reactivities.
The conversions of C6 and C8 alkenes were 84.7 and 98.0%, respectively, when the in-
let H2/CnH2n ratio was 2:1. They can be almost entirely converted if the inlet ratio is
increased to 5:1 (Table 3). The selectivity of the corresponding n-alkane by direct hydro-
genation of the heavier 1-alkene was remarkably low as compared to that of the light alkene
reactions (such as C2 and C3 alkenes) although it was still very sensitive to the increase



Reactions 2021, 2 166

of H2 pressure. Instead, 1-alkene isomerization by a double bond shift from the terminal
position to the internal position was significantly increased (Table 3). This phenomenon
is in agreement with the metal hydride addition–elimination mechanism, which was also
supported by Cramer and Shi et al. [51,52] to explain the isomerization of 1-alkene, as
depicted in Scheme 2.

Table 3. Reactions of C6H12 and C8H16 in H2 atmosphere (T = 533 K, p = 0.8 MPa).

Product Selectivity
(mol%)

H2/C6H12 H2/C8H16
2.1 (X = 84.7%) a 5.1 (X = 98.6%) 2.1 (X = 98.0%) 5.1 (X = 99.4%)

methane 1.2 2.4 0.9 2.6
2-alkene b 56.4 41.1 50.9 23.9
n-alkane 35.5 51.6 43.2 66.5
Others 6.9 4.9 5.0 7.0

a X in the parentheses indicates the conversion of C6H12 or C8H16 at the corresponding reaction condition;
b 2-alkene includes cis and trans structures.
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The detailed product distributions in these heavier 1-alkene reactions presented some
extremely interesting patterns. On one hand, parts of the activated C6 and C8 alkenes
have undergone terminal C–C bond cleavage step by step for methane and other light
hydrocarbon formations (from p1 to p3 in Figure 3); on the other hand, the alkenes could
initiate chain propagation by polymerizing a C1 monomer, and the product plots obeyed
an ASF distribution from point p4 in Figure 3. Simultaneously, the section from p3 to p2 by
C1 species initiating chain propagation also obeyed the ASF distribution (from C1 to C3
hydrocarbons, Figure 3a).
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Therefore, these experimental results from using 1-alkene as a single carbon source
clearly exhibit hydrogenation, isomerization, hydrogenolysis and C–C chain growth reac-
tions. Hydrogenation and isomerization account for most of the total conversion under
this condition. However, the most important thing is that our results present an extremely
good relationship between C–C bond cleavage and C–C bond formation over the reduced
catalyst, which can be described in Scheme 3.
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carbide mechanism.

The essential significance of the above results is that polymerization of C1 monomers
(originated from C–C bond cleavage of 1-alkene) step by step is feasible over the iron-based
catalyst, and the chain intermediates are unlikely to be propagated by C2+ species (that
means no remarkable C2+ species served as monomers) since no obvious saw-toothed
distributions were observed. These experiments further reinforce the surface carbide
mechanism over an iron-based catalyst. By combining with the measured surface rich in
CHx species in the adsorption of the syngas [53–55], we confirmed that at least some of the
FTS hydrocarbon products originated from the polymerization of the oxygen-eliminated
CHx species.

3.2. Alcohol Selectivity by Co-Feeding 1-Alkene in Normal FTS Reaction

By comparing with the non-addition experiments, we found that the addition of Cn
alkene to syngas caused a remarkable increase of the selectivity of Cn+1 alcohol (e.g., C2H4,
C3H6 and C6H12 addition in Figure 4), which returned to the normal selectivity once the
addition of these alkenes was terminated. The selectivity of Cn+1 alcohol was directly
proportional to the increase in the partial pressure of Cn alkene, e.g., the selectivity of
n-propanol and n-butanol depicted in Figure 5. In fact, similar results were discovered
by Otto Roelen [56] in early 1938 with ethylene addition (named the Roelen reaction,
hydroformylation or Oxo synthesis). This hydroformylation reaction was always used
to explain the oxygenate formation, but it attracted relatively little attention in respect
of the FTS reaction until quite recently since the selectivity of alcohol products is very
low compared to that of the hydrocarbon products. However, here we emphasize that
the hydroformylation reaction could be regarded as the first step of the CO insertion
mechanism as exhibited in Scheme 1b. During the Cn alkene co-feeding process, the surface
concentration of the Cn intermediate was largely increased. Subsequently, the adsorbed
CO species was inserted into the Cn intermediate and underwent further hydrogenation
and desorption for Cn+1 alcohol formation.

One question is whether these oxygen-involved intermediates could be further hy-
drogenated and dehydrated for hydrocarbon intermediate formation over an iron-based
catalyst. This step is crucial for an integrated assumption of the CO insertion mechanism
as presented in Scheme 1b. An experimental investigation was performed and is discussed
in the following section.
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Figure 4. Effects of alkene addition on alcohol selectivity (T = 533 K, p = 0.8 Mpa, H2/CO = 12.0,
among the addition: H2/C2H4 = 4.0, H2/C3H6 = 4.1, H2/C6H12 = 2.6).
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Figure 5. The alcohol selectivity with the increase in alkene partial pressure (T = 533 K, p = 0.8 Mpa, H2/CO = 12.0).
(a) C2H4 addition. (b) C3H6 addition.

3.3. Mechanism Investigation with Aldehyde or Alcohol as Single Carbon Source

Taking propionaldehyde (CH3CH2CHO, inlet 0.5 mL/h) as an example, the results
(Table 4) clearly show that the carbonyl bond of aldehyde can easily be hydrogenated
over the iron-based FTS catalyst. It was almost totally converted at H2/C3H6O = 21.75.
This is consistent with the realistic product distribution of the FTS reaction in which the
selectivity of the aldehyde is extremely low. Except for the most part of propanol selectivity,
we found that a small number of hydrocarbon products, mainly C2–C4 hydrocarbons,
were formed during the hydrogenation of propionaldehyde. This can be attributed to the
further hydrogenation of the formed alcohol hydroxyl groups and their dehydration. The
aldehyde is most likely an intermediate product in the CO insertion mechanism.
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Table 4. The hydrogenation and dehydration results for the propionaldehyde reaction.

Reaction Results
(mol%)

H2/C3H6O Ratio (C3H6O, 0.5 mL/h)

2.83 4.38 7.96 11.88 21.75

Conversion, C3H6O% 66.19 86.52 97.51 98.16 99.15
Selectivity, propanol% 93.30 94.45 95.39 95.84 96.45

Selectivity,
hydrocarbon

(C2–C4)%
4.73 3.46 4.51 4.05 3.35

We further confirmed the hydrogenation and dehydration of the alcohol hydroxyl
group by adding C2, C3, C5 and C6 alcohols into an H2 atmosphere. In order to minimize
the reoxidation of the metallic phases of the catalyst, the residence time of the added
alcohol was largely decreased by keeping a large volume of the Ar carrier. Thus, the
conversion of alcohol in our experiments was maintained below 5%. Results show that
the hydrogenation of Cn alcohol mainly led to the hydrocarbon formation from Cn−1 to
Cn+1, in which the corresponding Cn hydrocarbon showed the highest selectivity (Figure 6).
Previous publications suggested that the hydrogenolysis of an alcohol occurred to produce
an alkane with the same carbon number but not an alkene [42,47]. Here we found that
alkenes exhibited a much higher selectivity than alkanes when adding Cn (n ≥ 3) alcohol,
as shown in Figure 6. Moreover, the product distributions presented here were very similar
to those of the hydrogenation of the heavier 1-alkene shown in Figure 3, suggesting that
the dehydrated Cn hydrocarbon species here also underwent further C–C bond cleavage
and chain growth for Cn−1 and Cn+1 hydrocarbon formation, respectively.
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Figure 6. The dehydration of alcohols in an H2 atmosphere over a reduced iron-based catalyst
(T = 533 K, p = 0.8 Mpa). (a) C2H5OH addition. (b) C3H7OH addition. (c) C5H11OH addition.
(d) C6H13OH addition.

By summarizing the experimental results shown in previous sections, we propose that
the aldehyde formed in the FTS process is an intermediate product of the CO insertion
mechanism, which is very unstable in an H2 atmosphere and could easily be hydrogenated
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to alcohol products. Subsequently, the alcohol will be dehydrated to form a hydrocarbon
intermediate or final product. These findings coincide with the reaction mechanism de-
picted in Scheme 1b. We therefore believe that the CO insertion mechanism is reasonable
over iron-based catalysts for FTS chain propagation.

3.4. The Effects of Alkenes and Alcohols on FTS Product Distribution

The influence of 1-alkenes with different chain lengths (C2, C3, C6 and C8 alkenes)
on the normal FTS reaction was studied. Results show that the addition of Cn alkene
caused a large increase in hydrocarbon selectivity from Cn (Figure 7). The maximum
Cn selectivity could be ascribed to the direct hydrogenation of the added alkene into its
corresponding alkane. The plot for the product distribution presents a parallel shift from a
Cn+1 hydrocarbon, while the chain growth probability α in Figure 7 presents no significant
difference. This essentially indicates that the surface concentration of Cn intermediate was
remarkably increased and served as a chain initiator in the FTS reaction. These results
coincide with the mechanism routes discussed in previous sections.
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Figure 7. The effects of 1-alkene addition on FTS product distribution. (a) C2H4 addition (T = 533 K, p = 1.0 Mpa,
H2/CO = 8, H2/C2H4 = 4). (b) C3H6 addition (T = 533 K, p = 0.8 Mpa, H2/CO = 12, H2/C3H6 = 5.6). (c) C6H12 addition
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The addition of C1–C3 alcohol only slightly affected the FTS product distribution
(Figure 8). This phenomenon has also been confirmed by numerous alcohol co-feeding
studies in published papers. Together with the low selectivity of alcohol products (espe-
cially the high-carbon-number alcohols) in the FTS process, few of the studies suggested
that the secondary reaction of alcohol would be related to the deviation of ASF distribution.
However, here we found that heavier alcohol addition (such as C5 and C6 alcohol) resulted
in a significant parallel shift in hydrocarbon selectivity from Cn, without significantly
affecting the value of the chain growth probability (Figure 9). Both parallel shifts presented
in alkene and alcohol experiments here are very similar.
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Figure 8. The effect of C1–C3 alcohol addition on the total hydrocarbon distribution in the FTS process. Reaction
condition: T = 533 K, p = 0.8 Mpa, H2/CO = 8, and (a–c) with CH3OH = 0.5 mL/h, C2H5OH = 0.7 mL/h and
C3H7OH = 1.0 mL/h, respectively.
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respectively. (–•–) and (–o–) are the total hydrocarbon distributions with and without alcohol
addition, respectively.

The above sections show that alkenes and oxygenates (such as aldehydes and alcohols)
are very reactive over the iron-based catalyst. They seem to be very similar to the indige-
nous intermediate species and have similar chain growth factors when they are activated
and incorporated into the chain growth reaction. These activated species serve mainly as
chain initiators. Essentially, the effects on the total product distribution are simultaneously
controlled by the surface carbide mechanism and the CO insertion mechanism, as discussed
in previous sections.
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Many researchers have developed kinetic models by considering the secondary chain
growth of alkenes to account for the FTS product distributions [21,25,30,57], but essentially
only one type of these mechanisms was considered in the group of elementary steps. The
assumption of alkene readsorption in these models could successfully predict the decrease
of the alkene-to-alkane ratio with chain length. However, they were still not good enough in
predicting the deviation in the actual FTS product spectrum from an ideal ASF distribution.
Gao et al. [58] in our group also confirmed that the suppression of the secondary reaction
of alkenes by polar solvent polyethylene glycol addition has not obviously reduced the
deviation of the total hydrocarbon distribution from the theoretical ASF distribution, which
still presented a two-α phenomenon. Together with the experimental results in this paper,
we believe that kinetic modeling for FTS product distribution would be better if it included
both the surface carbide mechanism and the CO insertion mechanism simultaneously. The
reaction behavior of the added alkenes and oxygenates reflects the possible elementary
steps of the two mechanisms. We could further hypothesize that the oxygen-involved inter-
mediates with higher carbon numbers will have longer residence times in the catalyst pores
and therefore enhance their chances of undergoing dehydration reactions for hydrocarbon
intermediate formation and their repeated CO insertion. If so, the CO insertion mechanism
may be more responsible for the positive deviation in FTS product distribution.

4. Conclusions

Both alkenes and oxygenates could be activated and converted to hydrocarbon in-
termediates, which then undergo CHx or/and CO insertion for chain growth in the ex-
perimental investigation by aldehyde, alcohol and alkene addition. The experimental
results obviously present a parallel shift in product distribution as compared with the
normal FTS process. It can be inferred that the intermediates formed are very similar to the
indigenous species produced on the surface of the catalysts and serve as a chain initiator
in the chain growth. The experimental results evidence two parallel chain propagation
pathways over a reduced iron-based catalyst: the surface carbide mechanism and the CO
insertion mechanism with CHx and CO as monomers, respectively.

The kinetic expression of FTS product distribution could be suggested to not only
consider the theory of the secondary reaction of alkenes by the carbide mechanism. The
reaction behavior of alkenes and their effects on product distribution are due to the joint
action of the two mechanisms. Moreover, the high selectivity of the 2-alkene and the lack of
aldehyde products in the real FTS process could be attributed to the instability of 1-alkene
and aldehyde in an H2 atmosphere. These mechanism routes are very useful in FTS kinetic
modeling and the explanation of the non-ASF product distribution.
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